双月刊

ISSN 1006-9895

CN 11-1768/O4

+高级检索 English
初始扰动振幅和集合样本数对CNOPs集合预报的影响
作者:
作者单位:

1.中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室,北京100029;2.中国科学院大学,北京100049;3.河南大学数学与统计学院,河南开封475004

作者简介:

汪叶,女,1982年生,博士研究生,主要从事可预报性研究。E-mail: wangye@henu.edu.cn

通讯作者:

段晚锁, E-mail: duanws@lasg.iap.ac.cn

基金项目:

国家重点研发计划2018YFC1506402,“全球变化与海气相互作用”专项GASI-IPOVAI-06,国家自然科学基金项目41525017


Influences of Initial Perturbation Amplitudes and Ensemble Sizes on the Ensemble Forecasts Made by CNOPs Method
Author:
Affiliation:

1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;2.University of Chinese Academy of Sciences, Beijing 100049;3.School of Mathematics and Statistics, Henan University, Kaifeng, Henan Province 475004

Fund Project:

National Key Research and Development Program of China Grant 2018YFC1506402;National Program on Global Change and Air-Sea Interaction Grant GASI-IPOVAI-06;National Natural Science Foundation of China Grant 41525017National Key Research and Development Program of China (Grant 2018YFC1506402), National Program on Global Change and Air-Sea Interaction (Grant GASI-IPOVAI-06), National Natural Science Foundation of China (Grant 41525017)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    初始扰动振幅的大小和集合样本数对于集合预报取得更高预报技巧具有重要意义。本文将正交条件非线性最优扰动方法(orthogonal conditional nonlinear optimal perturbations,简称CNOPs)应用于概念模型Lorenz-96模式探讨了初始扰动振幅和集合样本数对集合预报技巧的影响,从而为使用更复杂模式进行集合预报提供指导。结果表明,由于CNOPs扮演了非线性系统中的最优初始扰动,从而使得当初始扰动振幅小于初始分析误差的大小时,CNOPs集合预报获得更高的预报技巧,并且CNOPs集合预报的最高预报技巧总是高于奇异向量法(singular vectors,简称SVs)集合预报的最高预报技巧。结果还表明,CNOPs集合预报倾向于具有一个合适的样本数时,达到最高技巧。更好的集合离散度——预报误差关系和更为平坦的Talagrand图(Talagrand diagram)进一步证明了CNOPs集合预报系统的可靠性,从而夯实了上述结果的合理性。因此,针对CNOPs集合预报,本文认为采用一个适当小于初始分析误差的初始扰动振幅和一个合适的集合样本数,有利于CNOPs集合预报达到最高预报技巧。

    Abstract:

    The initial perturbation amplitude and ensemble size are important for ensemble forecast. The present study explores the impacts of initial perturbation amplitude and ensemble size on the ensemble forecast skill using a new strategy that applies orthogonal conditional nonlinear optimal perturbations (CNOPs) to the Lorenz-96 model. It is found that due to the effect of nonlinearity, the CNOPs-based ensemble forecast can achieve higher skills when the initial perturbation amplitude is appropriately smaller than the amplitude of initial analysis errors, and the highest skill of the CNOPs-based ensemble forecasts is always higher than that of its linear counterpart [i.e., singular vectors (SVs)-based ensemble forecast]. The results also show that an appropriate ensemble size is helpful for achieving higher skills in ensemble forecast. A better spread-skill relationship and a much flatter Talagrand diagram are found in CNOPs-based ensemble forecast, which indicates the reliability of the corresponding ensemble forecast system and makes the above results much solid. It is therefore inferred that the highest skill of CNOPs-based ensemble forecast is mostly likely achieved when initial perturbation amplitudes are properly smaller than those of initial analysis errors and the ensemble size is appropriate.

    参考文献
    相似文献
    引证文献
引用本文

汪叶,段晚锁.初始扰动振幅和集合样本数对CNOPs集合预报的影响.大气科学,2019,43(4):915~929 WANG Ye,and DUAN Wansuo.Influences of Initial Perturbation Amplitudes and Ensemble Sizes on the Ensemble Forecasts Made by CNOPs Method.Chinese Journal of Atmospheric Sciences (in Chinese),2019,43(4):915~929

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-08-29
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-08-08
  • 出版日期: