双月刊

ISSN 1006-9895

CN 11-1768/O4

+高级检索 English
夏季青藏高原及周边上对流层水汽质量及其向平流层传输年际异常Ⅱ:向平流层的绝热和非绝热传输
作者:
作者单位:

1.南京信息工程大学气象灾害预报预警与评估协同创新中心;2.中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室;3.中国科学院大学;4.南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心

作者简介:

通讯作者:

基金项目:

中国科学院战略性先导科技专项(A类)项目XDA17010105,国家自然科学基金项目91437105、41575041、91837311,中国科学院前沿科学重点研究项目QYZDY-SSW-DQC018


Interannual variations of the upper tropospheric water vapor and its transport into the stratosphere over the Tibetan Plateau area in summer, Part Ⅱ: adiabatic and diabatic transport into the stratosphere
Author:
Affiliation:

1.State Key Laboratory of Numerical Modeling of Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences;2.Collaborative Innovation Center on Forecast and Evaluation of Metrological Disasters (CIC-FEMD), Nanjing University of Information Science &Technology;3.University of Chinese Academy of Sciences;4.Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/ Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Metrological Disasters (CIC-FEMD), Nanjing University of Infor-mation Science &Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    夏季7~8月青藏高原及周边地区上对流层水汽质量的年际异常分布为整体异常型和东西偶极型所主导。本文基于ERA-Interim再分析资料并利用HYSPLIT轨迹模式,分析了两个主导分布型对应的水汽质量向平流层绝热和非绝热传输的异常特征,结果表明:青藏高原上空水汽质量整体偏多(少)时,对应南亚高压和青藏高原地区垂直向上的水汽质量非绝热输送偏强(弱),青藏高原及周边水汽质量向平流层的绝热和非绝热传输均偏强(弱)。水汽质量整体偏多与偏少年,水汽质量向平流层绝热和非绝热传输的主要区域和层次相近,只是水汽质量整体偏多年,水汽质量向平流层非绝热传输的层次略高。当青藏高原上空水汽质量呈西多/东少分布时,对应南亚高压偏西,青藏高原西北、东北侧水汽质量向中纬度平流层的绝热传输偏强,青藏高原南侧高层水汽质量向热带平流层的经向绝热输送也偏强,而青藏高原北侧水汽质量向中纬度平流层的经向绝热输送明显减弱。同时青藏高原上空水汽质量向平流层的非绝?热输送偏强,而青藏高原南侧高层和北侧低层水汽质量向平流层的非绝热输送偏弱。水汽质量呈西少/东多分布时有相反的结果。轨迹模式模拟的结果证实了水汽质量整体偏多年,青藏高原及周边地区绝热进入平流层的轨迹频率偏多;也证实了水汽质量呈西多/东少分布时,青藏高原西北、东北和南侧绝热进入平流层的轨迹频次偏多,而青藏高原北侧绝热进入平流层的轨迹频次偏少。

    Abstract:

    The interannually geographic pattern of the upper tropospheric water vapor mass anomaly is dominated by the uniform mode and the east-west dipole mode over the Tibetan Plateau (TP) re-gions in July–August. In this paper, the relationship between the two leading modes and the adi-abatic and diabatic water vapor mass transport from the troposphere to the stratosphere are ana-lyzed based on the European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) datasets and the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) trajectory model. Results show when the water vapor mass is dominated by the posi-tive (negative) phase of the uniform mode, namely more (less) water vapor mass over the entire TP area, the intensity of the South Asian High (SAH) and the upward diabatic water vapor mass transport are enhanced (weakened), thus both adiabatic and diabatic water vapor mass transport from the troposphere to the stratosphere are stronger (weaker). The regions and layers of the oc-currence of the adiabatic and diabatic water vapor mass transport from the troposphere to the stratosphere change little from positive to negative phase of the uniform mode, though the layers where diabatic water vapor mass transport from the troposphere to the stratosphere is slightly higher for the positive phase. When the water vapor mass is dominated by the positive (negative) phase of the west-east dipole mode, namely more (less) water vapor mass in the west (east) of the TP, the SAH center shifts westward, enhancing the adiabatic water vapor mass transport from the troposphere to the mid-latitude stratosphere in the northwest and northeast flank of the TP, and the meridional adiabatic water vapor mass transport from the troposphere to the tropical strato-sphere at upper layers in the south flank of the TP, but weakening the meridional adiabatic water vapor mass transport from the troposphere to the mid-latitude stratosphere in the north flank of the TP. Meanwhile, the diabatic water vapor mass transport from the troposphere to the stratosphere is enhanced over the TP, though weakened at upper layers in the south flank of the TP and at lower layers in the north flank of TP. Vice versa, when less (more) water vapor mass in the west (east) of the TP. The trajectory model simulation experiments for the positive phase of the uni-form mode confirms that higher frequency of the trajectory enters the stratosphere adiabatically over the TP regions. And trajectory model simulation experiments for the positive phase of the west-east dipole mode is also in agreement with the analyzed results, showing higher (lower) frequency of trajectory entering the stratosphere adiabatically in the northwest, south and north-east flank (north flank) of the TP.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-12-12
  • 最后修改日期:2019-03-19
  • 录用日期:2019-05-07
  • 在线发布日期:
  • 出版日期: