双月刊

ISSN 1006-9895

CN 11-1768/O4

+高级检索 English
气溶胶对新疆冰雹形成物理过程影响的数值模拟研究
DOI:
作者:
作者单位:

南京信息工程大学 气象灾害预报预警与评估协同创新中心/中国气象局气溶胶与云降水重点开放实验室

作者简介:

通讯作者:

基金项目:

国家自然科学基金项目(41590873,41775136),西北人工影响天气过程项目(ZQC-R18211)Funded by National Natural Science Foundation of China (Grant 41590873, 41775136) and Weather modification project in Northwest China (No. ZQC-R18211)


Numerical Simulation of the Aerosol Effects on the Physical Processes of Hail Formation in Xinjiang
Author:
Affiliation:

Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration,Nanjing University of Information Science Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    利用带有分档微物理方案的中尺度模式(WRF-SBM)模拟了一次新疆夏季的冰雹天气过程,并通过敏感性试验研究了气溶胶浓度变化对雹云微物理特征、降水过程及冰雹形成机制的影响。结果表明:初始气溶胶浓度越大,对流云发展越旺盛;雹云发展阶段,云中液水含量随气溶胶浓度增加而增多,冰水含量在中度污染时最多。冰雹的含量随气溶胶浓度的增加呈现先增加后减小的趋势,相较而言中度污染条件下,云滴尺度适当,过冷云水含量相对充足,更有利于液相水成物向冰粒子的转化,也更有利于冰雹的生长;冰雹最初几乎全部由冰晶碰冻过冷水生成,随后该过程迅速减弱,液滴冻结过程短暂地成为主要来源,但冰雹一旦形成,自身就会迅速收集过冷水开始生长,成为冰雹生长的主导过程;重度污染条件导致各种成雹过程推迟发生;气溶胶浓度增大导致地面液相累积降水增加,冰相累积降水先增加减少,并且气溶胶浓度适当增大可使降雹量及冰相降水中冰雹的比重增加,过量则会减小。在此基础上,本文提出最适合冰雹生长的“最优气溶胶浓度”,同时也是人工防雹工作中应重点关注的浓度。

    Abstract:

    The Weather Research and Forecasting model with a spectral-bin microphysical scheme (WRF-SBM) was used to simulate a hailstorm occurred in summer of Xinjiang. The effects of aerosol concentration on microphysical characteristics and precipitation of the hailstorm as well as formation mechanism of hail are studied by sensitivity tests. The results show that the convection of the hailstorm is stronger with larger aerosol concentration. At the development stage of the hailstorm, the liquid water content increases with the increase of aerosol concentration and the ice water content is the highest under moderate polluted condition. The hail mixing ratio increases first and then decreases with the increase of aerosol concentration. Under moderate polluted condition, there is appropriate cloud droplet size and relatively sufficient supercooled water, which is favor for the transformation of water from liquid phase to ice phase and therefore contributing to hail growth. Hail is initially formed by the riming of supercooled liquid water by ice crystals, but this process is rapidly weakened after the development of hailstorm. Then the freezing of droplets becomes the main source of hail for a short while. However, once the hail is formed, it will grow rapidly by collecting the supercooled water, which becomes the dominant process of the hail growth. The severe polluted condition will postpone the onset of hail formation processes. With enhanced aerosol loading, the surface accumulated liquid precipitation is increased while the ice phase precipitation is increased first and then reduced. The moderate aerosol concentration leads to larger amount of hail mixing ratio and higher percentage of hail in ice-phase precipitation. However, with further increased aerosol concentration, both values are reduced. Therefore, we propose “the optimal aerosol concentration” that is most suitable for hail growth.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-09-18
  • 最后修改日期:2020-04-27
  • 录用日期:2020-05-06
  • 在线发布日期:
  • 出版日期: