双月刊

ISSN 1006-9895

CN 11-1768/O4

云微物理对一次吉林暖区降水过程的影响
作者:
作者单位:

1.南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心;2.中国科学院大气物理研究所云降水物理与强风暴重点实验室LACS

作者简介:

通讯作者:

基金项目:

国家重点研发计划(2018YFC1506801),国家自然科学基金(41790471,41975054),中国科学院战略性先导科技专项(XDA20100304)


Impacts of cloud microphysical process on warm-sector precipitation over Jilin province, Northeast China
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    本文运用WRF3.9区域数值模式模拟了2017年7月13日吉林省永吉县暖区暴雨,较好地再现了此次暴雨过程的中尺度对流系统的单体触发、线状对流群触发、组织化发展以及弓状回波等典型阶段的细致过程;在此基础上,分析了造成暖区降水的中尺度对流系统的云微物理特征,探讨了其影响暖区降水的可能机制。结果表明:吉林永吉暖区降水发生在东北冷涡主导的有利的多尺度环境配置下,引发暖区降水的中尺度系统主要是冷云系统,暖区范围大,过冷水分布位置高,冰晶粒子与过冷水并存,并存区的“播种”效应使得其下方生成大量霰。雨水质量收支及热量收支分析表明:暖区降水系统的触发及组织化阶段,雨水的主要来源是云滴碰并增长,主要汇项是冰晶对雨水的收集;而弓状回波阶段,降水的主要源项除了云滴碰并增长之外,霰融化作用也起到关键的作用,降水主要汇项在低层为雨水蒸发,高层为霰对雨滴的收集;暖区降水的主要热源是水汽凝结潜热释放,主要冷却项是雨水和云水的蒸发。弓状回波阶段,其前部的入流与地面冷垫上方的后向入流汇合后将水汽带入高层;“播种”效应使距地面8km高度附近的霰粒子含量显著增多,该高度与水汽凝结释放大量潜热形成的高温区重合,故霰粒子大量融化为雨水,产生强降水过程。

    Abstract:

    This study simulated a warm-sector rainstorm event that occurred in Yongji, Jilin province on July 13 2017, which reproduced the development process that include the initiation of convective cells and linear system, organized and the stagesthat form bow echo; based on these data, the cloud microphysical characteristics of the mesoscale convective systems were analyzed, and then discussed the possible cloud microphysical mechanisms causing the warm-sector precipitation. The simulated results show that this precipitation process in the Yongji occurred in a favorable multi-scale environmental configuration dominated by the northeast cold vortex. The mesoscale systems was mainly the cold cloud systems. The warm zone had a large range, so that the location of supercooled water was high, and ice and supercooled water coexisted, the "seeding" effect of the coexisting area caused a large amount of graupel. Diagnoses of the mass- and heat-hydrometeor budgets showed that the main source of rainwater was the accretion growth of cloud droplets, and the main sink was the collection of raindrop by ice during the triggering and organization of the precipitation system; while in the bow-shaped echo stage, the melting of graupel add to the main source terms, the main sink terms were the evaporation of rainwater in the lower layer and the collection of rainwater by the graupel in the upper layer. The main heat source of warm-sector precipitation was the latent heat release from condensation of water vapor, and the main cooling term was the evaporation of rain and cloud water. In the bow-shaped echo stage, confluence of the inflow at the front and the backward inflow above the cold pad on the ground bring water vapor into the upper layer, and the "seeding" effect significantly increased the content of the graupel particles near the height of 8km from the ground, which coincided with the high temperature area formed by the condensation of water vapor to release a large amount of latent heat. Therefore, a large amount of graupel melted into rainwater, resulting in a strong precipitation process.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-03-10
  • 最后修改日期:2020-07-01
  • 录用日期:2020-07-28
  • 在线发布日期:
  • 出版日期: