双月刊

ISSN 1006-9895

CN 11-1768/O4

+高级检索 English
辐射传输模式对地基微波辐射计观测的模拟能力分析*
作者:
作者单位:

1.中国科学院大气物理研究所中层大气和全球环境探测重点实验室;2.中国科学院大学;3.华北香河全大气层野外科学观测研究站

作者简介:

通讯作者:

基金项目:

国家自然科学基金,国家重点基础研究发展计划


Assessment of radiative transfer model simulations for ground-based microwave radiometer
Author:
Affiliation:

LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    提供高时间分辨率大气温度湿度廓线的地基微波辐射计近年来广泛使用,多通道观测亮温的数据质量是大气廓线产品合理性的基本保障。一般定期液氮绝对定标可以更好维护亮温数据质量,但实际操作颇为不易。辐射传输模式作为一种辅助工具,可以检验和认识地基微波辐射计观测亮温的数据质量。本文针对三个辐射传输模式:MonoRTM、ARTS和MWRT,结合北京探空观测资料、北京观象台和河北香河站同类型的德国RPG地基微波辐射计观测资料,分析比较了三个模式的模拟与观测亮温差异,评估不同辐射传输模式对地基微波辐射计观测的模拟能力。地基微波辐射计14个通道观测亮温与模式模拟的差异统计比较发现:三个模式的模拟结果与地基微波辐射计大部分通道的观测亮温都很接近,与观测结果具有很好一致性(如相关系数高达0.99),而对温度通道ch8(51.26 GHz)和ch9(52.28 GHz),三个模式模拟与观测相关系数明显较低(<0.80),并且存在显著的绝对偏差(4~5K),表明模式在这两个通道的模拟能力有待提高。三个模式中,MonoRTM模式在温度通道ch8、ch9和ch10(53.86 GHz)存在明显的系统性偏差,尤其是ch8高达5 K;ARTS模式对水汽通道ch1(22.24 GHz)的模拟能力相对较弱;MWRT模拟与观测亮温在多个通道上相对更为接近和稳定,尤其系统性偏差最小。此外,探空廓线与地基观测站的空间位置不一致,对地基微波辐射计水汽通道的模拟结果影响较为显著,而对水汽不敏感的温度通道影响甚微。两地观测亮温与模式模拟的比对,初步表明北京观象台地基微波辐射水汽通道的观测质量有待改进。

    Abstract:

    Ground-based microwave radiometers (MWR) have been widely used in recent years due to providing high-temporal resolution atmospheric temperature and humidity profiles. The quality of multi-channel brightness temperature (TB) is the basic guarantee for retrieving atmospheric profile products. In general, periodic absolute calibration of liquid nitrogen can better maintain the quality of TB observations, but the actual operation is more complex and difficult. As an auxiliary tool, radiative transfer model can be used to detect TB quality of MWR. Combined with the observations from Beijing radiosonde, and two RPG MWRs located at Beijing Observatory (GXT) in Beijing and Xianghe (XH) site in Hebei, respectively, three radiative transfer models, including MonoRTM, ARTSs and MWRT, are evaluated by comparing their simulations with corresponding observed TBs at both sites. The results show that for MWR 14 channels the simulations of the three models are very close to the observed TBs at most of channels of MWR, with high consistency (i.e. correlation coefficient up to 0.99), while for temperature channel ch8 (51.26 GHz) and ch9 (52.28 GHz), there was also a significant absolute deviation (about 4 ~ 5K) between the simulated TB and the observed TB, and the correlation coefficient decreased significantly (< 0.80), which indicated that model simulation at the two channels needs to be improved. Among the three models, MonoRTM shows obvious systematic deviation at temperature channel ch8, ch9 and ch10 (53.86 GHz), especially at ch8 with bias up to 5K; ARTS displays worse simulation at the water vapor channel ch1 (22.24 GHz); relatively, MWRT simulations are more stable and closer to the corresponding TB observations at 14 channels, especially the systematic deviation is the smallest. In addition, location of the radiosonde measurements is different from that of the MWR site, which has a significant impact on the simulation for water vapor channels of MWR. The comparisons of observed TB and simulation at both sites indicates that the observation quality of water vapor channels for MWR at GXT needs to be improved.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-03-16
  • 最后修改日期:2020-08-05
  • 录用日期:2020-08-31
  • 在线发布日期:
  • 出版日期: