双月刊

ISSN 1006-9895

CN 11-1768/O4

不同微物理参数化方案对我国北方一次大范围暴雪天气过程的数值模拟研究*
作者:
作者单位:

1.南京信息工程大学遥感与测绘工程学院;2.云降水物理与强风暴重点实验室LACS;3.内蒙古自治区气象台;4.中国科学院大学,北京100049;5.吉林省气象科学研究所,吉林 长春 130062

作者简介:

通讯作者:

基金项目:


Numerical simulation of a large-scale snowstorm in northern China using different cloud microphysical parameterization schemes.
Author:
Affiliation:

1.Key Laboratory of Cloud–Precipitation Physics and Severe Storms,Institute of Atmospheric PhysicsLACS;2.Inner Mongolia Meteorological Observatory;3.University of Chinese Academy of Sciences, Beijing 100049;4.Institute of Meteorological Sciences of Jilin Province, Changchun 130062, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    本文以ERA5再分析资料为初始场,利用WRF模式对2020年4月19-20日的一次大范围暴雪天气过程进行数值模拟研究。模式采用不同云微物理参数化方案进行敏感性实验,并与实测数据(自动站降水数据、雷达基数据)进行对比,分析了暴雪天气的降水、雷达反射率、动热力和水凝物的时空演变特征。研究表明:上述不同微物理参数化方案基本都模拟出了本次降雪的强度和范围,但其模拟的动力及云微物理细致结构存在明显差别,表现在不同云微物理方案模拟的垂直速度和水凝物的时空分布上。bin方案模拟的云水较强,有明显的下沉运动,对流范围较为集中,霰和冰晶过程明显偏弱;而bulk方案模拟的雨水和霰较强,呈现出大范围的上升运动,对流范围宽广。上述动力与云水凝物的分布与云微物理方案的特性有关,bulk方案由于采取了总体云群设计,捆绑了不同粒子类型的运动,不能细致的描述出不同粒子的下沉拖曳过程,反映出没有明显的垂直下沉运动,也造成霰粒子明显增多。对于不同的bulk方案,尽管其水凝物总含量时空分布相似,都有较大范围的时空分布,但其水凝物的各分量(云水、雨水、冰、雪、霰)有显著差异,这与各不同云微物理过程的描述有关。

    Abstract:

    Using ERA5 reanalysis data as the initial field, and the WRF model was used to conduct the numerical simulation study of a large-scale snowstorm weather process from April 19-20, 2020. we adopt 5 microphysical parameterization schemes (Bulk scheme: Thompson, Morrison, WDM6 and NSSL; Bin scheme: SBM FAST) for sensitivity experiments, and compare with the observation data (precipitation data collected at automatic weather stations, radar base data). The temporal and spatial evolution characteristics of precipitation, radar reflectance, dynamic thermodynamics and water condensate in heavy snow weather are analyzed. The results showed that the intensity and range of the snowfall were basically simulated by the above different microphysical parameterization schemes, but there were significant differences in the simulated dynamics and fine cloud microphysical structures, which were reflected in the vertical velocity and spatial and temporal distribution of water condensates simulated by different cloud microphysical schemes. The cloud water simulated by the bin scheme is strong, with obvious sinking movement, concentrated convection range, and obviously weak graupel and ice crystal process. However, the rainwater and graupel simulated by Bulk scheme are strong, showing a wide range of upward movement and a wide range of convection. The above dynamic forces and the distribution of cloud water condensates are related to the characteristics of cloud microphysics scheme. Bulk scheme adopts the overall cloud group design, binding the movement of different particle types, so it cannot describe the sinking and dragging process of different particles in detail, reflecting that there is no obvious vertical sinking movement, which also results in the significant increase of graupel particles. For different Bulk schemes, although the space-time distribution of the total content of hydrocondensates is similar and all have a wide range of space-time distribution, the components of hydrocondensates (cloud water, rain water, ice, snow and graupel) are significantly different, which is related to the description of different cloud microphysical processes.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-04-14
  • 最后修改日期:2021-07-15
  • 录用日期:2021-08-13
  • 在线发布日期:
  • 出版日期: