双月刊

ISSN 1006-9895

CN 11-1768/O4

GRAPES-RAFS逐小时快速更新同化预报系统对高邮龙卷的短临预报
DOI:
作者:
作者单位:

国家气象中心

作者简介:

通讯作者:

基金项目:


The short-term forecasting of the Gaoyou Tornado with hourly assimilation and model forecast cycle of GRAPES-RAFS
Author:
Affiliation:

National Meteorological Center

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    基于GRAPES-RAFS 3km分辨率3h循环的快速更新同化预报系统,本文建立逐小时的分析预报循环系统,并且通过采用5种尺度叠加的高斯相关模型和引入各向异性的水平相关尺度方案来改进背景误差水平相关结构,同时考察引入全球大尺度信息方案对逐小时循环的分析和预报影响。通过2020年6月12日江苏高邮龙卷过程的数值模拟表明:(1)逐小时循环吸收了更多的高频观测资料和循环中采用更临近的1h预报场作为背景场,分析和短临预报质量比3h循环有明显提高;(2)在引入全球大尺度信息的1h循环试验中,过多使用较长时效的全球预报场信息反而会降低分析和预报质量;(3)在逐1h循环中改进的五种尺度叠加高斯相关模型和各向异性的水平相关尺度使背景误差水平相关系数的描述更接近样本的统计结果,因而能更准确模拟高邮龙卷的中气旋结构,同时气象要素场预报和降水预报质量更接近实况。

    Abstract:

    Based on the GRAPES-RAFS with 3km resolution in space and 3h cycle in time, the hourly assimilation and model forecast cycle system, in which the background error correlation model is improved with superposition of five scales Gaussian components and anisotropicShorizontal correlation scales and the effect of global large-scale information to hourly analysis and forecast is examined, has been built. The numerical simulations of Gaoyou Tornado case of 12 June 2020 indicate that: (1) The hourly cycle qualities of analyses and forecasts which have assimilated more high frequent observations and allow 1h forecast as background field are obviously improved; (2) Excessive use of long-length global large-scale forecast information can reduce analysis and forecast quality; (3) Since the improved five-scale superimposed Gaussian correlation model and the anisotropic horizontal correlation scale in the 1h cycle make the background error horizontal correlation coefficient closer to the statistical results of the sample, it can more accurately simulate the mesocyclone structure of the Gaoyou tornado while the quality of model variables and precipitation forecasts is closer to the real observation.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-29
  • 最后修改日期:2022-06-30
  • 录用日期:2022-08-30
  • 在线发布日期:
  • 出版日期: