双月刊

ISSN 1006-9895

CN 11-1768/O4

气候系统模式FGOALS-g3模拟的全球季风:版本比较和海气耦合过程影响分析
作者:
作者单位:

1.中国科学院大学地球与行星科学学院;2.中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室LASG

作者简介:

通讯作者:

基金项目:

中国科学院“国际伙伴计划-国际大科学计划培育专项”项目“全球季风模拟研究国际计划”(资助号134111KYSB20160031)、国家自然科学基金项目41775091、第二次青藏科考项目 (STEP) (资助号2019QZKK0102)


Global monsoon simulated by FGOALS-g3: A comparison with previous version and the influences of air-sea coupling
Author:
Affiliation:

College of Earth and Planetary Sciences, University of Chinese Academy of Sciences,State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics,

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    本文基于观测和再分析资料,采用水汽收支诊断和合成分析方法,对新一代气候系统模式FGOALS-g3模拟的全球季风进行了系统评估,给出其较之前版本FGOALS-g2的优缺点,并通过与其大气分量模式GAMIL结果的比较,讨论了海气耦合过程的影响。结果表明,FGOALS-g3能合理再现全球季风气候态的基本特征,包括年平均、年循环模态、季风降水强度和季风区范围等,但模式低估陆地季风区年平均降水,高估海洋平均降水,模拟的热带地区春秋非对称模态偏强。研究指出FGOALS-g3模拟的陆地季风区范围偏小,这与模式模拟的夏季水汽垂直平流(尤其是热力项)偏小有关。年际变率上,FGOALS-g3能再现El Ni?o年全球季风降水偏少的整体特征,其不足之处在于部分季风区的降水异常存在一定偏差,例如其模拟的El Nin ?o年西非季风区降水偏多和西南印度洋的偶极子型降水异常,均与观测分布不一致,且模式中西北太平洋季风区降水较观测偏多。这是由于El Nin ?o年,模式中西非高层无弱辐合中心,且海洋性大陆较观测偏暖,对流中心西移。相较于FGOALS-g2,FGOALS-g3对环流、季风降水的年际变率和季风-ENSO关系的模拟有改善。比较耦合和非耦合模拟结果,耦合模式的偏差大多源自大气模式本身,海气耦合过程部分提高了对亚澳季风区和热带印度洋的降水和环流的模拟,但耦合过程引起的海温偏差增强了气候态上印度半岛的干偏差和热带印度洋的湿偏差。

    Abstract:

    Based on observation and reanalysis data, we systematically evaluate global monsoon simulated by the new version of climate system model FGOALS-g3 by applying moisture budget diagnosis and composite analysis, and analyze the advantages and disadvantages compared with FGOALS-g2. Otherwise, the influences of air-sea coupling process on the simulated results are discussed by comparing with the corresponding atmospheric component model GAMIL. FGOALS-g3 reasonably reproduces the basic characteristics of climatology of global monsoon, including annual mean precipitation and circulation, annual cycle modes, monsoon precipitation intensity and monsoon region, but the model underestimates the annual mean precipitation over land monsoon region, overestimates the annual mean precipitation over ocean region, and the simulated spring-fall asymmetric mode of annual cycle is stronger in tropical monsoon region. The results show that the smaller land monsoon region than observation in FGOALS-g3 is associated with the weaker vertical moisture advection (especially the thermodynamic term) in summer. For the inter-annual variability, FGOALS-g3 can reproduce the drier pattern of global monsoon during El Nin ?o year. However, some biases in precipitation anomalies are exist in some monsoon regions. For instance, the precipitation in the West African monsoon region is more than normal, and the precipitation in the Southwest Indian Ocean is a dipole anomaly, both of which are inconsistent with the observation, and the precipitation in the Northwest Pacific monsoon region is more than the observation during El Nin ?o year. Because there is no weak convergence center in the upper layer of western Africa in the simulation, and the simulated maritime continent is warmer than observation, result in the convective center moves westward during El Nin ?o year. In comparison with FGOALS-g2, FGOALS-g3 improves the simulation of monsoon circulation, inter-annual variability of monsoon precipitation, and monsoon-ENSO relationship. Comparing the coupled and uncoupled simulation, most of the biases in the coupled model originate from the atmospheric model itself, and the air-sea coupling process partially improves the simulation of precipitation and circulation of Asian-Australian monsoon region and the tropical Indian Ocean, but the sea surface temperature bias caused by the coupled process enhances dry bias of the Indian Peninsula and the wet bias of the tropical Indian Ocean.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-10
  • 最后修改日期:2021-11-20
  • 录用日期:2021-12-23
  • 在线发布日期: 2022-04-08
  • 出版日期: