双月刊

ISSN 1006-9895

CN 11-1768/O4

基于无人机观测的晴天与辐射雾边界层气象要素和大气污染物高分辨率垂直分布特征的对比研究
作者:
作者单位:

1.南京信息工程大学 气象灾害预报预警与评估协同创新中心/大气物理学院;2.南京气象科技创新研究院 中国气象局交通气象重点开放实验室

作者简介:

通讯作者:

基金项目:

国家自然科学基金 广西重点研发计划


Comparative study on the high-resolution vertical distribution characteristics of meteorological elements and atmospheric pollutants in the boundary layer of sunny day and radiation fog events based on UAV observation
Author:
Affiliation:

1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/School of Atmospheric Physics,Nanjing University of Information Science and Technology;2.Nanjing Joint Institute for Atmospheric Sciences,Key Laboratory of Transportation Meteorology of China Meteorological Administration

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为深入研究辐射雾边界层气象要素和污染物浓度的垂直分布特征,2020年冬季在东海县利用无人机开展了边界层和污染物综合观测试验。研究发现:雾天逆温层厚度要比晴天厚几十米至数百米不等,强度要大0.5-1℃/hm。雾天低空有风切变, 风向在垂直方向上变化较小,而晴天低层风速变化较小,风向在低空随高度呈顺时针旋转。相较于双层逆温结构,有着深厚单层逆温结构的辐射雾的强度更强。在同一次辐射雾过程中,雾的强度不会随着风向的变化而变化,较低的风速更有利于强浓雾的形成。 从污染物垂直分布来看,逆温层内相同高度处的TVOC在晴天要比雾天高,在辐射雾形成前和生成阶段,SO2浓度随高度递减速率远高于晴天同期。晴天和雾天 O3和NO2的垂直变化呈现明显的负相关,NO2呈负梯度变化。 PM1.0、PM2.5和PM10在雾天要比晴天高出一倍以上, CO在辐射雾过程中相对稳定,垂直变化较小。 TVOC、NO2 、PM1.0、PM2.5和PM10会受到辐射雾过程中强逆温的影响而在逆温层内累积。 颗粒物污染物的累积变化率比气体下降更显著,且大粒径颗粒物累积变化率的下降幅度要超过小粒径颗粒物。PM2.5浓度的降低会使得气溶胶光学厚度减少,促进光解反应,使得PM2.5与O3垂直变化呈负相关。 日出后,太阳辐射增强,不稳定边界层的发展伴随着高空 O3 向下的混合导致O3增加以及PM2.5排放增多使得二者的垂直变化较为一致。

    Abstract:

    In order to further study the vertical distribution characteristics of meteorological elements and pollutant concentrations in the boundary layer of radiation fog events, a comprehensive observation test of boundary layer and pollutants was carried out in Donghai County by UAV in the winter of 2020. It is found that the thickness of inversion layer in foggy days is tens to hundreds of meters thicker than that in sunny days, and the strength is stronger by 0.5-1℃/hm. On foggy days, there is wind shear at low altitude, and the wind direction changes little in the vertical direction. On sunny day, the wind speed changes little at low altitude, and the wind direction rotates clockwise with height at low altitude. The intensity of radiation fog with deep single-layer inversion structure is stronger than that of double-layer inversion structure. In the same radiation fog process, the intensity of fog will not change with the change of wind direction, and the lower wind speed is more conducive to the formation of strong fog. From the perspective of vertical distribution of pollutants, TVOC at the same height in the inversion layer is higher in sunny days than in foggy days. Before and during the generation stage of radiation fog, the decrease rate of SO2 concentration with height is much higher than that in the same period of sunny days. In sunny and foggy days, the vertical changes of O3 and NO2 show obvious negative correlation, and NO2 shows a negative gradient change. PM1.0, PM2.5 and PM10 are more than twice higher in foggy days than in sunny days. CO is relatively stable in the process of radiation fog with little vertical change. TVOC, NO2, PM1.0, PM2.5 and PM10 will be affected by the strong inversion in the process of radiation fog and accumulate in the inversion layer. The cumulative change rate of particulate matter is more significant than that of gas, and the cumulative change rate of particles with large particle size decreases more than that of particles with small particle size. The decrease of PM2.5 concentration will reduce aerosol optical thickness and promote photochemical activity photolysis reaction, resulting in a negative correlation between PM2.5 and O3 vertical change. After sunrise, the solar radiation is enhanced, and the development of unstable boundary layer is accompanied by the downward mixing of O3 in the upper air, which leads to the increase of O3 and the increase of PM2.5 emission, making the vertical changes of the two more consistent.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-18
  • 最后修改日期:2022-10-31
  • 录用日期:2022-12-19
  • 在线发布日期: 2022-12-23
  • 出版日期: