en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献
AdlerR F, HuffmanG J, ChangA, et al. 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present) [J]. Journal of Hydrometeorology, 4(6): 1147-1167. doi:10.1175/1525-7541(2003)004<1147:tvgpcp>2.0.co;2
参考文献
BaoQ, LinP F, ZhouT J, et al. 2013. The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2 [J]. Advances in Atmospheric Sciences, 30(3): 561-576. doi:10.1007/s00376-012-2113-9
参考文献
BrieglebB P, BitzC M, HunkeE C, et al. 2004. Scientific description of the sea ice component in the Community Climate System Model, Version 3 [R]. NCAR Technical Note NCAR/TN-463+STR. doi:10.5065/D6HH6H1P
参考文献
ChangC P, ZhangY S, LiT. 2000a. Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge[J]. J. Climate, 13(24): 4310-4325. doi:10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2
参考文献
ChangC P, ZhangY S, LiT. 2000b. Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part II: Meridional structure of the monsoon[J]. J. Climate, 13(24): 4326-4340. doi:10.1175/1520-0442(2000)013<4326:IAIVOT>2.0.CO;2
参考文献
高峰, 辛晓歌, 吴统文. 2012. BCC_CSM1.1对10年尺度全球及区域温度的预测研究[J]. 大气科学, 36(6): 1165-1179. Gao F, Xin X G, Wu T W. 2012. A study of the prediction of regional and global temperature on decadal time scale with BCC_CSM1.1 model[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(6): 1165-1179. doi:10.3878/j.issn.1006-9895.2012.11243
参考文献
GillA E. 1980. Some simple solutions for heat-induced tropical circulation[J]. Quart. J. Roy. Meteor. Soc., 106(449): 447-462. doi:10.1002/qj.49710644905
参考文献
GoodS A, MartinM J, RaynerN A. 2013. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates[J]. J. Geophys. Res., 118(12): 6704-6716. doi:10.1002/2013JC009067
参考文献
HuangD Q, ZhuJ, ZhangY C, et al. 2013. Uncertainties on the simulated summer precipitation over eastern China from the CMIP5 models [J]. J. Geophys. Res., 118(16): 9035-9047. doi:10.1002/jgrd.50695
参考文献
HuangR H, WuY F. 1989. The influence of ENSO on the summer climate change in China and its mechanism[J]. Advances in Atmospheric Sciences, 6(1): 21-32. doi:10.1007/BF02656915
参考文献
黄荣辉, 陈际龙, 周连童, 等. 2003. 关于中国重大气候灾害与东亚气候系统之间关系的研究[J]. 大气科学, 27(4): 770-787. Huang R H, Chen J L, Zhou L T,et al. 2003. Studies on the relationship between the severe climatic disasters in China and the East Asia climate system[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27(4): 770-788. doi:10.3878/j.issn.1006-9895.2003.04.22
参考文献
HuangR H, ChenW, YanB L, et al. 2004. Recent advances in studies of the interaction between the East Asian winter and summer monsoons and ENSO cycle [J]. Advances in Atmospheric Sciences, 21 (3): 407-424. doi:10.1007/BF02915568
参考文献
HurrellJ W, HackJ J, SheaD, et al. 2008. A new sea surface temperature and sea ice boundary dataset for the community atmosphere model [J]. J. Climate, 21(19): 5145-5153. doi:10.1175/2008JCLI2292.1
参考文献
KalnayE, KanamitsuM, KistlerR, et al. 1996. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteor. Soc., 77(3): 437-472. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
参考文献
KangI S, JinK, WangB, et al. 2002. Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs [J]. Climate Dyn., 19(5-6): 383-395. doi:10.1007/s00382-002-0245-9
参考文献
KirtmanB, PowerS, AdedoyinJA, et al. 2013. Near-term climate change: Projections and predictability [C]//Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T F, QinD, PlattnerG K, et al. Eds. Cambridge, and New YorkUK , USA: Cambridge University Press.
参考文献
LauN C, NathM J. 2000. Impact of ENSO on the variability of the Asian-Australian monsoons as simulated in GCM experiments[J]. J. Climate, 13(24): 4287-4309. doi:10.1175/1520-0442(2000)013<4287:ioeotv>2.0.co;2
参考文献
李博, 周天军, 吴春强, 等. 2009. 大气环流模式和耦合模式模拟的降水—海温关系之比较[J]. 大气科学, 33(5): 1071-1086. Li B, Zhou T J, Wu C Q,et al. 2009. Relationship between rainfall and sea surface temperature simulated by LASG/IAP AGCM and CGCM[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(5): 1071-1086. doi:10.3878/j.issn.1006-9895.2009.05.17
参考文献
LiL J, LinP F, YuY Q, et al. 2013. The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2 [J]. Advances in Atmospheric Sciences, 30(3): 543-560. doi:10.1007/s00376-012-2140-6
参考文献
LiT, WangB, WuB, et al. 2017. Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review [J]. J. Meteor. Res., 31(6): 987-1006. doi:10.1007/s13351-017-7147-6
参考文献
LindzenR S, NigamS. 1987. On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics[J]. J. Atmos. Sci., 44(17): 2418-2436. doi:10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2
参考文献
LiuH L, LinP F, YuY Q, et al. 2012. The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2 [J]. Acta Meteorologica Sinica, 26(3): 318-329. doi:10.1007/s13351-012-0305-y
参考文献
MatsunoT. 1966. Quasi-geostrophic motions in the equatorial area[J]. J. Meteor. Soc. Japan, 44(1): 25-43.
参考文献
OlesonK, DaiY, BonanG, et al. 2004. Technical description of the Community Land Model (CLM) [R]. NCAR Technical Note NCAR/TN-461+STR. doi:10.5065/D6N877R0
参考文献
RaynerN A, ParkerD E, HortonE B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century [J]. J. Geophys. Res., 108(D14): 4407. doi:10.1029/2002jd002670
参考文献
SongF F, ZhouT J. 2014a. Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean-western Pacific anticyclone teleconnection[J]. J. Climate, 27(4): 1679-1697. doi:10.1175/JCLI-D-13-00248.1
参考文献
SongF F, ZhouT J. 2014b. The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air-sea coupling improve the simulations? [J] J. Climate, 27(23): 8761-8777. doi:10.1175/JCLI-D-14-00396.1
参考文献
SperberK R, AnnamalaiH, KangI S, et al. 2013. The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century [J]. Climate Dyn., 41(9-10): 2711-2744. doi:10.1007/s00382-012-1607-6
参考文献
TrenberthK E, SheaD J. 2005. Relationships between precipitation and surface temperature[J]. Geophys. Res. Lett., 32(14): L14703. doi:10.1029/2005GL022760
参考文献
Von StorchJ S. 2000. Signatures of air-sea interactions in a coupled atmosphere-ocean GCM[J]. J. Climate, 13(19): 3361-3379. doi:10.1175/1520-0442(2000)013<3361:SOASII>2.0.CO;2
参考文献
WangB, WuR G, LiT. 2003. Atmosphere-warm ocean interaction and its impacts on Asian-Australian monsoon variation[J]. J. Climate, 16(8): 1195-1211. doi:10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2
参考文献
WangB, DingQ H, FuX H, et al. 2005. Fundamental challenge in simulation and prediction of summer monsoon rainfall [J]. Geophys. Res. Lett., 32(15): L15711. doi:10.1029/2005GL022734
参考文献
WangB, LiuM M, YuY Q, et al. 2013. Preliminary evaluations of FGOALS-g2 for decadal predictions [J]. Advances in Atmospheric Sciences, 30(3): 674-683. doi:10.1007/s00376-012-2084-x
参考文献
WuB, ZhouT J, LiT. 2009a. Seasonally evolving dominant interannual variability modes of East Asian climate[J]. J. Climate, 22(11): 2992-3005. doi:10.1175/2008JCLI2710.1
参考文献
WuB, ZhouT J, LiT. 2009b. Contrast of rainfall-SST relationships in the western North Pacific between the ENSO-developing and ENSO-decaying summers[J]. J. Climate, 22(16): 4398-4405. doi:10.1175/2009JCLI2648.1
参考文献
WuB, LiT, ZhouT J. 2010. Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer[J]. J. Climate, 23(11): 2974-2986. doi:10.1175/2010JCLI3300.1
参考文献
WuB, ChenX L, SongF F, et al. 2015. Initialized decadal predictions by LASG/IAP climate system model FGOALS-s2: Evaluations of strengths and weaknesses [J]. Advances in Meteorology, 2015: 904826. doi:10.1155/2015/904826
参考文献
吴波, 周天军, 孙倩. 2017. 海洋模式初始化同化方案对IAP近期气候预测系统回报试验技巧的影响[J]. 地球科学进展, 32(4): 342-352. Wu B, Zhou T J, Sun Q. 2017. Impacts of initialization schemes of oceanic states on the predictive skills of the IAP near-term climate prediction system[J]. Advances in Earth Science (in Chinese), 32(4): 342-352. doi:10.11867/j.issn.1001-8166.2017.04.0342
参考文献
WuB, ZhouT J, LiT. 2017a. Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part II: Formation processes[J]. J. Climate, 30(23): 9621-9635. doi:10.1175/JCLI-D-16-0495.1
参考文献
WuB, ZhouT J, LiT. 2017b. Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms[J]. J. Climate, 30(23): 9637-9650. doi:10.1175/JCLI-D-16-0489.1
参考文献
WuB, ZhouT J, ZhengF. 2018. EnOI-IAU initialization scheme designed for decadal climate prediction system IAP-DecPreS[J]. Journal of Advances in Modeling Earth Systems, 10(2): 342-356. doi:10.1002/2017MS001132
参考文献
WuG X, LiuH, ZhaoY C, et al. 1996. A nine-layer atmospheric general circulation model and its performance [J]. Advances in Atmospheric Sciences, 13(1): 1-18. doi:10.1007/BF02657024
参考文献
WuR G, KirtmanB P. 2005. Roles of Indian and Pacific Ocean air-sea coupling in tropical atmospheric variability[J]. Climate Dyn., 25(2-3): 155-170. doi:10.1007/s00382-005-0003-x
参考文献
WuR G, KirtmanB P, PegionK. 2006. Local air-sea relationship in observations and model simulations[J]. J. Climate, 19(19): 4914-4932. doi:10.1175/JCLI3904.1
参考文献
WuR G, KirtmanB P. 2007. Regimes of seasonal air-sea interaction and implications for performance of forced simulations[J]. Climate Dyn., 29(4): 393-410. doi:10.1007/s00382-007-0246-9
参考文献
XieS P, HuK M, HafnerJ, et al. 2009. Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño [J]. J. Climate, 22(3): 730-747. doi:10.1175/2008JCLI2544.1
参考文献
XinX G, WuT W, ZhangJ. 2013. Introduction of CMIP5 experiments carried out with the climate system models of Beijing Climate Center[J]. Advances in Climate Change Research, 4(1): 41-49. doi:10.3724/SP.J.1248.2013.041
参考文献
YangJ L, LiuQ Y, XieS P, et al. 2007. Impact of the Indian Ocean SST basin mode on the Asian summer monsoon [J]. Geophys. Res. Lett., 34(2): L02708. doi:10.1029/2006GL028571
参考文献
YuL S, WellerR A. 2007. Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981-2005)[J]. Bull. Amer. Meteor. Soc., 88(4): 527-540. doi:10.1175/BAMS-88-4-527
参考文献
ZhangR H, SumiA, KimotoM. 1996. Impact of El Niño on the East Asian monsoon: A diagnostic study of the '86/87 and '91/92events[J]. J. Meteor. Soc. Japan, 74(1): 49-62. doi:10.2151/jmsj1965.74.1_49
参考文献
ZhangR H, SumiA, KimotoM. 1999. A diagnostic study of the impact of El Niño on the precipitation in China[J]. Advances in Atmospheric Sciences, 16(2): 229-241. doi:10.1007/BF02973084
参考文献
ZhangR H, SumiA. 2002. Moisture circulation over East Asia during El Niño episode in northern winter, spring and autumn[J]. J. Meteor. Soc. Japan, 80(2): 213-227. doi:10.2151/jmsj.80.213
参考文献
周天军, 张学洪. 2002. 印度洋海气热通量交换研究[J]. 大气科学, 26(2): 161-170. Zhou T J, Zhang X H. 2002. The air-sea heat flux exchange in the Indian Ocean[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 26(2): 161-170. doi:10.3878/j.issn.1006-9895.2002.02.02
参考文献
ZhouT J, LiZ. 2002. Simulation of the East Asian summer monsoon using a variable resolution atmospheric GCM[J]. Climate Dyn., 19(2): 167-180. doi:10.1007/s00382-001-0214-8
参考文献
周天军, 宇如聪, 王在志, 等. 2005. 大气环流模式SAMIL及其耦合模式FGOALS_s [M]. 北京:
参考文献
气象出版社, 214pp. ZhouT J, YuR C, Wang, Z Z, et al. 2005. Atmospheric Circulation Model SAMIL and the Full Coupled Model FGOALS_s. [M]. Beijing: China Meteorological Press, 214pp.
参考文献
周天军, 吴波. 2017. 年代际气候预测问题: 科学前沿与挑战[J]. 地球科学进展, 32(4): 331-341. Zhou T J, Wu B. 2017. Decadal climate prediction: Scientific frontier and challenge[J]. Advances in Earth Science (in Chinese), 32(4): 331-341. doi:10.11867/j.issn.1001-8166.2017.04.0331
参考文献
周天军, 吴波, 郭准, 等. 2018. 东亚夏季风变化机理的模拟和未来变化的预估: 成绩和问题、机遇和挑战[J]. 大气科学, 42(4): 902-934. Zhou T J, Wu B, Guo Z,et al. 2018. A review of East Asian summer monsoon simulation and projection: Achievements and problems, opportunities and challenges[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(4): 902-934. doi:10.3878/j.issn.1006-9895.1802.17306
参考文献
ZouL W, ZhouT J. 2015. Asian summer monsoon onset in simulations and CMIP5 projections using four Chinese climate models[J]. Advances in Atmospheric Sciences, 32(6): 794-806. doi:10.1007/s00376-014-4053-z
参考文献
ZouL W, ZhouT J. 2016. A regional ocean-atmosphere coupled model developed for CORDEX East Asia: Assessment of Asian summer monsoon simulation[J]. Climate Dyn., 47(12): 3627-3640. doi:10.1007/s00382-016-3032-8
参考文献
邹立维, 李东欢, 周天军, 等. 2018. FGOALS海洋同化试验对西北太平洋夏季SST—降水关系的模拟评估[J]. 气候与环境研究, 23(2): 139-149. Zou L W, Li D H, Zhou T J,et al. 2018. Summer rainfall-SST relationships in the western North Pacific simulated by the FGOALS model with ocean assimilation[J]. Climatic and Environmental Research (in Chinese), 23(2): 139−149. doi:10.3878/j.issn.1006-9585.2017.17006
目录 contents

    摘要

    观测发现,西北太平洋区域夏季降水—SST存在显著的负相关,主要是由于El Niño衰减年西北太平洋异常反气旋持续至夏季,该过程是检验耦合模式性能的重要参照标准。本文利用中国科学院大气物理研究所近期气候预测系统IAP-DecPreS,通过海洋同化试验、大气模式AMIP试验与观测结果的比较,评估海洋同化试验对西北太平洋夏季局地海气相互作用特征的模拟影响。结果表明,海洋同化试验能够模拟出西北太平洋区域夏季降水—SST负相关,但负相关区域范围偏小。其与观测之间的最大差异出现在8月,西北太平洋负降水异常及异常反气旋位置偏东,强度偏弱。这是由于其模拟的El Niño衰减年夏季赤道东印度洋正降水异常偏弱且移动至赤道南侧,对流层增温偏弱,对西太平洋的遥相关作用偏弱。AMIP试验未考虑大气对海洋的反馈作用,不能再现西北太平洋降水—SST负相关,无法模拟出El Niño衰减年夏季西北太平洋异常反气旋。研究表明,海洋同化试验对西北太平洋区域局地海气相互作用特征的模拟能力较AMIP试验有所提升,其对8月西北太平洋降水与环流场的模拟偏差与东赤道印度洋降水模拟偏差有关。

    Abstract

    Observations show evident negative correlation between summer sea surface temperature (SST) and precipitation anomalies over the northwestern Pacific (NWP), which is due to the maintenance of the NWP anomalous anticyclone from the El Niño peak winter to subsequent summer. This process has been a useful metric for assessing the capability of climate models. Based on the near-term climate prediction system of the Institute of Atmospheric Physics (IAP-DecPreS), this study evaluates the result of the ocean data assimilation experiment using the coupled model FGOALS-s2 to simulate the air-sea interaction over the NWP through comparing the result with observations and standalone AGCM (atmospheric general circulation model) simulation. The coupled data assimilation system performs better than AGCM and reasonably reproduces the negative correlation between summer SST and precipitation anomalies over the NWP, although the area with negative correlation coefficient is smaller than the observation, especially in August when the NWP anticyclone is weaker than that in the observation and shifts eastward. Further analysis indicates that the bias is associated with the southward shift and weakening of positive precipitation anomalies over the equatorial eastern Indian Ocean in the El Niño decaying summer. The standalone AGCM experiments fails in simulating the negative correlation between summer SST and precipitation anomalies over the NWP, which is attributed to the absence of atmospheric forcing. Our analysis demonstrates that the ocean assimilation system performs better than the AMIP experiment in simulating the air-sea interaction over the NWP, and the bias in the NWP anticyclone simulation in August is due to the bias in precipitation anomalies over the equatorial eastern Indian Ocean.

  • 1 引言

    我国东部位于季风区,东亚季风异常所引起的旱、涝等气象灾害,几乎每年都给我国带来巨大的经济、财产损失,以及严重的社会影响(黄荣辉等,2003)。气候模式是预测和理解东亚季风变化规律的重要手段。当前的气候模式能够再现东亚季风的基本特征,包括平均态分布、季节循环和年际变率等 (Kang et al.,2002Zhou and Li,2002Zou and Zhou,2016)。但模式在其他方面仍存在一些不足,例如,对梅雨雨带和季风建立时间的模拟,且不同模式的模拟能力存在差异(Huang et al.,2013Sperber et al.,2013Zou and Zhou,2015周天军等,2018)。基于观测事实,评估和诊断模式偏差对模式的发展完善具有重要参考价值。

    ENSO作为热带最为显著的年际变率信号,是东亚季风年际变率的重要影响因子(Huang and Wu,1989Zhang et al.,1996Huang et al.,2004)。以往研究表明,西北太平洋异常反气旋(NWPAC)在ENSO影响东亚季风的过程中起到了重要作用(Li et al.,2017)。在El Niño发展年冬季,反气旋西侧的东南风异常向中国东南地区输送大量水汽,东南部降水增多(Zhang et al.,19961999Zhang and Sumi,2002)。在El Niño衰减年夏季,异常反气旋的存在则使长江流域降水增多,而华南地区降水减少(Chang et al.,2000a2000b)。

    NWPAC形成于El Niño发展位相的秋末,在冬季完全建立,并能够持续至来年夏季(Wang et al.,2003Wu et al.,2017a2017b)。NWPAC在El Niño衰减位相夏季的维持,是西北太平洋局地负海温异常和印度洋海盆一致增暖(IOBM)共同作用的结果(Lau and Nath,2000Yang et al.,2007Xie et al.,2009Wu et al.,2010)。6月至8月,由于夏季海气负反馈,前者贡献逐渐减弱,西北太平洋海温异常逐渐由负转正。而随着季风槽在8月完全建立,IOBM在8月起主要作用(Wu et al.,2010)。印度洋海盆增暖通过湿对流调整影响对流层上层温度,对流层温度表现为Matsuno-Gill型(Matsuno,1966Gill,1980)。暖的大气Kelvin波伸入赤道西太平洋,对流层低层出现东风异常(Xie et al.,2009)。西北太平洋上空的东风异常存在反气旋式切变,通过Ekman抽吸使边界层发生辐散,抑制对流,局地出现负降水异常,进一步激发出下沉Rossby波,NWPAC得以维持,从而进一步影响东亚夏季风(Wu et al.,2009a2010)。

    在上述过程的作用下,西北太平洋夏季降水和SST呈显著负相关,且降水超前SST一个月亦呈负相关,而滞后一个月则为正相关(Trenberth and Shea,2005Wang et al.,2005)。这表明在该区域,夏季以大气对海洋的强迫作用为主。研究表明,西北太平洋降水—SST关系存在显著的年际变化,该区域降水—SST负相关主要出现在ENSO衰减年。El Niño衰减年夏季,西北太平洋表现为负降水异常及异常反气旋,一方面负降水异常引起向下的短波辐射增加,另一方面NWPAC可引起向上的潜热通量减少,从而引起SST正异常,降水—SST呈负相关(Wu et al.,2009b)。由观测SST驱动的大气环流模式(AGCMs)未考虑西北太平洋区域海气相互作用中大气对海洋的反馈作用,无法再现西北太平洋夏季降水—SST负相关,同时对亚洲—太平洋区域夏季降水模拟也存在偏差(Wang et al.,2005)。考虑了海气相互作用过程的耦合气候系统模式(CGCMs)相对AGCMs模拟能力有较大的提升,能够再现东亚夏季风的气候态分布,但其模拟的西北太平洋反气旋位置偏东且梅雨强度偏弱(Song and Zhou,2014a2014b)。

    同化技术是纠正耦合模式偏差的重要手段。为参加CMIP6(Coupled Model Intercomparison Project Phase 6)框架下的年代际气候预测试验,IAP/LASG(State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics)发展了新的海洋初始化方法,并将其应用于由FGOALS-s2(Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2)发展的近期气候预测系统IAP-DecPreS(near-term climate prediction system of the Institute of Atmospheric Physics)(Wu et al.,2015)。初步分析表明,IAP-DecPreS同化试验对西北太平洋降水—SST关系的模拟技巧介于单独大气模式试验和自由耦合试验之间,耦合同化试验和自由耦合试验模拟的西北太平洋地区环流异常较之观测都偏弱(邹立维等,2018),但是关于造成模式偏差的原因尚不清楚。本文的目的,是基于IAP-DecPreS的耦合同化试验,结合观测事实,通过与单独大气环流模式分量的海温强迫试验结果比较,重点探讨以下问题:(1)系统评估IAP-DecPreS同化试验对西北太平洋区域海气相互作用特征的模拟能力;(2)揭示影响IAP-DecPreS在西北太平洋区域模拟性能的关键过程;(3)通过与单独大气模式AMIP试验的比较,理解海洋同化过程的作用。我们希望本文的工作,能够从提升西北太平洋区域年际变率模拟能力的角度,为IAP-DecPreS的未来发展提供参考。

  • 2 资料与方法

  • 2.1 模式简介

    基于耦合气候系统模式FGOALS-s2发展的海洋同化系统(Ocean Assimilation System,OAS),是IAP-DecPreS系统的重要组成部分(Wu et al.,20152018)。该系统是为开展年代际气候预测这一学科前沿问题而研发的(周天军和吴波,2017)。

    IAP/LASG发展的耦合气候系统模式FGOALS-s2,包含大气、海洋、海冰和陆面四个分量模式(Bao et al.,2013)。大气分量SAMIL2.0(Spectral Atmospheric Model of IPA LASG Version2)水平分辨率是菱形截断42波,约为2.81°(经度)×1.66°(纬度),垂直方向采用σ-p混合坐标,共26层(Wu et al.,1996)。海洋分量LICOM2.0(LASG/IAP Climate System Ocean Model Version2)水平分辨率为1°×1°,赤道地区加密至0.5°×0.5°,垂直方向采用z坐标,共30层(Liu et al.,2012)。海冰分量采用了NCAR的海冰模式CSIM5(Briegleb et al.,2004)。陆面分量为NCAR开发的通量陆面过程模式CLM3.0,其水平分辨率与大气分量一致(Oleson et al.,2004)。

    同化方案结合了增量分析校正(IAU)方法和集合最优插值(EnOI)方法,同化了海洋上层700 m的温度资料。初值观测资料来源于原始海洋温度廓线资料EN4_v1.1及格点化SST资料HadISST1.1(Good et al.,2013Rayner et al.,2003)。同化区域为70°S~70°N,其中南、北半球60°~70°为缓冲区,此外设定同化循环窗口宽度为1个月,具体同化流程见Wu et al.(2018)。该方案采用了全场同化策略,同时考虑了观测和模式误差(吴波等,2017)。

    同化试验共包含3个集合成员,本文采用他们的集合平均结果进行模拟评估。作为比较,同时采用了FGOALS-s2大气分量模式SAMIL观测海温强迫试验(AMIP)3个集合成员的集合平均结果。其中,AMIP试验中SAMIL模式下边界采用的是气候模式诊断和比较计划(PCMDI)提供的月平均海温、海冰场(周天军等,2005),该资料融合了英国哈德莱中心(Hadley Centre)提供的逐月海表温度资料HadISSTv1.1和美国国家海洋和大气局(NOAA)提供的每周最优插值(OI)海表温度分析场NOAA OI.v2(Hurrell et al.,2008)。本文分析时段为1979~2008年。

  • 2.2 观测与再分析资料

    本文所用观测资料包括:(1)英国哈德莱(Hadley)气候中心提供的逐月海表温度资料HadISSTv1.1,水平分辨率为1°×1°,时间范围为1870年1月至2016年5月(Rayner et al.,2003);(2)卫星融合全球逐月降水资料GPCPv2.2,水平分辨率为2.5°×2.5°,时间范围为1979年1月至2015年7月(Adler et al.,2003)。

    本文采用的再分析资料包括:(1)美国国家环境预报中心(National Centers for Environmental Prediction)提供的NCEP1逐月风场资料,水平分辨率为2.5°×2.5°,垂直方向共17层,时间范围为1948年1月至2017年7月(Kalnay et al.,1996);(2)逐月海表热通量资料OAFlux,水平分辨率为1°×1°,时间范围为1983年7月至2009年12月(Yu and Weller,2007)。

  • 2.3 分析方法

    根据Niño3.4指数,把观测的1979~2008年共30年夏季分为三类:ENSO发展年(DV)、ENSO衰减年(DC)和剩余年(RM),如表1所示。具体划分标准为:夏季(JJA)Niño3.4指数绝对值大于0.5°C,且ENSO在随后冬季成熟则视为DV年;ENSO成熟的第二年视为DC年。此外,1983、1988和1998年夏季随着El Niño消亡,La Niña发展,西北太平洋降水和环流型更接近El Niño DC年,故归为El Niño DC年;1987(1999)年分别处于两个El Niño(La Niña)成熟冬季之间,西北太平洋降水与环流型与El Niño(La Niña)DV年更为接近,归入DV年(Wu et al.,2009b)。海洋同化试验中Niño3.4指数与观测Niño3.4指数的相关系数高达0.953,故年份的划分与观测保持一致。其中,Niño3.4指数定义为东太平洋(5°S~5°N,120°~170°W)海温的区域平均值。

    表1 1979~2008年夏季类别划分

    Table 1 Classification of summers during 1979-2008

    分类El Niño年La Niña年
    剩余年(RM)夏季1979, 1980, 1981, 1986, 1990, 1993
    ENSO发展年(DV)夏季1982, 1987, 1991, 1994, 1997, 2002, 2004, 20061999
    ENSO衰减年(DC)夏季1983, 1988, 1992, 1995, 1998, 2003, 2005, 20071984, 1985, 1989, 1996, 2000, 2001, 2008

    大气对海表温度异常的响应较快,然而由于海洋巨大的热容量和热惯性,海洋对大气强迫的响应则通常要滞后1~2个月,故可用大气变量与海温的同期相关或滞后相关来表征海气相互作用(Von Storch,2000)。其中,降水、海面蒸发和海气热通量等物理量均被证实可作为大气变量与海温建立相关,并已被用来分析不同地区的海气相互作用特征(周天军和张学洪,2002Wu et al.,2006李博等,2009)。大气变量与SST异常及SST倾向的同期相关也能够用来表征海气相互作用的不同情形,认为大气对海洋的强迫作用通过海温倾向可以在较短时间内被捕捉到,且在季风区适用(Wu and Kirtman,2005Wu et al.,2006)。

    本文通过比较“降水—SST”相关与“降水—SST倾向”相关的正负和量值,考察大气作用和海洋作用的相对重要性。当降水—SST相关为正值,且量值大于降水—SST倾向相关时,认为在局地海气相互作用中以海洋对大气的作用为主,降水异常主要是对局地海温异常的响应;当降水—SST倾向相关为负值,且量值大于降水—SST相关时,认为在局地海气相互作用中以大气对海洋的作用为主,大气异常主要是由遥相关或大气内动力过程引起的,而异常大气状况可以通过云量、风场影响SST变化(Wu and Kirtman,2007);当降水—SST与降水—SST倾向相关的量值均较小时,可能是由于海气相互作用比较弱或存在大气噪音(Wu and Kirtman,2005)。其中,SST倾向的计算运用了中央插值法,计算公式为

    Tn=SSTn+1-SSTn-1/2,
    (1)

    其中,Tn为需要求解的某一月份的SST倾向,SSTn+1为其后一月份的SST,SSTn-1为其前一月份的SST。

    本文使用了合成分析方法,由于La Niña的时间演变特征与El Niño不一致,故仅对El Niño衰减年进行合成分析。

    文中所有的相关分析均进行了双侧Student t检验,自由度为样本数减2。而在合成分析中,采用了更为严格的Monte Carlo检验,进行了1000次试验。为考察年际变率,对原始数据进行了2~9年带通滤波。

  • 3 结果分析

  • 3.1 观测与模式中的西北太平洋夏季降水—SST关系

    1为海洋同化试验及AMIP试验与观测的夏季降水的逐点相关系数分布。对于夏季降水,海洋同化试验和AMIP试验在海洋大陆区域的模拟技巧均较高,通过了95%信度水平的显著性检验,但在赤道新几内亚岛东北侧(0°~10°N,140°~170°E)海域模拟技巧则较差,甚至与观测结果呈负相关。除西北太平洋部分海域(10°N附近,120°~140°E)以外,AMIP试验与观测结果的相关系数在大部分海域均高于海洋同化试验与观测的相关系数,两者空间分布型相似。

    图1
                            1979~2008年夏季观测的降水异常与(a)海洋同化试验模拟的、(b)AMIP试验模拟的降水异常的相关系数分布。图中打点区域表示通过95%信度水平的显著性检验,虚线方框为研究的西北太平洋区域

    图1 1979~2008年夏季观测的降水异常与(a)海洋同化试验模拟的、(b)AMIP试验模拟的降水异常的相关系数分布。图中打点区域表示通过95%信度水平的显著性检验,虚线方框为研究的西北太平洋区域

    Fig. 1 Spatial patterns of correlation coefficients between the JJA (June, July, August) precipitation anomalies from observations and (a) from ocean assimilation experiment simulation, (b) from AMIP (Atmospheric Model Intercomparison Project) experiment simulation during 1979-2008. Dotted areas indicate correlation at/above 95% confidence level, dashed boxes denote the northwestern Pacific

    值得注意的是,对选取的西北太平洋海域(2.5°~15°N,120°~140°E,图1中虚线方框)求降水的区域平均值,海洋同化试验与观测的相关系数为0.463,通过98%信度水平的显著性检验,而AMIP试验与观测的相关系数仅为0.124,未通过50%信度水平的显著性检验。可见,在我们关注的西北太平洋区域,海洋同化试验较AMIP试验对降水的模拟技巧更高。这是否意味着在西北太平洋区域,相对于AMIP试验,海洋同化试验能够更好地描述局地海气相互作用关系?

    比较观测及不同试验结果中夏季降水—SST关系(图2),可以看到观测的西北太平洋夏季降水—SST呈显著负相关,且存在年际变化,DV年与DC年的夏季存在明显差异,与Wu et al.(2009b)结果一致。DC年,西北太平洋夏季降水—SST呈负相关,相关系数高达−0.6,而在DV与RM年,西北太平洋区域并无显著负相关,故认为西北太平洋全夏季的降水—SST负相关主要是由ENSO衰减年所贡献。海洋同化试验在一定程度上能够再现该现象。

    图2
                            1979~2008年观测的(a1)所有年、(b1)ENSO发展年、(c1)ENSO衰减年及(d1)剩余年夏季降水异常与SST异常的逐点相关系数分布。(a2-d2)同(a1-d1),但为海洋同化试验的结果。(a3-d3)同(a1-d1),但为AMIP试验的结果。图中打点区域表示通过95%信度水平的显著性检验,红色方框为研究的西北太平洋区域

    图2 1979~2008年观测的(a1)所有年、(b1)ENSO发展年、(c1)ENSO衰减年及(d1)剩余年夏季降水异常与SST异常的逐点相关系数分布。(a2-d2)同(a1-d1),但为海洋同化试验的结果。(a3-d3)同(a1-d1),但为AMIP试验的结果。图中打点区域表示通过95%信度水平的显著性检验,红色方框为研究的西北太平洋区域

    Fig. 2 Spatial patterns of correlation coefficients between the JJA SST (sea surface temperature) anomalies and precipitation anomalies for (a1) all summers, (b1) ENSO-developing summers, (c1) ENSO-decaying summers, and (d1) remaining summers from observations during 1979-2008. (a2-d2) As in (a1-d1), but for ocean assimilation simulation experiment. (a3-d3) As in (a1-d1), but for AMIP experiment. Dotted areas indicate correlation at/above 95% confidence level, red boxes denote the northwestern Pacific

    需要注意的是,海洋同化试验(图2a2)中,西北太平洋(方框内)及以北区域存在降水—SST负相关,但负相关区域较观测范围偏小,近赤道区域甚至表现为正相关。DC年中能够观察到类似的负相关区域偏小的现象,且负相关系数量值较观测亦偏小。DV年与DC年之间存在与观测一致的差异:西北太平洋近赤道地区在DV年表现为正相关。在AMIP试验中,夏季降水—SST在大多数区域均表现为显著的正相关,这是由于AMIP试验是由观测海温直接驱动的,局地海气相互作用中只考虑了海洋对大气的作用,未考虑大气对海洋的反馈作用,在部分区域会夸大海温的强迫作用。而对于西北太平洋以外,观测结果中表现为降水—SST正相关的区域,两组试验均能够模拟出正相关,但强度偏强。

    3为观测及模式的夏季降水与同期SST倾向之间的相关系数分布。观测资料在全夏季及DC年均存在显著的负相关,且负相关区域较降水—SST间的负相关范围更大,绝对值亦更大,这体现了大气对SST的强迫作用。降水的减少对应入射短波辐射通量增大,有利于该区域SST正距平增长。海洋同化试验能够模拟出类似的现象,DC年西北太平洋区域有显著的负相关,但负相关区域较观测范围偏小。而AMIP试验中仍为显著的正相关,意味着在该试验中大气异常是对下垫面强迫的被动响应。

    图3
                            同图2,但为夏季降水异常与同期SST倾向的逐点相关系数分布

    图3 同图2,但为夏季降水异常与同期SST倾向的逐点相关系数分布

    Fig. 3 As in Fig.2, but for spatial patterns of correlation coefficients between the JJA SST tendency and precipitation anomalies

    综上所述,耦合模式海洋同化试验能够模拟出西北太平洋夏季降水—SST的负相关,且能够模拟出降水—SST关系的年际变化,但其模拟的负相关区域较观测范围偏小。此外,海洋同化试验能够模拟出该区域夏季降水与SST倾向的负相关,能够体现大气对SST的强迫作用,但范围较观测亦偏小。AMIP试验中未考虑大气对海洋的反馈作用,无法再现西北太平洋夏季降水—SST及降水—SST倾向的负相关。海洋同化试验对降水—SST关系的模拟技巧优于AMIP试验,对西北太平洋夏季局地海气相互作用的模拟能力较AMIP试验有所提高。此外,通过不同类型年中夏季500 hPa垂直速度与SST相关系数分布图(图略)也可以得到类似的结论。

    为进一步理解影响海洋同化试验模拟效果的物理过程,对DC年夏季作逐月分析,如图4所示。观测中,西北太平洋6~8月均表现为降水—SST负相关,其中8月负相关最为显著,且6~8月负相关区域逐渐增大,8月范围最大。而在海洋同化试验中,6月结果与观测较为接近,随后西北太平洋负相关区域略有减小,8月大部分区域表现为显著的正相关,与观测结果相反。也就是说,海洋同化试验与观测结果的差异从6月至8月逐渐增大,8月差异最为显著。同样,根据DC年夏季逐月500 hPa垂直速度与SST相关系数分布图(图略)有类似的结论。

    图4
                            1979~2008年ENSO衰减年(a1)6月、(b1)7月、(c1)8月观测的降水异常和SST异常逐点相关系数分布。(a2-c2)同(a1-c1),但为海洋同化试验的结果。图中打点区域表示通过95%信度水平的显著性检验,虚线方框为研究的西北太平洋区域

    图4 1979~2008年ENSO衰减年(a1)6月、(b1)7月、(c1)8月观测的降水异常和SST异常逐点相关系数分布。(a2-c2)同(a1-c1),但为海洋同化试验的结果。图中打点区域表示通过95%信度水平的显著性检验,虚线方框为研究的西北太平洋区域

    Fig. 4 Spatial patterns of correlation coefficients between observed SST anomalies and precipitation anomalies in (a1) June, (b1) July, (c1) August for ENSO decaying years during 1979-2008. (a2-c2) As in (a1-c1), but for ocean assimilation experiment. Dotted areas indicate correlation at/above 95% confidence level, dashed boxes denote the northwestern Pacific

  • 3.2 模拟偏差的可能原因

    为考察海洋同化试验中降水—SST关系出现偏差的可能原因,图5至图7分别给出了观测与模式中夏季(JJA)SST、降水及850 hPa风场异常在El Niño衰减年夏季的逐月合成场。观测中(图5),热带印度洋至南海一带以及西北太平洋海区均为一致的正SST异常。从南海向东延伸至西北太平洋,有强的负降水异常,并伴随着异常反气旋,负降水异常中心主要位于反气旋东南侧。西北太平洋上空强大的反气旋南侧的东风异常使平均西风减弱,向上的潜热通量减小。同时对流受抑制,向下的短波辐射增加。两者共同作用使局地海温有增暖的趋势,这解释了ENSO衰减年夏季西北太平洋呈现负降水—SST异常的原因(Wu et al.,2009b)。

    图5
                            1979~2008年观测的El Niño衰减年6月(a1)SST异常(单位:°C)、(a2)降水异常(彩色阴影,单位:mm d−1)和850 hPa风场异常(单位: m s−1)合成场;(b1、b2)同(a1、a2),但为7月结果;(c1、c2)同(a1、a2),但为8月结果。图中打点区域通过90%信度水平的显著性检验。图a2-c2中只显示通过90%信度水平的风场

    图5 1979~2008年观测的El Niño衰减年6月(a1)SST异常(单位:°C)、(a2)降水异常(彩色阴影,单位:mm d−1)和850 hPa风场异常(单位: m s−1)合成场;(b1、b2)同(a1、a2),但为7月结果;(c1、c2)同(a1、a2),但为8月结果。图中打点区域通过90%信度水平的显著性检验。图a2-c2中只显示通过90%信度水平的风场

    Fig. 5 Composite patterns of (a1) SST anomalies (units: °C), (a2) precipitation anomalies (color shadings, units: mm d−1) and 850-hPa wind anomalies (units: m s−1) in June for El Niño decaying years from observations during 1979-2008; (b1, b2) As in (a1, a2), but for anomalies in July; (c1, c2) As in (a1, a2), but for anomalies in August. Dotted areas indicate correlation at/above 90% confidence level. In Figs. a2-c2, only wind anomalies exceeding 90% confidence level are shown

    图6
                            同图5,但为海洋同化试验结果

    图6 同图5,但为海洋同化试验结果

    Fig. 6 As in Fig. 5, but for results from ocean assimilation experiment

    图7
                            同图5,但为AMIP试验结果

    图7 同图5,但为AMIP试验结果

    Fig. 7 As in Fig. 5, but for AMIP simulation results

    海洋同化试验能够模拟出海温、降水以及环流场的主要分布形态,如图6所示。海洋同化试验能够模拟出印度洋、南海、西北太平洋的正SST异常,SST异常空间分布形态与观测基本一致。但海洋同化试结果中热带印度洋海盆一致增暖现象强度偏弱,差异最大的区域为西赤道印度洋,其在7、8月甚至表现为负的SST异常。而在(20°~30°N,120°~160°E)这一海区,其模拟的SST明显偏暖。

    海洋同化试验中降水异常分布也与观测存在一定的差异,正负降水中心存在整体的东移,梅雨带无明显的降水异常,与观测不一致。7、8月反气旋中心也存在东移的现象。在降水—SST相关差异最大的8月,太平洋区域负降水异常中心较观测偏东、强度偏弱,西北太平洋区域则表现为正的降水异常,与观测相反。故海洋同化试验中ENSO衰减年8月西北太平洋为正的降水—SST相关。相应的海洋同化试验中反气旋中心也较观测位置偏东,强度偏弱。

    7为AMIP试验的结果。SAMIL模式下边界采用的是PCMDI提供的月平均海温、海冰场(周天军等,2005),该资料融合了HadISSTv1.1和NOAA OI.v2(Hurrell et al.,2008),而文中使用的观测海温资料为HadISSTv1.1。故AMIP试验结果中SST与观测结果存在细微的差异,但分布形态与观测基本一致。降水场分布则与观测存在较大差异:6、8月负降水区域范围偏小;7、8月负降水中心偏北,西北太平洋表现为正降水异常。伴随着降水场的位置偏移和强度变化,6月及8月无显著反气旋环流,7月反气旋中心较观测偏东偏北。

    根据上述分析进一步证实海洋同化试验与观测的差异主要出现在8月。海洋同化试验能够模拟出夏季降水、SST及环流场的主要分布特点,但在8月负降水异常中心位置偏东、强度偏弱,西北太平洋区域为正的降水异常,同时异常反气旋中心偏东、强度偏弱。AMIP试验中6月及8月均无显著的反气旋环流,7月反气旋环流位置偏移。海洋同化试验的模拟结果较AMIP试验与观测结果更为接近,其能够模拟出El Niño衰减年夏季西北太平洋反气旋的存在,故能够模拟出西北太平洋夏季负的降水—SST相关。

    云量分布和表面风场的变化能够通过影响海气界面的热收支、蒸发、海洋混合过程和上翻等,进一步改变海水状态(Lindzen and Nigam,1987)。大气对海洋的作用通过海温倾向的变化得以体现(Wu and Kirtman,2005)。在观测中,西北太平洋夏季局地海温的正倾向主要是由短波辐射和潜热热通量异常共同导致的(Wu et al.,2009b)。为此,我们考察模式对上述辐射和湍流通量的模拟效果。

    8为观测与模式中El Niño衰减年夏季西北太平洋主要热通量的区域平均结果。由图可得,观测中对夏季西北太平洋正SST倾向贡献最大的是潜热通量与短波辐射,其在不同月份均为正值(向下为正)。平均风速降低导致向上的潜热通量减少,云量减少导致向下的短波辐射增多,共同作用使海温有升高趋势,与图5结果一致。感热通量及长波辐射在不同月份贡献不同,但总体来说,其贡献远小于短波辐射和潜热通量。

    图8
                            1979~2008年El Niño衰减年(a)6月、(b)7月、(c)8月及(d)夏季平均的西北太平洋区域(2.5°~15°N,120°~140°E)平均短波辐射通量异常、长波辐射通量异常、感热通量异常和潜热通量异常。单位: W m−2,向下为正

    图8 1979~2008年El Niño衰减年(a)6月、(b)7月、(c)8月及(d)夏季平均的西北太平洋区域(2.5°~15°N,120°~140°E)平均短波辐射通量异常、长波辐射通量异常、感热通量异常和潜热通量异常。单位: W m−2,向下为正

    Fig. 8 Composite downward shortwave (SW) radiative flux anomalies, longwave (LW) radiative flux anomalies, sensible heat (SH) flux anomalies, and latent heat (LH) flux anomalies averaged over northwestern Pacific (2.5°-15°N, 120°-140°E) in (a) June, (b) July, (c) August during El Niño decaying years during 1979-2008. (d) As in (a), but for average results in summer (JJA). Units: W m−2, all the downward fluxes are positive

    海洋同化试验中,潜热通量在不同月份均为正异常,其中6、7月夸大了潜热通量的贡献,这是由于海洋同化试验模拟的反气旋南侧的东风异常较观测偏强(图6a2、6b2)。8月,海洋同化试验中反气旋位置偏移(图6c2),西北太平洋区域为东南异常气流,且反气旋强度减弱,对平均风速的减弱作用不及观测,潜热通量异常被低估(图8c)。短波辐射则与观测存在较大差异,7月为正异常,而6月及8月均为负异常,与观测结果相反。但根据短波辐射在不同月份的空间分布(图9b1-b3),可以看到海洋同化试验中短波辐射的空间分布与观测相似,但整体东移,使西北太平洋表现为负异常。短波辐射的东移与负降水异常中心的东移一致。总体而言,海洋同化试验能够模拟大气对海洋的反馈作用,其与观测的主要差异在于其对降水异常及异常反气旋强弱和位置的模拟存在偏差。

    图9
                            1979~2008年观测的El Niño衰减年(a1)6月、(a2)7月、(a3)8月短波辐射异常(单位:W m−2,向下为正)合成场。(b1-b3)同(a1-a3),但为海洋同化试验的合成场。(c1-c3,d1-d3)同(a1-a3,b1-b3),但为潜热通量异常合成场。虚线方框为研究的西北太平洋区域

    图9 1979~2008年观测的El Niño衰减年(a1)6月、(a2)7月、(a3)8月短波辐射异常(单位:W m−2,向下为正)合成场。(b1-b3)同(a1-a3),但为海洋同化试验的合成场。(c1-c3,d1-d3)同(a1-a3,b1-b3),但为潜热通量异常合成场。虚线方框为研究的西北太平洋区域

    Fig. 9 Composites downward shortwave radiative flux anomalies (units: W m−2) from observations in (a1) June, (a2) July, (a3) August for El Niño decaying years during 1979-2008. (b1-b3) As in (a1-a3), but results from ocean assimilation experiment. (c1-c3, d1-d3) As in (a1-a3, b1-b3), but for latent heat flux anomalies. Dashed boxes denote the northwestern Pacific

    热带印度洋的遥相关作用是西北太平洋负降水异常和异常反气旋在El Niño衰减年夏季能够维持的重要原因(Lau and Nath,2000Yang et al.,2007Xie et al.,2009Wu et al.,2010Song and Zhou,2014a)。为理解耦合海洋同化试验对8月西北太平洋降水异常及异常反气旋的模拟偏差,进一步考察模式对El Niño衰减年夏季印度洋海温和降水的模拟效果。观测中印度洋表现为一致增暖,SST正异常覆盖整个印度洋海盆,赤道中东太平洋表现为海温负异常(图5c)。而在海洋同化试验中,海盆一致增暖现象相对偏弱,但量值上无明显差异(图6)。

    8月观测与海洋同化试验的降水场则存在明显差异。观测中赤道东印度洋在El Niño衰减年8月为显著的正降水异常(图5c2),对应赤道东印度洋海气界面负的潜热通量(向下为正,图9d3),通过影响对流层上层温度,激发出Kelvin波,从而进一步影响西北太平洋(Wu et al.,2009a2010Xie et al.,2009)。而海洋同化试验中,正降水异常偏移到赤道以南,且强度偏弱,激发的Kelvin波强度也相应的弱于观测(图10)。

    图10
                            1979~2008年El Niño衰减年8月(a)观测的、(b)海洋同化试验的200 hPa与850 hPa间高度差异常(彩色阴影,单位:gpm)以及200 hPa风场异常(箭头,单位:m s−1)合成场。打点区域通过90%信度水平的显著性检验,只显示通过90%信度水平的风场

    图10 1979~2008年El Niño衰减年8月(a)观测的、(b)海洋同化试验的200 hPa与850 hPa间高度差异常(彩色阴影,单位:gpm)以及200 hPa风场异常(箭头,单位:m s−1)合成场。打点区域通过90%信度水平的显著性检验,只显示通过90%信度水平的风场

    Fig. 10 Composite patterns of height difference anomalies (color shadings, units: gpm) between 200 hPa and 850 hPa, 200-hPa wind anomalies (arrows, units: m s−1) from (a) observations, (b) ocean assimilation experiment in August for El Niño decaying years during 1979-2008. Dotted areas indicate anomalies at/above 90% confidence level, only wind anomalies exceeding 90% confidence level are shown

    用200 hPa与850 hPa气压面之间的高度差表征对流层平均温度,模式与观测结果在El Niño衰减年8月的异常合成场如图10所示。观测中对流层平均温度存在典型的Matsuno-Gill型环流(Matsuno,1966Gill,1980),明显的楔形结构伸入西太平洋(图10a)。印度洋—太平洋区域对流层高层为西风异常,低层为东风异常(图5c2),该环流场为斜压Kelvin波响应。而在海洋同化试验中,东赤道印度洋降水减少,对应的潜热释放加热大气减弱,楔形结构减弱,对流层高层西风异常与低层东风异常也相应减弱(图10b、图56c2),无法给西北太平洋反气旋的维持提供足够的动力。

    综上所述,海洋同化试验中El Niño衰减年8月赤道东印度洋正降水异常向南偏移且减弱,使得激发出的Kelvin波强度偏弱,这是引起海洋同化试验中西北太平洋降水异常及异常反气旋环流偏弱的重要原因。由于同化试验模拟的印度洋SST异常的强度与观测无本质差异,印度洋降水异常的模拟偏差可能与模式中赤道印度洋气候态正降水中心位置偏南有关(图11)。

    图11
                            1979~2008年印度洋—太平洋区域(a)观测、(b)海洋同化试验、(c)海洋同化试验与观测之差的8月气候态降水量(单位: mm d−1)

    图11 1979~2008年印度洋—太平洋区域(a)观测、(b)海洋同化试验、(c)海洋同化试验与观测之差的8月气候态降水量(单位: mm d−1

    Fig. 11 Climatological precipitation (units: mm d−1) in August from (a) observations, (b) ocean assimilation experiment, (c) the difference between observations and ocean assimilation experiment over Indian Ocean-Pacific during 1979-2008

  • 4 结论与讨论

    本文利用IAP-DecPreS海洋同化试验结果,基于观测的西北太平洋局地海气相互作用特征,评估了模式的模拟能力,并通过与观测及AMIP的模拟结果的比较,讨论了模式偏差的可能原因,主要结论如下:

    (1)海洋同化试验对西北太平洋区域降水与海温之间关系的模拟能力较AMIP试验有所提高。其能够模拟西北太平洋夏季降水—SST负相关以及降水和SST倾向之间的负相关,表现出该区域夏季以大气强迫海洋为主的特征。且在一定程度上能够再现该区域降水—SST关系的年际变化。但其模拟的负相关区域范围及相关系数值均较观测偏小。AMIP试验由于未考虑大气对海洋的反馈作用,在大多数区域均表现为一致的正相关。

    (2)海洋同化试验与观测结果的差异主要出现在8月。在El Niño衰减年夏季,海洋同化试验模拟的SST、降水及风场的空间分布与观测基本一致。但8月负降水异常中心偏东且强度偏弱,相应的反气旋中心位置偏移、强度偏弱。西北太平洋区域为降水正异常,降水—SST呈正相关。AMIP试验在6月及8月均不能够模拟出显著的反气旋异常,其在7月模拟的反气旋异常位置偏北、强度偏弱、范围偏小。

    (3)潜热通量与短波辐射对El Niño衰减年夏季西北太平洋SST增暖起到了重要作用。海洋同化试验能够模拟大气对海洋的反馈作用,其与观测的主要差异在于对降水异常及异常反气旋的强弱和位置的模拟偏差。潜热通量的大小与异常反气旋强弱有关,8月潜热通量异常较观测偏弱。短波辐射异常的空间分布与观测接近,但存在位置的偏移,这是由于降水异常中心的整体东移。

    (4)海洋同化试验中8月西北太平洋反气旋的模拟偏差源于其模拟的El Niño衰减年夏季赤道东印度洋降水正异常偏弱且移动至赤道南侧,释放的潜热通量偏弱,对流层平均温度异常偏弱,印度洋对西北太平洋的遥相关作用偏弱,最终导致西北太平洋反气旋偏弱。海洋同化试验中赤道东印度洋的降水偏差可能是由该试验中气候态降水偏差引起的。

    最后需要指出,本文内容基于FGOALS-s2模式使用IAU-EnOI同化方案对模式模拟性能的影响是个别案例还是广泛情况需进一步探讨。目前,IAU-EnOI同化方案已经被中国气象局国家气候中心和中国气象科学研究院的气候系统模式所采用,未来有望提供多模式比较的机会。全球共16个模式研发中心提供了18个模式的年代际预测结果,除FGOALS-s2外,还包括另外2个来自中国的模式(Kirtman et al.,2013),中国气象局国家气候中心研发的BCC_CSM1.1(Xin et al.,2013)及IAP/LASG研发的FGOALS-g2(Li et al.,2013)。这两个模式分别采用了与FGOALS-s2不同的初始化方案,BCC_CSM1.1采用了Nudging方案(高峰等,2012),FGOALS-g2采用了三维变分方案(Wang et al.,2013)。不同的同化方案对西北太平洋局地海气相互作用的模拟是否存在差异及可能原因有待探讨。此外,海洋同化试验中赤道东印度洋气候态降水偏差的原因也需要进一步讨论。

  • 参考文献(References)

    • 1

      Adler R F, Huffman G J, Chang A, et al. 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present) [J]. Journal of Hydrometeorology, 4(6): 1147-1167. doi:10.1175/1525-7541(2003)004<1147:tvgpcp>2.0.co;2

    • 2

      Bao Q, Lin P F, Zhou T J, et al. 2013. The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2 [J]. Advances in Atmospheric Sciences, 30(3): 561-576. doi:10.1007/s00376-012-2113-9

    • 3

      Briegleb B P, Bitz C M, Hunke E C, et al. 2004. Scientific description of the sea ice component in the Community Climate System Model, Version 3 [R]. NCAR Technical Note NCAR/TN-463+STR. doi:10.5065/D6HH6H1P

    • 4

      Chang C P, Zhang Y S, Li T. 2000a. Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge[J]. J. Climate, 13(24): 4310-4325. doi:10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2

    • 5

      Chang C P, Zhang Y S, Li T. 2000b. Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part II: Meridional structure of the monsoon[J]. J. Climate, 13(24): 4326-4340. doi:10.1175/1520-0442(2000)013<4326:IAIVOT>2.0.CO;2

    • 6

      高峰, 辛晓歌, 吴统文. 2012. BCC_CSM1.1对10年尺度全球及区域温度的预测研究[J]. 大气科学, 36(6): 1165-1179. Gao F, Xin X G, Wu T W. 2012. A study of the prediction of regional and global temperature on decadal time scale with BCC_CSM1.1 model[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(6): 1165-1179. doi:10.3878/j.issn.1006-9895.2012.11243

    • 7

      Gill A E. 1980. Some simple solutions for heat-induced tropical circulation[J]. Quart. J. Roy. Meteor. Soc., 106(449): 447-462. doi:10.1002/qj.49710644905

    • 8

      Good S A, Martin M J, Rayner N A. 2013. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates[J]. J. Geophys. Res., 118(12): 6704-6716. doi:10.1002/2013JC009067

    • 9

      Huang D Q, Zhu J, Zhang Y C, et al. 2013. Uncertainties on the simulated summer precipitation over eastern China from the CMIP5 models [J]. J. Geophys. Res., 118(16): 9035-9047. doi:10.1002/jgrd.50695

    • 10

      Huang R H, Wu Y F. 1989. The influence of ENSO on the summer climate change in China and its mechanism[J]. Advances in Atmospheric Sciences, 6(1): 21-32. doi:10.1007/BF02656915

    • 11

      黄荣辉, 陈际龙, 周连童, 等. 2003. 关于中国重大气候灾害与东亚气候系统之间关系的研究[J]. 大气科学, 27(4): 770-787. Huang R H, Chen J L, Zhou L T,et al. 2003. Studies on the relationship between the severe climatic disasters in China and the East Asia climate system[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27(4): 770-788. doi:10.3878/j.issn.1006-9895.2003.04.22

    • 12

      Huang R H, Chen W, Yan B L, et al. 2004. Recent advances in studies of the interaction between the East Asian winter and summer monsoons and ENSO cycle [J]. Advances in Atmospheric Sciences, 21 (3): 407-424. doi:10.1007/BF02915568

    • 13

      Hurrell J W, Hack J J, Shea D, et al. 2008. A new sea surface temperature and sea ice boundary dataset for the community atmosphere model [J]. J. Climate, 21(19): 5145-5153. doi:10.1175/2008JCLI2292.1

    • 14

      Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteor. Soc., 77(3): 437-472. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    • 15

      Kang I S, Jin K, Wang B, et al. 2002. Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs [J]. Climate Dyn., 19(5-6): 383-395. doi:10.1007/s00382-002-0245-9

    • 16

      Kirtman B, Power S, Adedoyin JA, et al. 2013. Near-term climate change: Projections and predictability [C]//Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T F, Qin D, Plattner G K, et al. Eds. Cambridge, UK and New York , USA: Cambridge University Press.

    • 17

      Lau N C, Nath M J. 2000. Impact of ENSO on the variability of the Asian-Australian monsoons as simulated in GCM experiments[J]. J. Climate, 13(24): 4287-4309. doi:10.1175/1520-0442(2000)013<4287:ioeotv>2.0.co;2

    • 18

      李博, 周天军, 吴春强, 等. 2009. 大气环流模式和耦合模式模拟的降水—海温关系之比较[J]. 大气科学, 33(5): 1071-1086. Li B, Zhou T J, Wu C Q,et al. 2009. Relationship between rainfall and sea surface temperature simulated by LASG/IAP AGCM and CGCM[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(5): 1071-1086. doi:10.3878/j.issn.1006-9895.2009.05.17

    • 19

      Li L J, Lin P F, Yu Y Q, et al. 2013. The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2 [J]. Advances in Atmospheric Sciences, 30(3): 543-560. doi:10.1007/s00376-012-2140-6

    • 20

      Li T, Wang B, Wu B, et al. 2017. Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review [J]. J. Meteor. Res., 31(6): 987-1006. doi:10.1007/s13351-017-7147-6

    • 21

      Lindzen R S, Nigam S. 1987. On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics[J]. J. Atmos. Sci., 44(17): 2418-2436. doi:10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2

    • 22

      Liu H L, Lin P F, Yu Y Q, et al. 2012. The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2 [J]. Acta Meteorologica Sinica, 26(3): 318-329. doi:10.1007/s13351-012-0305-y

    • 23

      Matsuno T. 1966. Quasi-geostrophic motions in the equatorial area[J]. J. Meteor. Soc. Japan, 44(1): 25-43.

    • 24

      Oleson K, Dai Y, Bonan G, et al. 2004. Technical description of the Community Land Model (CLM) [R]. NCAR Technical Note NCAR/TN-461+STR. doi:10.5065/D6N877R0

    • 25

      Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century [J]. J. Geophys. Res., 108(D14): 4407. doi:10.1029/2002jd002670

    • 26

      Song F F, Zhou T J. 2014a. Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean-western Pacific anticyclone teleconnection[J]. J. Climate, 27(4): 1679-1697. doi:10.1175/JCLI-D-13-00248.1

    • 27

      Song F F, Zhou T J. 2014b. The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air-sea coupling improve the simulations? [J] J. Climate, 27(23): 8761-8777. doi:10.1175/JCLI-D-14-00396.1

    • 28

      Sperber K R, Annamalai H, Kang I S, et al. 2013. The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century [J]. Climate Dyn., 41(9-10): 2711-2744. doi:10.1007/s00382-012-1607-6

    • 29

      Trenberth K E, Shea D J. 2005. Relationships between precipitation and surface temperature[J]. Geophys. Res. Lett., 32(14): L14703. doi:10.1029/2005GL022760

    • 30

      Von Storch J S. 2000. Signatures of air-sea interactions in a coupled atmosphere-ocean GCM[J]. J. Climate, 13(19): 3361-3379. doi:10.1175/1520-0442(2000)013<3361:SOASII>2.0.CO;2

    • 31

      Wang B, Wu R G, Li T. 2003. Atmosphere-warm ocean interaction and its impacts on Asian-Australian monsoon variation[J]. J. Climate, 16(8): 1195-1211. doi:10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2

    • 32

      Wang B, Ding Q H, Fu X H, et al. 2005. Fundamental challenge in simulation and prediction of summer monsoon rainfall [J]. Geophys. Res. Lett., 32(15): L15711. doi:10.1029/2005GL022734

    • 33

      Wang B, Liu M M, Yu Y Q, et al. 2013. Preliminary evaluations of FGOALS-g2 for decadal predictions [J]. Advances in Atmospheric Sciences, 30(3): 674-683. doi:10.1007/s00376-012-2084-x

    • 34

      Wu B, Zhou T J, Li T. 2009a. Seasonally evolving dominant interannual variability modes of East Asian climate[J]. J. Climate, 22(11): 2992-3005. doi:10.1175/2008JCLI2710.1

    • 35

      Wu B, Zhou T J, Li T. 2009b. Contrast of rainfall-SST relationships in the western North Pacific between the ENSO-developing and ENSO-decaying summers[J]. J. Climate, 22(16): 4398-4405. doi:10.1175/2009JCLI2648.1

    • 36

      Wu B, Li T, Zhou T J. 2010. Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer[J]. J. Climate, 23(11): 2974-2986. doi:10.1175/2010JCLI3300.1

    • 37

      Wu B, Chen X L, Song F F, et al. 2015. Initialized decadal predictions by LASG/IAP climate system model FGOALS-s2: Evaluations of strengths and weaknesses [J]. Advances in Meteorology, 2015: 904826. doi:10.1155/2015/904826

    • 38

      吴波, 周天军, 孙倩. 2017. 海洋模式初始化同化方案对IAP近期气候预测系统回报试验技巧的影响[J]. 地球科学进展, 32(4): 342-352. Wu B, Zhou T J, Sun Q. 2017. Impacts of initialization schemes of oceanic states on the predictive skills of the IAP near-term climate prediction system[J]. Advances in Earth Science (in Chinese), 32(4): 342-352. doi:10.11867/j.issn.1001-8166.2017.04.0342

    • 39

      Wu B, Zhou T J, Li T. 2017a. Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part II: Formation processes[J]. J. Climate, 30(23): 9621-9635. doi:10.1175/JCLI-D-16-0495.1

    • 40

      Wu B, Zhou T J, Li T. 2017b. Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms[J]. J. Climate, 30(23): 9637-9650. doi:10.1175/JCLI-D-16-0489.1

    • 41

      Wu B, Zhou T J, Zheng F. 2018. EnOI-IAU initialization scheme designed for decadal climate prediction system IAP-DecPreS[J]. Journal of Advances in Modeling Earth Systems, 10(2): 342-356. doi:10.1002/2017MS001132

    • 42

      Wu G X, Liu H, Zhao Y C, et al. 1996. A nine-layer atmospheric general circulation model and its performance [J]. Advances in Atmospheric Sciences, 13(1): 1-18. doi:10.1007/BF02657024

    • 43

      Wu R G, Kirtman B P. 2005. Roles of Indian and Pacific Ocean air-sea coupling in tropical atmospheric variability[J]. Climate Dyn., 25(2-3): 155-170. doi:10.1007/s00382-005-0003-x

    • 44

      Wu R G, Kirtman B P, Pegion K. 2006. Local air-sea relationship in observations and model simulations[J]. J. Climate, 19(19): 4914-4932. doi:10.1175/JCLI3904.1

    • 45

      Wu R G, Kirtman B P. 2007. Regimes of seasonal air-sea interaction and implications for performance of forced simulations[J]. Climate Dyn., 29(4): 393-410. doi:10.1007/s00382-007-0246-9

    • 46

      Xie S P, Hu K M, Hafner J, et al. 2009. Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño [J]. J. Climate, 22(3): 730-747. doi:10.1175/2008JCLI2544.1

    • 47

      Xin X G, Wu T W, Zhang J. 2013. Introduction of CMIP5 experiments carried out with the climate system models of Beijing Climate Center[J]. Advances in Climate Change Research, 4(1): 41-49. doi:10.3724/SP.J.1248.2013.041

    • 48

      Yang J L, Liu Q Y, Xie S P, et al. 2007. Impact of the Indian Ocean SST basin mode on the Asian summer monsoon [J]. Geophys. Res. Lett., 34(2): L02708. doi:10.1029/2006GL028571

    • 49

      Yu L S, Weller R A. 2007. Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981-2005)[J]. Bull. Amer. Meteor. Soc., 88(4): 527-540. doi:10.1175/BAMS-88-4-527

    • 50

      Zhang R H, Sumi A, Kimoto M. 1996. Impact of El Niño on the East Asian monsoon: A diagnostic study of the '86/87 and '91/92events[J]. J. Meteor. Soc. Japan, 74(1): 49-62. doi:10.2151/jmsj1965.74.1_49

    • 51

      Zhang R H, Sumi A, Kimoto M. 1999. A diagnostic study of the impact of El Niño on the precipitation in China[J]. Advances in Atmospheric Sciences, 16(2): 229-241. doi:10.1007/BF02973084

    • 52

      Zhang R H, Sumi A. 2002. Moisture circulation over East Asia during El Niño episode in northern winter, spring and autumn[J]. J. Meteor. Soc. Japan, 80(2): 213-227. doi:10.2151/jmsj.80.213

    • 53

      周天军, 张学洪. 2002. 印度洋海气热通量交换研究[J]. 大气科学, 26(2): 161-170. Zhou T J, Zhang X H. 2002. The air-sea heat flux exchange in the Indian Ocean[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 26(2): 161-170. doi:10.3878/j.issn.1006-9895.2002.02.02

    • 54

      Zhou T J, Li Z. 2002. Simulation of the East Asian summer monsoon using a variable resolution atmospheric GCM[J]. Climate Dyn., 19(2): 167-180. doi:10.1007/s00382-001-0214-8

    • 55

      周天军, 宇如聪, 王在志, 等. 2005. 大气环流模式SAMIL及其耦合模式FGOALS_s [M]. 北京:

    • 56

      气象出版社, 214pp. Zhou T J, Yu R C, Wang, Z Z, et al. 2005. Atmospheric Circulation Model SAMIL and the Full Coupled Model FGOALS_s. [M]. Beijing: China Meteorological Press, 214pp.

    • 57

      周天军, 吴波. 2017. 年代际气候预测问题: 科学前沿与挑战[J]. 地球科学进展, 32(4): 331-341. Zhou T J, Wu B. 2017. Decadal climate prediction: Scientific frontier and challenge[J]. Advances in Earth Science (in Chinese), 32(4): 331-341. doi:10.11867/j.issn.1001-8166.2017.04.0331

    • 58

      周天军, 吴波, 郭准, 等. 2018. 东亚夏季风变化机理的模拟和未来变化的预估: 成绩和问题、机遇和挑战[J]. 大气科学, 42(4): 902-934. Zhou T J, Wu B, Guo Z,et al. 2018. A review of East Asian summer monsoon simulation and projection: Achievements and problems, opportunities and challenges[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(4): 902-934. doi:10.3878/j.issn.1006-9895.1802.17306

    • 59

      Zou L W, Zhou T J. 2015. Asian summer monsoon onset in simulations and CMIP5 projections using four Chinese climate models[J]. Advances in Atmospheric Sciences, 32(6): 794-806. doi:10.1007/s00376-014-4053-z

    • 60

      Zou L W, Zhou T J. 2016. A regional ocean-atmosphere coupled model developed for CORDEX East Asia: Assessment of Asian summer monsoon simulation[J]. Climate Dyn., 47(12): 3627-3640. doi:10.1007/s00382-016-3032-8

    • 61

      邹立维, 李东欢, 周天军, 等. 2018. FGOALS海洋同化试验对西北太平洋夏季SST—降水关系的模拟评估[J]. 气候与环境研究, 23(2): 139-149. Zou L W, Li D H, Zhou T J,et al. 2018. Summer rainfall-SST relationships in the western North Pacific simulated by the FGOALS model with ocean assimilation[J]. Climatic and Environmental Research (in Chinese), 23(2): 139−149. doi:10.3878/j.issn.1006-9585.2017.17006

江洁

机 构:

1. 中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG),北京100029

2. 中国科学院大学,北京100049

Affiliation:

1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

2. University of Chinese Academy of Sciences, Beijing 100049

邮 箱:jiangj@lasg.iap.ac.cn

作者简介:江洁,女,1994年出生,博士研究生,主要从事气候模拟和季风研究。E-mail:jiangj@lasg.iap.ac.cn

周天军

机 构:

1. 中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG),北京100029

2. 中国科学院大学,北京100049

Affiliation:

1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

2. University of Chinese Academy of Sciences, Beijing 100049

角 色:通讯作者

Role:Corresponding author

邮 箱:zhoutj@lasg.iap.ac.cn

作者简介:周天军,E-mail: zhoutj@lasg.iap.ac.cn

吴波

机 构:中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG),北京100029

Affiliation:State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

邹立维

机 构:中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG),北京100029

Affiliation:State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

分类El Niño年La Niña年
剩余年(RM)夏季1979, 1980, 1981, 1986, 1990, 1993
ENSO发展年(DV)夏季1982, 1987, 1991, 1994, 1997, 2002, 2004, 20061999
ENSO衰减年(DC)夏季1983, 1988, 1992, 1995, 1998, 2003, 2005, 20071984, 1985, 1989, 1996, 2000, 2001, 2008
/html/dqkx/20190301/media/a73ef02e-aa64-448a-90ac-bdd66de8fa16-image001.jpeg
/html/dqkx/20190301/media/a73ef02e-aa64-448a-90ac-bdd66de8fa16-image002.jpeg
/html/dqkx/20190301/media/a73ef02e-aa64-448a-90ac-bdd66de8fa16-image003.jpeg
/html/dqkx/20190301/media/a73ef02e-aa64-448a-90ac-bdd66de8fa16-image004.jpeg
/html/dqkx/20190301/media/a73ef02e-aa64-448a-90ac-bdd66de8fa16-image005.jpeg
/html/dqkx/20190301/media/a73ef02e-aa64-448a-90ac-bdd66de8fa16-image007.jpeg
/html/dqkx/20190301/media/a73ef02e-aa64-448a-90ac-bdd66de8fa16-image006.jpeg
/html/dqkx/20190301/media/a73ef02e-aa64-448a-90ac-bdd66de8fa16-image008.jpeg
/html/dqkx/20190301/media/a73ef02e-aa64-448a-90ac-bdd66de8fa16-image009.jpeg
/html/dqkx/20190301/media/a73ef02e-aa64-448a-90ac-bdd66de8fa16-image010.jpeg
/html/dqkx/20190301/media/a73ef02e-aa64-448a-90ac-bdd66de8fa16-image011.jpeg

表1 1979~2008年夏季类别划分

Table 1 Classification of summers during 1979-2008

图1 1979~2008年夏季观测的降水异常与(a)海洋同化试验模拟的、(b)AMIP试验模拟的降水异常的相关系数分布。图中打点区域表示通过95%信度水平的显著性检验,虚线方框为研究的西北太平洋区域

Fig. 1 Spatial patterns of correlation coefficients between the JJA (June, July, August) precipitation anomalies from observations and (a) from ocean assimilation experiment simulation, (b) from AMIP (Atmospheric Model Intercomparison Project) experiment simulation during 1979-2008. Dotted areas indicate correlation at/above 95% confidence level, dashed boxes denote the northwestern Pacific

图2 1979~2008年观测的(a1)所有年、(b1)ENSO发展年、(c1)ENSO衰减年及(d1)剩余年夏季降水异常与SST异常的逐点相关系数分布。(a2-d2)同(a1-d1),但为海洋同化试验的结果。(a3-d3)同(a1-d1),但为AMIP试验的结果。图中打点区域表示通过95%信度水平的显著性检验,红色方框为研究的西北太平洋区域

Fig. 2 Spatial patterns of correlation coefficients between the JJA SST (sea surface temperature) anomalies and precipitation anomalies for (a1) all summers, (b1) ENSO-developing summers, (c1) ENSO-decaying summers, and (d1) remaining summers from observations during 1979-2008. (a2-d2) As in (a1-d1), but for ocean assimilation simulation experiment. (a3-d3) As in (a1-d1), but for AMIP experiment. Dotted areas indicate correlation at/above 95% confidence level, red boxes denote the northwestern Pacific

图3 同图2,但为夏季降水异常与同期SST倾向的逐点相关系数分布

Fig. 3 As in Fig.2, but for spatial patterns of correlation coefficients between the JJA SST tendency and precipitation anomalies

图4 1979~2008年ENSO衰减年(a1)6月、(b1)7月、(c1)8月观测的降水异常和SST异常逐点相关系数分布。(a2-c2)同(a1-c1),但为海洋同化试验的结果。图中打点区域表示通过95%信度水平的显著性检验,虚线方框为研究的西北太平洋区域

Fig. 4 Spatial patterns of correlation coefficients between observed SST anomalies and precipitation anomalies in (a1) June, (b1) July, (c1) August for ENSO decaying years during 1979-2008. (a2-c2) As in (a1-c1), but for ocean assimilation experiment. Dotted areas indicate correlation at/above 95% confidence level, dashed boxes denote the northwestern Pacific

图5 1979~2008年观测的El Niño衰减年6月(a1)SST异常(单位:°C)、(a2)降水异常(彩色阴影,单位:mm d−1)和850 hPa风场异常(单位: m s−1)合成场;(b1、b2)同(a1、a2),但为7月结果;(c1、c2)同(a1、a2),但为8月结果。图中打点区域通过90%信度水平的显著性检验。图a2-c2中只显示通过90%信度水平的风场

Fig. 5 Composite patterns of (a1) SST anomalies (units: °C), (a2) precipitation anomalies (color shadings, units: mm d−1) and 850-hPa wind anomalies (units: m s−1) in June for El Niño decaying years from observations during 1979-2008; (b1, b2) As in (a1, a2), but for anomalies in July; (c1, c2) As in (a1, a2), but for anomalies in August. Dotted areas indicate correlation at/above 90% confidence level. In Figs. a2-c2, only wind anomalies exceeding 90% confidence level are shown

图7 同图5,但为AMIP试验结果

Fig. 7 As in Fig. 5, but for AMIP simulation results

图6 同图5,但为海洋同化试验结果

Fig. 6 As in Fig. 5, but for results from ocean assimilation experiment

图8 1979~2008年El Niño衰减年(a)6月、(b)7月、(c)8月及(d)夏季平均的西北太平洋区域(2.5°~15°N,120°~140°E)平均短波辐射通量异常、长波辐射通量异常、感热通量异常和潜热通量异常。单位: W m−2,向下为正

Fig. 8 Composite downward shortwave (SW) radiative flux anomalies, longwave (LW) radiative flux anomalies, sensible heat (SH) flux anomalies, and latent heat (LH) flux anomalies averaged over northwestern Pacific (2.5°-15°N, 120°-140°E) in (a) June, (b) July, (c) August during El Niño decaying years during 1979-2008. (d) As in (a), but for average results in summer (JJA). Units: W m−2, all the downward fluxes are positive

图9 1979~2008年观测的El Niño衰减年(a1)6月、(a2)7月、(a3)8月短波辐射异常(单位:W m−2,向下为正)合成场。(b1-b3)同(a1-a3),但为海洋同化试验的合成场。(c1-c3,d1-d3)同(a1-a3,b1-b3),但为潜热通量异常合成场。虚线方框为研究的西北太平洋区域

Fig. 9 Composites downward shortwave radiative flux anomalies (units: W m−2) from observations in (a1) June, (a2) July, (a3) August for El Niño decaying years during 1979-2008. (b1-b3) As in (a1-a3), but results from ocean assimilation experiment. (c1-c3, d1-d3) As in (a1-a3, b1-b3), but for latent heat flux anomalies. Dashed boxes denote the northwestern Pacific

图10 1979~2008年El Niño衰减年8月(a)观测的、(b)海洋同化试验的200 hPa与850 hPa间高度差异常(彩色阴影,单位:gpm)以及200 hPa风场异常(箭头,单位:m s−1)合成场。打点区域通过90%信度水平的显著性检验,只显示通过90%信度水平的风场

Fig. 10 Composite patterns of height difference anomalies (color shadings, units: gpm) between 200 hPa and 850 hPa, 200-hPa wind anomalies (arrows, units: m s−1) from (a) observations, (b) ocean assimilation experiment in August for El Niño decaying years during 1979-2008. Dotted areas indicate anomalies at/above 90% confidence level, only wind anomalies exceeding 90% confidence level are shown

图11 1979~2008年印度洋—太平洋区域(a)观测、(b)海洋同化试验、(c)海洋同化试验与观测之差的8月气候态降水量(单位: mm d−1

Fig. 11 Climatological precipitation (units: mm d−1) in August from (a) observations, (b) ocean assimilation experiment, (c) the difference between observations and ocean assimilation experiment over Indian Ocean-Pacific during 1979-2008

image /

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

无注解

  • 参考文献(References)

    • 1

      Adler R F, Huffman G J, Chang A, et al. 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present) [J]. Journal of Hydrometeorology, 4(6): 1147-1167. doi:10.1175/1525-7541(2003)004<1147:tvgpcp>2.0.co;2

    • 2

      Bao Q, Lin P F, Zhou T J, et al. 2013. The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2 [J]. Advances in Atmospheric Sciences, 30(3): 561-576. doi:10.1007/s00376-012-2113-9

    • 3

      Briegleb B P, Bitz C M, Hunke E C, et al. 2004. Scientific description of the sea ice component in the Community Climate System Model, Version 3 [R]. NCAR Technical Note NCAR/TN-463+STR. doi:10.5065/D6HH6H1P

    • 4

      Chang C P, Zhang Y S, Li T. 2000a. Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge[J]. J. Climate, 13(24): 4310-4325. doi:10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2

    • 5

      Chang C P, Zhang Y S, Li T. 2000b. Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part II: Meridional structure of the monsoon[J]. J. Climate, 13(24): 4326-4340. doi:10.1175/1520-0442(2000)013<4326:IAIVOT>2.0.CO;2

    • 6

      高峰, 辛晓歌, 吴统文. 2012. BCC_CSM1.1对10年尺度全球及区域温度的预测研究[J]. 大气科学, 36(6): 1165-1179. Gao F, Xin X G, Wu T W. 2012. A study of the prediction of regional and global temperature on decadal time scale with BCC_CSM1.1 model[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(6): 1165-1179. doi:10.3878/j.issn.1006-9895.2012.11243

    • 7

      Gill A E. 1980. Some simple solutions for heat-induced tropical circulation[J]. Quart. J. Roy. Meteor. Soc., 106(449): 447-462. doi:10.1002/qj.49710644905

    • 8

      Good S A, Martin M J, Rayner N A. 2013. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates[J]. J. Geophys. Res., 118(12): 6704-6716. doi:10.1002/2013JC009067

    • 9

      Huang D Q, Zhu J, Zhang Y C, et al. 2013. Uncertainties on the simulated summer precipitation over eastern China from the CMIP5 models [J]. J. Geophys. Res., 118(16): 9035-9047. doi:10.1002/jgrd.50695

    • 10

      Huang R H, Wu Y F. 1989. The influence of ENSO on the summer climate change in China and its mechanism[J]. Advances in Atmospheric Sciences, 6(1): 21-32. doi:10.1007/BF02656915

    • 11

      黄荣辉, 陈际龙, 周连童, 等. 2003. 关于中国重大气候灾害与东亚气候系统之间关系的研究[J]. 大气科学, 27(4): 770-787. Huang R H, Chen J L, Zhou L T,et al. 2003. Studies on the relationship between the severe climatic disasters in China and the East Asia climate system[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27(4): 770-788. doi:10.3878/j.issn.1006-9895.2003.04.22

    • 12

      Huang R H, Chen W, Yan B L, et al. 2004. Recent advances in studies of the interaction between the East Asian winter and summer monsoons and ENSO cycle [J]. Advances in Atmospheric Sciences, 21 (3): 407-424. doi:10.1007/BF02915568

    • 13

      Hurrell J W, Hack J J, Shea D, et al. 2008. A new sea surface temperature and sea ice boundary dataset for the community atmosphere model [J]. J. Climate, 21(19): 5145-5153. doi:10.1175/2008JCLI2292.1

    • 14

      Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteor. Soc., 77(3): 437-472. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    • 15

      Kang I S, Jin K, Wang B, et al. 2002. Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs [J]. Climate Dyn., 19(5-6): 383-395. doi:10.1007/s00382-002-0245-9

    • 16

      Kirtman B, Power S, Adedoyin JA, et al. 2013. Near-term climate change: Projections and predictability [C]//Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T F, Qin D, Plattner G K, et al. Eds. Cambridge, UK and New York , USA: Cambridge University Press.

    • 17

      Lau N C, Nath M J. 2000. Impact of ENSO on the variability of the Asian-Australian monsoons as simulated in GCM experiments[J]. J. Climate, 13(24): 4287-4309. doi:10.1175/1520-0442(2000)013<4287:ioeotv>2.0.co;2

    • 18

      李博, 周天军, 吴春强, 等. 2009. 大气环流模式和耦合模式模拟的降水—海温关系之比较[J]. 大气科学, 33(5): 1071-1086. Li B, Zhou T J, Wu C Q,et al. 2009. Relationship between rainfall and sea surface temperature simulated by LASG/IAP AGCM and CGCM[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(5): 1071-1086. doi:10.3878/j.issn.1006-9895.2009.05.17

    • 19

      Li L J, Lin P F, Yu Y Q, et al. 2013. The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2 [J]. Advances in Atmospheric Sciences, 30(3): 543-560. doi:10.1007/s00376-012-2140-6

    • 20

      Li T, Wang B, Wu B, et al. 2017. Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review [J]. J. Meteor. Res., 31(6): 987-1006. doi:10.1007/s13351-017-7147-6

    • 21

      Lindzen R S, Nigam S. 1987. On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics[J]. J. Atmos. Sci., 44(17): 2418-2436. doi:10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2

    • 22

      Liu H L, Lin P F, Yu Y Q, et al. 2012. The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2 [J]. Acta Meteorologica Sinica, 26(3): 318-329. doi:10.1007/s13351-012-0305-y

    • 23

      Matsuno T. 1966. Quasi-geostrophic motions in the equatorial area[J]. J. Meteor. Soc. Japan, 44(1): 25-43.

    • 24

      Oleson K, Dai Y, Bonan G, et al. 2004. Technical description of the Community Land Model (CLM) [R]. NCAR Technical Note NCAR/TN-461+STR. doi:10.5065/D6N877R0

    • 25

      Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century [J]. J. Geophys. Res., 108(D14): 4407. doi:10.1029/2002jd002670

    • 26

      Song F F, Zhou T J. 2014a. Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean-western Pacific anticyclone teleconnection[J]. J. Climate, 27(4): 1679-1697. doi:10.1175/JCLI-D-13-00248.1

    • 27

      Song F F, Zhou T J. 2014b. The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air-sea coupling improve the simulations? [J] J. Climate, 27(23): 8761-8777. doi:10.1175/JCLI-D-14-00396.1

    • 28

      Sperber K R, Annamalai H, Kang I S, et al. 2013. The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century [J]. Climate Dyn., 41(9-10): 2711-2744. doi:10.1007/s00382-012-1607-6

    • 29

      Trenberth K E, Shea D J. 2005. Relationships between precipitation and surface temperature[J]. Geophys. Res. Lett., 32(14): L14703. doi:10.1029/2005GL022760

    • 30

      Von Storch J S. 2000. Signatures of air-sea interactions in a coupled atmosphere-ocean GCM[J]. J. Climate, 13(19): 3361-3379. doi:10.1175/1520-0442(2000)013<3361:SOASII>2.0.CO;2

    • 31

      Wang B, Wu R G, Li T. 2003. Atmosphere-warm ocean interaction and its impacts on Asian-Australian monsoon variation[J]. J. Climate, 16(8): 1195-1211. doi:10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2

    • 32

      Wang B, Ding Q H, Fu X H, et al. 2005. Fundamental challenge in simulation and prediction of summer monsoon rainfall [J]. Geophys. Res. Lett., 32(15): L15711. doi:10.1029/2005GL022734

    • 33

      Wang B, Liu M M, Yu Y Q, et al. 2013. Preliminary evaluations of FGOALS-g2 for decadal predictions [J]. Advances in Atmospheric Sciences, 30(3): 674-683. doi:10.1007/s00376-012-2084-x

    • 34

      Wu B, Zhou T J, Li T. 2009a. Seasonally evolving dominant interannual variability modes of East Asian climate[J]. J. Climate, 22(11): 2992-3005. doi:10.1175/2008JCLI2710.1

    • 35

      Wu B, Zhou T J, Li T. 2009b. Contrast of rainfall-SST relationships in the western North Pacific between the ENSO-developing and ENSO-decaying summers[J]. J. Climate, 22(16): 4398-4405. doi:10.1175/2009JCLI2648.1

    • 36

      Wu B, Li T, Zhou T J. 2010. Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer[J]. J. Climate, 23(11): 2974-2986. doi:10.1175/2010JCLI3300.1

    • 37

      Wu B, Chen X L, Song F F, et al. 2015. Initialized decadal predictions by LASG/IAP climate system model FGOALS-s2: Evaluations of strengths and weaknesses [J]. Advances in Meteorology, 2015: 904826. doi:10.1155/2015/904826

    • 38

      吴波, 周天军, 孙倩. 2017. 海洋模式初始化同化方案对IAP近期气候预测系统回报试验技巧的影响[J]. 地球科学进展, 32(4): 342-352. Wu B, Zhou T J, Sun Q. 2017. Impacts of initialization schemes of oceanic states on the predictive skills of the IAP near-term climate prediction system[J]. Advances in Earth Science (in Chinese), 32(4): 342-352. doi:10.11867/j.issn.1001-8166.2017.04.0342

    • 39

      Wu B, Zhou T J, Li T. 2017a. Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part II: Formation processes[J]. J. Climate, 30(23): 9621-9635. doi:10.1175/JCLI-D-16-0495.1

    • 40

      Wu B, Zhou T J, Li T. 2017b. Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms[J]. J. Climate, 30(23): 9637-9650. doi:10.1175/JCLI-D-16-0489.1

    • 41

      Wu B, Zhou T J, Zheng F. 2018. EnOI-IAU initialization scheme designed for decadal climate prediction system IAP-DecPreS[J]. Journal of Advances in Modeling Earth Systems, 10(2): 342-356. doi:10.1002/2017MS001132

    • 42

      Wu G X, Liu H, Zhao Y C, et al. 1996. A nine-layer atmospheric general circulation model and its performance [J]. Advances in Atmospheric Sciences, 13(1): 1-18. doi:10.1007/BF02657024

    • 43

      Wu R G, Kirtman B P. 2005. Roles of Indian and Pacific Ocean air-sea coupling in tropical atmospheric variability[J]. Climate Dyn., 25(2-3): 155-170. doi:10.1007/s00382-005-0003-x

    • 44

      Wu R G, Kirtman B P, Pegion K. 2006. Local air-sea relationship in observations and model simulations[J]. J. Climate, 19(19): 4914-4932. doi:10.1175/JCLI3904.1

    • 45

      Wu R G, Kirtman B P. 2007. Regimes of seasonal air-sea interaction and implications for performance of forced simulations[J]. Climate Dyn., 29(4): 393-410. doi:10.1007/s00382-007-0246-9

    • 46

      Xie S P, Hu K M, Hafner J, et al. 2009. Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño [J]. J. Climate, 22(3): 730-747. doi:10.1175/2008JCLI2544.1

    • 47

      Xin X G, Wu T W, Zhang J. 2013. Introduction of CMIP5 experiments carried out with the climate system models of Beijing Climate Center[J]. Advances in Climate Change Research, 4(1): 41-49. doi:10.3724/SP.J.1248.2013.041

    • 48

      Yang J L, Liu Q Y, Xie S P, et al. 2007. Impact of the Indian Ocean SST basin mode on the Asian summer monsoon [J]. Geophys. Res. Lett., 34(2): L02708. doi:10.1029/2006GL028571

    • 49

      Yu L S, Weller R A. 2007. Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981-2005)[J]. Bull. Amer. Meteor. Soc., 88(4): 527-540. doi:10.1175/BAMS-88-4-527

    • 50

      Zhang R H, Sumi A, Kimoto M. 1996. Impact of El Niño on the East Asian monsoon: A diagnostic study of the '86/87 and '91/92events[J]. J. Meteor. Soc. Japan, 74(1): 49-62. doi:10.2151/jmsj1965.74.1_49

    • 51

      Zhang R H, Sumi A, Kimoto M. 1999. A diagnostic study of the impact of El Niño on the precipitation in China[J]. Advances in Atmospheric Sciences, 16(2): 229-241. doi:10.1007/BF02973084

    • 52

      Zhang R H, Sumi A. 2002. Moisture circulation over East Asia during El Niño episode in northern winter, spring and autumn[J]. J. Meteor. Soc. Japan, 80(2): 213-227. doi:10.2151/jmsj.80.213

    • 53

      周天军, 张学洪. 2002. 印度洋海气热通量交换研究[J]. 大气科学, 26(2): 161-170. Zhou T J, Zhang X H. 2002. The air-sea heat flux exchange in the Indian Ocean[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 26(2): 161-170. doi:10.3878/j.issn.1006-9895.2002.02.02

    • 54

      Zhou T J, Li Z. 2002. Simulation of the East Asian summer monsoon using a variable resolution atmospheric GCM[J]. Climate Dyn., 19(2): 167-180. doi:10.1007/s00382-001-0214-8

    • 55

      周天军, 宇如聪, 王在志, 等. 2005. 大气环流模式SAMIL及其耦合模式FGOALS_s [M]. 北京:

    • 56

      气象出版社, 214pp. Zhou T J, Yu R C, Wang, Z Z, et al. 2005. Atmospheric Circulation Model SAMIL and the Full Coupled Model FGOALS_s. [M]. Beijing: China Meteorological Press, 214pp.

    • 57

      周天军, 吴波. 2017. 年代际气候预测问题: 科学前沿与挑战[J]. 地球科学进展, 32(4): 331-341. Zhou T J, Wu B. 2017. Decadal climate prediction: Scientific frontier and challenge[J]. Advances in Earth Science (in Chinese), 32(4): 331-341. doi:10.11867/j.issn.1001-8166.2017.04.0331

    • 58

      周天军, 吴波, 郭准, 等. 2018. 东亚夏季风变化机理的模拟和未来变化的预估: 成绩和问题、机遇和挑战[J]. 大气科学, 42(4): 902-934. Zhou T J, Wu B, Guo Z,et al. 2018. A review of East Asian summer monsoon simulation and projection: Achievements and problems, opportunities and challenges[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(4): 902-934. doi:10.3878/j.issn.1006-9895.1802.17306

    • 59

      Zou L W, Zhou T J. 2015. Asian summer monsoon onset in simulations and CMIP5 projections using four Chinese climate models[J]. Advances in Atmospheric Sciences, 32(6): 794-806. doi:10.1007/s00376-014-4053-z

    • 60

      Zou L W, Zhou T J. 2016. A regional ocean-atmosphere coupled model developed for CORDEX East Asia: Assessment of Asian summer monsoon simulation[J]. Climate Dyn., 47(12): 3627-3640. doi:10.1007/s00382-016-3032-8

    • 61

      邹立维, 李东欢, 周天军, 等. 2018. FGOALS海洋同化试验对西北太平洋夏季SST—降水关系的模拟评估[J]. 气候与环境研究, 23(2): 139-149. Zou L W, Li D H, Zhou T J,et al. 2018. Summer rainfall-SST relationships in the western North Pacific simulated by the FGOALS model with ocean assimilation[J]. Climatic and Environmental Research (in Chinese), 23(2): 139−149. doi:10.3878/j.issn.1006-9585.2017.17006

  • 主办单位:中国科学院大气物理研究所 单位地址:北京市9804信箱
    联系电话: 010-82995051,010-82995052传真:010-82995052 邮编:100029 Email:dqkx@mail.iap.ac.cn
    本系统由北京勤云科技发展有限公司设计
    京ICP备09060247号