何建军, 余晔, 刘娜, 等. 2014. 复杂地形区陆面资料对 WRF 模式模拟性能的影响 [J]. 大气科学, 38 (3): 484-498, doi:10.3878/j.issn.1006-9895.2013. 13186. He Jianjun, Yu Ye, Liu Na, et al. 2014. Impact of land surface information on WRF's performance in complex terrain area [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38 (3): 484-498.

复杂地形区陆面资料对 WRF 模式模拟性能的影响

何建军^{1,2} 余晔¹ 刘娜^{1,2} 赵素平^{1,2} 陈晋北¹

1 中国科学院寒区旱区环境与工程研究所中国科学院寒旱区陆面过程与气候变化重点实验室,兰州 730000 2 中国科学院大学,北京 100049

摘 要 本文利用 WRF (Weather Research and Forecasting)模式耦合 Noah 陆面过程模式,对比研究了使用不同 精度陆面资料:WRF 默认陆面资料、中国 1 km 分辨率数字高程模型数据集、2006 年 MODIS (MODerate-resolution Imaging Spectroradiometer)土地利用和植被覆盖度资料,WRF 模式对兰州地区冬季气象场模拟结果的差异。结 果表明,近地面气温对陆面资料的精度非常敏感,而风场对陆面资料的精度不敏感,WRF 模式对气温的模拟效 果好于对风场模拟。采用高精度且时效性好的陆面资料后,WRF 模拟的近地面气温准确率提高了 15.8%,模拟的 夜间气温改进幅度较白天大。陆面资料可影响整个边界层温度场分布,准确的陆面资料对提高 WRF 模式模拟近 地面乃至整个边界层气象场至关重要。尽管风速模拟误差较大,但总体上 WRF 模式能较准确地模拟出研究区的 风场演变特征。使用新的陆面资料后 WRF 模拟的风速误差略有减小,风向误差略有增加。干旱半干旱区冬季数 值模拟需要注意土壤湿度初值和模式初始积分时刻对模拟结果的影响。

 关键词
 WRF 模式
 地形
 土地利用
 植被覆盖度
 土壤湿度
 初始场
 模式评估

 文章编号
 1006–9895(2014)03–0484–15
 中图分类号
 P435
 文献标识码
 A

 doi:10.3878/j.issn.1006-9895.2013.13186

 </

Impact of Land Surface Information on WRF's Performance in Complex Terrain Area

HE Jianjun^{1, 2}, YU Ye¹, LIU Na^{1, 2}, ZHAO Suping^{1, 2}, and CHEN Jinbei¹

1 Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000

2 University of Chinese Academy of Sciences, Beijing 100049

Abstract By using the 1-km resolution digital elevation model dataset of China and the moderate-resolution imaging spectroradiometer (MODIS) land use and vegetation fraction data recorded in 2006, this study assesses the impact of land surface information on the performance of the Weather Research and Forecasting (WRF) model for the river valley city of Lanzhou in winter. Results indicated that the near surface temperature was very sensitive to the land surface data resolution, and the near surface wind field was not sensitive to the land surface data resolution. The WRF model reproduced the near surface temperature better than the wind field, and its performance on near surface temperature was clearly affected by land surface information. The hit rate of the WRF simulated near surface temperature to observations increased by 15.8% when model default land surface data were replaced by MODIS derivations and the 1-km resolution

作者简介 何建军,男,1983年出生,博士研究生,主要从事中尺度数值模拟研究。E-mail: hejianjunlzb@gmail.com

通讯作者 余晔, E-mail: yyu@lzb.ac.cn

收稿日期 2013-06-02, 2013-09-10 收修定稿

资助项目 国家重点基础研究发展计划 2013CB956004,中国科学院百人计划项目 290827631,国家自然科学基金 41175009,兰州市科技攻关计划 项目 2009KJLQ

digital elevation model dataset of China; the improvement measured in the night was more obvious than that measured in the day. The impact of surface conditions on temperature extended throughout the boundary layer, which indicates that accurate land surface information is vital for improving near surface and boundary layer simulation of the WRF model. Moreover, the WRF model accurately simulated the evolution of the wind field. The error of WRF modeled wind speed slightly decreased and the error of WRF modeled wind direction slightly increased with updated land surface information. The impact of the initial values of soil moisture and initial integration time on the model's performance is more obvious noticed in winter in arid and semi-arid regions.

Keywords WRF, Complex terrain, Land use, Vegetation fraction, Soil moisture, Initial fields, Model assessment

1 引言

WRF(Weather Research and Forecasting) 模式 是目前全球应用广泛的中小尺度数值模式之一(黄 菁和张强, 2012), 已被广泛应用于城市局地天气 系统、局地环流、区域降水、气候变化和空气污染 等研究和业务预报中(刘树华等, 2009; Chen et al., 2009; Miao et al., 2009; Litta et al., 2012; Feng et al., 2012; 王颖等, 2013)。多年来研究人员通过资料 同化、敏感性试验、参数化方案研究等,对影响 WRF 模式模拟性能的因素进行了研究,发现不同 地区、不同季节和不同天气形势下 WRF 模式的 模拟性能存在一定差异(Fan et al., 2011; 董俊玲 等,2011;张宇等,2013),其模拟效果与模式空 间分辨率、初始条件、模拟时长、参数化方案选取 等多个因子有关(张宇等, 2010; Ruiz et al., 2010; Carvalho et al., 2012),其中陆面过程对近地面及边 界层的模拟结果有很大影响(Hong et al., 2009)。由 陆面资料决定的陆面参数是影响数值模式模拟性 能的重要因子,以往研究很多集中在陆面过程模式 参数化方案和陆面参数影响的研究(Miao et al., 2007; 佟华等, 2009; Chen et al., 2010; 李安泰等, 2012),对陆面资料精度对模拟结果影响的研究相 对较少。

陆面资料是数值模式的重要输入数据,其准确 性直接影响数值模式对陆面过程和大气边界层特 征的模拟。WRF 模式需要的陆面资料信息包括地 形、土地利用、植被覆盖度、土壤类型,这些陆面 信息直接决定了反照率、发射率、粗糙度、叶面积 指数、植被根深、植被阻抗、土壤孔隙率、土壤热 传导率等陆面参数,对模拟结果有重要影响(Hong et al., 2009;何建军等,2012)。WRF 模式默认的最 高精度地形资料是 USGS (United States Geological Survey)制作的 30 s 数据。该数据基于 8 种数据源, 精度没有统一标准。研究发现 USGS 地形资料和 SRTM (Shuttle Radar Topography Mission) 地形资 料有规则的矩形差异区,可能与 USGS 资料多种数 据源有关,利用 SRTM 地形资料可以在一定程度 上提高 WRF 在复杂地形地区的模拟性能(张小 培和银燕, 2013)。WRF 模式包括两种土地利用资 料:一种是由 USGS 制作的 AVHRR (Advanced Very High Resolution Radiometer) 土地利用资料, 该资料获取时间是 1992 年 4 月~1993 年 3 月, 土 地利用按 USGS 分为 24 类;另一种是由波斯顿大 学制作的 MODIS (MODerate-resolution Imaging Spectroradiometer) 土地利用资料, 资料获取时间是 2001 年 1~12 月, 土地利用按 IGBP (International Geosphere-Biosphere Programme) 分为 20 类。这些 土地利用资料在中国地区的精度低于全球平均精 度(宫鹏, 2009),且时效性不好,是制约数值模 式模拟精度的重要因子之一。Sertel et al. (2010) 比较了 ETM+(Landsat Enhanced Thematic Mapper) 土地利用资料和 WRF 默认的 AVHRR 土地利用资 料对 WRF 模式模拟结果的影响,发现 AVHRR 土 地利用资料不能反映土地利用真实情况,利用 ETM+土地利用资料时 WRF 模拟的气象场更加准 确。张朝林等(2007)引入高精度土地利用资料研 究了土地利用对北京暴雨模拟的影响,发现 USGS 土地利用资料存在较大偏差。WRF 模式默认的植被 覆盖度数据来源于 Gutman and Ignatov (1998) 利 用像元二分模型在 AVHRR 1985~1990 年 5 年的 NDVI (Normalized Difference Vegetation Index) 数 据基础上建立的 0.144°全球逐月植被覆盖图,已有 研究发现,该资料在兰州地区偏差较大,是造成 WRF 模式模拟误差偏大的原因之一(何建军等, 2012)。Hong et al. (2009)比较了植被覆盖度和土 壤湿度对 WRF 模拟结果的影响,发现模式模拟结 果对植被覆盖度更加敏感。目前,有关陆面资料改 进对数值模式模拟结果影响的研究主要集中在对 个别陆面资料(如土地利用或植被覆盖度)的改进,

而针对多种陆面信息改进的研究较少。Gao et al. (2008)通过改进黑河流域地形、土地利用、土壤 类型、土壤参数和植被覆盖度资料模拟研究了陆面 资料对近地面气象场模拟精度的影响。Jeong et al. (2012)通过改进土地利用和地形资料模拟研究了 陆面资料对韩国沿海局地环流的影响。WRF 模式 中陆面资料在不同地区的精度差异较大,因此有必 要进一步研究不同地区不同陆面资料对 WRF 模式 模拟结果的影响。

兰州地处青藏高原东北部的黄河峡谷中,周边 地形复杂,土地利用和植被覆盖空间差异大,尽管 WRF 模式能给出兰州地区大气边界层结构及其演 变特征,但模式模拟误差偏大(缪国军等,2007; 王颖等,2010;何建军等,2012;王瑾等,2012)。 提高中尺度数值模式在复杂地形区的模拟性能是 数值预报研究领域的难点之一。本文利用 WRF 模 式耦合 Noah 陆面过程模式,对比分析了采用中国 1 km 分辨率数字高程模型数据集(http://westdc. westgis.ac.cn [2013-03-10])、与研究时段相符的 MODIS 土地利用和植被覆盖度资料以及模式默认 陆面资料对 WRF 模式模拟结果的影响,探讨能否 通过使用高精度的陆面信息资料改进 WRF 模式在 复杂地形区的模拟性能。

2 方法

2.1 模式简介

WRF 模式系统是美国国家大气科学研究中心 NCAR (National Center for Atmospheric Research)、 国家海洋和大气管理局 NOAA (National Oceanic and Atmospheric Administration)等多个部门联合开 发的新一代高分辨率中尺度预报模式和资料同化 系统,分为 ARW (Advanced Research-WRF)和 NMM (Nonhydrostatic Mesoscale Model)两个动力 核。ARW 是可压缩、欧拉、非静力平衡模式,同 时有静力平衡选项,控制方程组为通量形式,采用 地形跟随静压垂直坐标系,水平网格采用 Arakawa-C 交错格式,模式顶层气压为常数。ARW 可用于 10~10⁶ m 空间精度的模拟研究,包括大涡模拟、

斜压波模拟和过山气流模拟等理想化模拟 (Idealized simulation)和物理过程参数化、资料同 化和实时天气预报等的模拟(Real simulation) (Skamarock et al., 2008)。本文使用的是 ARW V3.3 版本。 Noah 陆面模式是在 OSU (Oregon State University)土壤—植被模式基础上发展而来的垂直 一维陆面过程模式,其包含土壤热力过程和水文过 程 (Chen and Dudhia, 2001)。该模式将土壤分为四 层 (0.1 m、0.4 m、1 m和2 m),土壤热通量由各 层土壤温度梯度和土壤热传导率决定。土壤湿度和 土壤类型通过影响土壤热容和热传导率而影响土 壤热力过程。该模式还包含了单层积雪模式,可以 模拟雪的累积、升华和溶化过程以及土壤—雪盖— 大气间的热交换过程。大量研究发现,Noah 陆面模 式能较准确的描述土壤的热力过程和水文过程 (Chen and Dudhia, 2001; Miao et al., 2009; Litta et al., 2012; Feng et al., 2012),因此本文用 WRF 模式 耦合 Noah 陆面模式评估 WRF 模式在兰州地区的模 拟性能。

陆面过程模式需要的大气强迫物理量有风速、气温、近地面气压、比湿、降水和向下辐射通量等,输出的物理量有各层土壤温度和湿度、地表温度、地面反射率、发射率、粗糙度、地表潜热通量和感热通量以及径流量等。土地利用和植被覆盖度是陆面参数的主要影响因子,通过陆面参数影响WRF模式的模拟结果。土地利用类型决定地表反照率(α)、发射率(ε)、粗糙度(z_0)和叶面积指数(L),且随季节变化(通过植被覆盖度反映季节变化特征),如式(1)~(5)所示(何建军等,2012):

$$R_{\rm veg} = \frac{\left(\sigma_{\rm f} - \sigma_{\rm fmin}\right)}{\left(\sigma_{\rm fmax} - \sigma_{\rm fmin}\right)},\tag{1}$$

$$\alpha = \alpha_{\max} - R_{\text{veg}} \left(\alpha_{\max} - \alpha_{\min} \right), \tag{2}$$

$$\varepsilon = \varepsilon_{\min} + R_{\text{veg}} \left(\varepsilon_{\max} - \varepsilon_{\min} \right), \tag{3}$$

$$z_0 = Z_{\min} + R_{\text{veg}} \left(Z_{\max} - Z_{\min} \right), \tag{4}$$

$$L = L_{\min} + R_{\text{veg}} \left(L_{\max} - L_{\min} \right), \qquad (5)$$

式中, $\sigma_{\rm f}$ 为模拟时段的植被覆盖度, $\sigma_{\rm fmin}$ 、 $\alpha_{\rm min}$ 、 $\varepsilon_{\rm min}$ 、 $Z_{\rm min}$ 和 $L_{\rm min}$ 分别是年最小植被覆盖度、反照 率、发射率、粗糙度和叶面积指数, $\sigma_{\rm fmax}$ 、 $\alpha_{\rm max}$ 、 $\varepsilon_{\rm max}$ 、 $Z_{\rm max}$ 和 $L_{\rm max}$ 分别是年最大植被覆盖度、反照 率、发射率、粗糙度和叶面积指数, $R_{\rm veg}$ 是植被覆 盖度比率。

WRF 模式中植被覆盖度为月平均值,受季节变化的影响,植被覆盖度季节变化显著,夏季植被覆盖度高,冬季植被覆盖度低。模拟时段的植被覆盖度是根据月平均值线性插值得到的。植被覆盖度不仅是反照率、发射率、粗糙度和叶面积指数的主要

影响因子,同时还影响土壤表层热传导率和地表不同蒸发类型的比率,如式(6)~(9)所示(Chen and Dudhia, 2001):

$$K_{\rm sur} = K_{\rm l} \exp\left(-2\sigma_{\rm f}\right), \qquad (6)$$

$$E_{\rm dir} = (1 - \sigma_{\rm f}) \times \beta \times E_{\rm p}, \qquad (7)$$

$$E_{\rm c} = \sigma_{\rm f} \times E_{\rm c} \times \left(\frac{W_{\rm c}}{S}\right)^n, \qquad (8)$$

$$E_{\rm t} = \sigma_{\rm f} \times E_{\rm p} \times B_{\rm c} \times \left[1 - \left(\frac{W_{\rm c}}{S}\right)^n \right], \qquad (9)$$

式中, K_1 是裸地的土壤表层热传导率, K_{sur} 是土壤 表层热传导率, 影响地表能量分配, E_{dir} 是地表直 接蒸发, E_c 是植被截留水蒸发, E_t 是植被蒸腾, β 是土壤含水量的函数, E_p 是潜在蒸发量, W_c 是植 被层截留水量, S 是植被层最大截留水量, B_c 是植 被阻抗的函数, 受太阳辐射、水汽压、气温和土壤 湿度的影响, n 是经验参数, 取值 0.5。

2.2 试验设计

模式采用单向四重嵌套, 网格距分别为 27 km、 9 km、3 km 和 1 km。第一重模拟区域覆盖了中国 大部及其周边地区,第二重模拟区域主要包括甘 肃、宁夏、陕西、青海及内蒙部分地区,第三重模 拟区域覆盖了兰州的三县五区及周边地区,第四重 模拟区域覆盖了兰州市区及南北两山大部分地区 (图 1a、b)。模式垂直分为 35 层,模式层顶气压 为 50 hPa。模拟时段选取 2006 年 11 月 30 日~12 月 30 日,分三段积分,每段 11 天,每段前 24 小 时作为模式起转时间,不参与后续分析。模式初始 场和侧边界条件由 NCEP (National Centers for Environmental Prediction)/FNL (Final Analyses)资 料(时间间隔 6 小时,空间分辨率 1°×1°)提供。

参数化方案的选取直接影响 WRF 模式的模拟 结果。张碧辉等(2012)比较了 WRF 模式中 MYJ (Mellor-Yamada-Janjic)和 YSU(Yonsei University) 边界层参数化方案对沈阳冬季大气边界层结构模 拟的影响,发现选用 YSU 方案时模拟的 2 m 气温 准确率高,而风速风向对边界层方案的敏感性不如 温度明显。Jin et al. (2010)比较了四种陆面参数化 方案对美国西部温度和降水模拟的影响,指出 Noah 陆面参数化对冬季气温模拟较准确,但模拟低温偏 高,而四种陆面参数化方案对降水模拟的影响很 小。基于前人的研究结果,在初步比较不同参数化 方案在兰州地区模拟效果的基础上,本研究选用 WSM6 (WRF Single-Moment 6-class) 微物理参数 化方案 (Hong and Lim, 2006); Kain-Fritsch 积云参 数化方案 (第一重和第二重嵌套区域) (Kain, 2004); RRTM (Rapid Radiative Transfer Model) 长 波辐射参数化方案 (Mlawer et al., 1997); Dudhia 短波辐射参数化方案 (Dudhia, 1989); YSU 边界层 参数化方案 (Hong et al., 2006) 和 Noah 陆面过程 参数化方案 (Chen and Dudhia, 2001)。

本研究设计了基准试验(BASE)、改变土地利 用试验(LULC)、改变植被覆盖度试验(VEGF)、 同时改变土地利用和植被覆盖度试验(LUVE)以 及在 LUVE 试验基础上采用新的地形资料试验 (LAST)共计五组数值试验:

(1) BASE 试验:所有输入资料均为模式默认 资料,即 USGS 30 s 地形资料、波斯顿大学制作的 MODIS 土地利用资料(图 1c)和基于 AVHRR NDVI 建立的 0.144°植被覆盖度资料(图 1e);

(2) LULC 试验:用 2006 年 MODIS 土地利用资料(图 1d, MCD12Q1)代替模式默认的 2001年 MODIS 土地利用资料;

 (3) VEGF 试验:用 2006 年 MODIS NDVI 反 演得到的植被覆盖度资料(图 1f, MOD13A3)代
 替模式默认的植被覆盖度资料;

(4) LUVE 试验:同时使用 2006 年 MODIS 土 地利用和植被覆盖度资料;

(5) LAST 试验: 在 LUVE 试验基础上用中国 1 km 分辨率数字高程模型数据集代替模式默认地 形资料。

2.3 模式评估方法

本文选用十个常用统计参数:认同指数(I_A)、 准确率(H_R)、均方根误差(R_{MSE})、相关系数(R)、 标准差(S_{TD})、平均值(M)、平均偏差(M_B)、平 均误差(M_E)、归一化平均偏差(N_{MB})和归一化 平均误差(N_{ME})(Willmott et al., 1985; Seigneur et al., 2000; Carvalho et al., 2012),评估 WRF 模式的 模拟性能(表 1)。第四重嵌套区域水平分辨率为 1 km,基本能反映下垫面的非均匀特征,本文将研究 区内四个自动气象站(图 1b)的观测资料(气温、 风向和风速)与距站点最近格点的模拟结果进行比 较。兰州和永靖站位于山谷中,榆中和皋兰站位于 山坡处。由于风向的特殊性,本文仅用 H_R、R_{MSE} 和 M_E评估风向的模拟效果。H_R计算中所用标准值 (C)是可接受误差的范围,由于 H_R考虑了观测的

图 1 本文模式模拟区域、陆面信息和气象站点分布: (a) WRF 模式模拟区域; (b) 第四重嵌套区域地形和气象站点分布; (c) 模式默认土地利用; (d) 2006 年 MODIS 土地利用; (e) 模式默认植被覆盖度; (f) 2006 年 MODIS 植被覆盖度。土地利用分类: 1 常绿针叶林、2 常绿阔叶林、3 落 叶针叶林、4 落叶阔叶林、5 混合林、6 闭合灌丛、7 稀疏灌丛、8 有林草地、9 草原、热带稀林草地、10 草地, 11 永久性湿地、12 农田、13 城 市、14 农牧交错地、15 冰雪、16 荒漠/裸地、17 水体、18 有林苔原、19 稀林苔原、20 荒原

Fig. 1 Model simulation regions, land surface information, and automatic weather stations: (a) Four nested domains used in Weather Research and Forecasting (WRF) model; (b) topography (color shaded) and the four automatic weather stations (dots) in the innermost domain; (c) moderate-resolution imaging spectroradiometer (MODIS) land use category in 2001 (model default); (d) MODIS land use category in 2006; (e) model default vegetation fraction; (f) MODIS normalized difference vegetation index (NDVI) derived vegetation fraction in 2006. Land use category: 1 evergreen needleleaf forest, 2 evergreen broadleaf forest, 3 deciduous needleleaf forest, 4 deciduous broadleaf forest, 5 mixed forests, 6 closed shrublands, 7 open shrublands, 8 woody savannas, 9 savannas, 10 grasslands, 11 permanent wetlands, 12 croplands, 13 urban and built-up, 14 cropland/natural vegetation mosaic, 15 snow and ice, 16 barren or sparsely vegetated, 17 water, 18 wooded tundra, 19 mixed tundra, 20 barren tundra

不确定性,其结果可以反映模式的总体模拟性能, 其值与所选标准值大小有关,本文取气温、风速和 风向的标准值分别为 2 K、1 m s⁻¹ 和 30°(张碧辉等, 2012)。

1	o	\mathbf{n}
4	х	ч
т	o	

	表1 统计参数计算方法
	Table 1 Definition of statistic parameters
统计参数	公式
认同指数	$I_{\mathrm{A}} = 1 - \sum_{i=1}^{N} \left(F_{i} - O_{i}\right)^{2} / \sum_{i=1}^{N} \left(\left F_{i} - \overline{O}\right + \left O_{i} - \overline{O}\right \right)^{2}$
准确率	$H_{\rm R} = N_{\rm m} \left(\left F_i - O_i \right \leqslant C \right) / N \times 100\%$
均方根误 差	$R_{\rm MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (F_i - O_i)^2}$
相关系数	$R = \frac{1}{N} \sum_{i=1}^{N} \left(F_i - \overline{F} \right) \left(O_i - \overline{O} \right) / \left(\sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(F_i - \overline{F} \right)^2} \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(O_i - \overline{O} \right)^2} \right)$
标准差	$S_{\rm TD} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(x_i - \overline{x}\right)^2}$
平均值	$M = \frac{1}{N} \sum_{i=1}^{N} x_i$
平均偏差	$M_{\rm B} = \frac{1}{N} \sum_{i=1}^{N} \left(F_i - O_i \right)$
平均误差	$M_{\rm E} = \frac{1}{N} \sum_{i=1}^{N} \left F_i - O_i \right $
归一化平 均偏差	$N_{\rm MB} = \sum_{i=1}^{N} \left(F_i - O_i \right) \bigg/ \sum_{i=1}^{N} O_i \times 100\%$
归一化平 均误差	$N_{\rm ME} = \sum_{i=1}^{N} \left F_i - O_i \right / \sum_{i=1}^{N} O_i imes 100\%$

注: F: 模拟值; \overline{F} : 模拟平均值; O: 观测值; \overline{O} : 观测平均值; x: 观测或模拟值; \overline{x} : 观测或模拟平均值; N: 样本数; N_m : 满足条件的样本数; C: 标准值。

3 结果分析

3.1 陆面资料对近地面气温的影响

表 2 是 WRF 模式模拟的近地面气温和风场与 观测值比较的统计结果。BASE 试验土地利用资料 误差较大,兰州站所在格点土地利用是水体(图 1b 和 c,冬季结冰),且兰州城区面积明显偏大,导致

整体统计结果较差, 2 m 气温的 H_R 只有 41.3%。 MODIS 土地利用资料对 WRF 模拟的近地面温度场 影响较大, 2 m 气温的 HR 提高 11.4% (LULC 与 BASE 比较),但模拟的气温与观测值相比偏高。 MODIS 植被覆盖度资料对 WRF 模拟的 2 m 气温也 有较大改进, H_R提高 2.8% (VEGF 与 BASE 比较), 模拟的 2 m 气温的 STD 与观测结果更接近。与土地 利用和植被覆盖度相比,地形资料对 WRF 模拟的 近地面气温影响较小。LAST 试验模拟的 2 m 气温 较 LUVE 试验略有改进, IA 和 HR 分别达到 0.918 和 57.1%, R_{MSE} 减小为 2.5 K。白天近地面气温受 边界层湍流混合和陆面过程共同影响,夜间湍流混 合减弱,近地面气温受陆面过程影响更加显著,与 BASE 试验相比, LAST 试验模拟的白天(12:00~ 16:00,北京时,下同)2m 气温的 R_{MSE} 减小了 0.3 K, 夜间(20:00~06:00)2 m 气温的 R_{MSE} 减小了 1.7 K, 夜间气温改进幅度较白天大。晴天少云时 WRF 模式模拟的白天最高气温出现在 15:00~ 16:00, 最低气温出现在早晨 08:00, 与观测结果基本 一致(图 2)。在 BASE 试验中兰州站所在格点土地 利用是水体 (冬季结冰),导致模拟气温偏低,使 用 2006 年 MODIS 土地利用资料后, 明显改进了模 式对2m气温的模拟(图2a)。改进植被覆盖度资 料后 WRF 模式模拟的昼夜温差增加,模拟的夜间 气温更接近观测值,该结论与何建军等(2012)研 究结果一致。综合而言,近地面气温对陆面资料精 度比较敏感,准确的陆面资料可以显著地改进 WRF 模式对温度的模拟。Emery et al. (2001)在评估不同

表 2 模式模拟的 2 m 气温、10 m 风速和风向的统计结果

Table 2	Performance statistics of modeled 2-m temp	perature, 10-m wind speed and wind direction
	1	

	Table 2 Terrormance statistics of modeled 2 in temperature, to in which speed and which direction												
	试验	$I_{\rm A}$	$H_{\rm R}$	$R_{\rm MSE}$	R	S_{TDF}	S_{TDO}	$M_{ m F}$	$M_{\rm O}$	$M_{\rm B}$	$M_{\rm E}$	$N_{\rm MB}$	$N_{\rm ME}$
2m 气温	BASE	0.787	41.3%	3.8 K	0.64	4 K	4.8 K	268.6 K	268.5 K	0.1 K	3 K	0%	1.1%
	LULC	0.872	52.7%	3 K	0.85	3.7 K	4.8 K	270.2 K	268.5 K	1.7 K	2.3 K	0.6%	0.9%
	VEGF	0.831	44.1%	3.5 K	0.71	4.3 K	4.8 K	267.9 K	268.5 K	-0.6 K	2.8 K	-0.2%	1%
	LUVE	0.912	55.7%	2.6 K	0.86	4.3 K	4.8 K	269.4 K	268.5 K	0.9 K	2.1 K	0.3%	0.8%
	LAST	0.918	57.1%	2.5 K	0.86	4.3 K	4.8 K	269.3 K	268.5 K	0.8 K	2 K	0.3%	0.7%
10 m 风速	BASE	0.423	59.5%	1.5 m s ⁻¹	0.2	1.4 m s^{-1}	0.7 m s^{-1}	1.6 m s ⁻¹	1.3 m s ⁻¹	0.4 m s^{-1}	1.1 m s ⁻¹	28.3%	84.2%
	LULC	0.402	60.1%	1.4 m s^{-1}	0.15	1.3 m s ⁻¹	0.7 m s^{-1}	1.7 m s ⁻¹	1.3 m s ⁻¹	0.4 m s^{-1}	1.1 m s ⁻¹	33.9%	82.3%
	VEGF	0.417	58.9%	1.5 m s ⁻¹	0.2	1.4 m s^{-1}	0.7 m s^{-1}	1.7 m s ⁻¹	1.3 m s ⁻¹	0.5 m s^{-1}	1.1 m s ⁻¹	36%	85.8%
	LUVE	0.394	57.9%	1.5 m s ⁻¹	0.15	1.3 m s ⁻¹	0.7 m s^{-1}	1.8 m s ⁻¹	1.3 m s ⁻¹	0.6 m s ⁻¹	1.1 m s ⁻¹	44.2%	86.1%
	LAST	0.407	60.7%	1.5 m s ⁻¹	0.17	1.3 m s ⁻¹	0.7 m s^{-1}	1.8 m s ⁻¹	1.3 m s ⁻¹	0.5 m s^{-1}	1.1 m s ⁻¹	37.9%	83.4%
10 m 风向	BASE		29.2%	85.6°							69.1°		
	LULC		29.1%	86.4°							70°		
	VEGF		31.8%	84.6°							67.9°		
	LUVE		32%	85°							68°		
	LAST		28.7%	86.5°							70.1°		

Fig. 2 Comparison of modeled and observed 2-m temperature at (a) Lanzhou, (b) Yuzhong, (c) Gaolan, and (d) Yongjing in December 2006

模式不同尺度模拟效果的基础上提出了气温和风速的统计基准值(表3)。LAST试验模拟气温统计结果 I_A和 M_E均满足表3中条件,说明改进陆面资料后 WRF 模式能很好地模拟兰州地区气温变化。

表 3 气温和风速统计基准

 Table 3
 Statistical benchmarks for temperature and wind speed

	各基准统计量								
	$I_{\rm A}$	$M_{ m B}$	$M_{\rm E}$	$R_{\rm MSE}$					
气温	≥0.8	$\leqslant \pm 0.5 \text{ K}$	$\leqslant 2 \text{ K}$						
风速	≥0.6	$\leqslant\!\pm0.5~m~s^{-1}$		$\leqslant 2 \text{ m s}^{-1}$					

模式模拟的夜间气温偏差比白天大,LAST 试验夜间气温明显偏高(兰州站除外),这可能与土壤湿度偏差有关。模式对后10天(12月21~30日) 气温的模拟偏差比前20天(12月1~20日)大,可能与初始时刻地表的积雪状况有关,这将在讨论部分给出深入说明。

下文以皋兰站 21 日模拟结果为例,说明陆 面资料影响温度和地表能量平衡的机理。陆面资 料通过影响陆面参数,而影响地表能量平衡和水 文过程。地表能量平衡由公式(10)和(11)描述:

$$R_{n} = Q_{H} + Q_{L} + G_{0}, \qquad (10)$$

$$R_{n} = (1 - \alpha) \times R_{S} + \varepsilon \times R_{L} - \varepsilon \times \sigma \times T_{s}^{4}, \qquad (11)$$

式中, R_n 是地表净辐射通量, Q_H 是感热通量, Q_L 是潜热通量, G_0 是土壤热通量, R_S 是地表入射短波 辐射, R_L 是地表入射长波辐射, T_s 是地表温度, σ 是斯蒂芬-玻尔兹曼常数。

感热、潜热和土壤热通量由公式(12)~(14) 描述:

$$Q_{\rm H} = \rho \times c_{\rm p} \times C_{\rm h} \times u \times (T_{\rm s} - T_{\rm a}), \qquad (12)$$

$$Q_{\rm L} = \rho C_{\rm e} \times u \times (q_{\rm s} - q_{\rm a}), \qquad (13)$$

$$G_0 = K_{\rm sur} \times (T_{\rm s} - T_1) / (0.5\Delta z), \qquad (14)$$

式中, ρ 是空气密度, c_p 是空气热容, C_h 和 C_e 分别 是热、湿交换系数,u是风速, T_a 和 T_1 分别是近地 面气温和第一层土壤温度, q_s 和 q_a 分别是地表和 近地面比湿, Δz 是第一层土壤深度。

 C_h 和 C_e 由公式 (15) ~ (16) 描述 (Jiménez et al., 2012):

$$C_{\rm h} = k^2 / \{ \left[\ln(z/z_0) - \psi_{\rm m}(z/L) \right] \left[\ln(z/z_0) - \psi_{\rm h}(z/L) \right] \},$$
(15)
$$C_{\rm e} = k^2 / \{ \left[\ln(z/z_0) - \psi_{\rm m}(z/L) \right] \left[\ln(\rho c_{\rm p} k u_* z/c_{\rm s} + z/z_{\rm l}) - \psi_{\rm h}(z/L) \right] \},$$
(16)

式中, *k* 是冯卡门常数, *z* 是高度, *z*₀ 是粗糙度, ψ_m 和 ψ_h 分别是动量和热量的相似函数, *L* 是莫宁-奥 布霍夫长度, *u*_{*}是摩擦速度, *c*_s是有效传热系数。 Noah 陆面模式中假定 *C*_e 和 *C*_h 相等 (Chen and Zhang, 2009)。

表 4 给出了不同敏感性试验中距皋兰站最近 格点的部分陆面信息和陆面参数。与 BASE 试验相 比 LULC 试验土地利用由开放灌丛变成草地,使反 照率和发射率减小,粗糙度增加。VEGF 试验植被 覆盖度比 BASE 试验大,植被覆盖度比率也发生变 化,进而影响其他陆面参数[公式(1)~(9)]。 入射短波辐射和入射长波辐射主要受大气状态和 云量影响。21 日是晴天,不同模拟试验入射短波辐 射差异非常小,由于不同试验大气温度的差异,入 射长波辐射差异较短波辐射差异略大。由于不同试 验地表发射率差异很小,长波辐射和发射率对净辐 射影响很小,反照率变化是影响净辐射变化的主要 因子。开放灌丛变成草地,净辐射最大增幅可达 45.5 W m⁻²(图 3a)。地表能量分配主要受交换系数和表 层土壤热传导率的影响[公式(12)~(14)]。土 地利用变化使地表粗糙度发生变化, 而地表交换系 数与粗糙度有关,地表越粗糙,交换系数越大(Chen and Zhang, 2009)。受此影响 LAST 和 LUVE 试验地 表交换系数比 BASE 试验地表交换系数大(图 4a)。 植被覆盖度影响表层土壤热传导率,其值越大,热 传导率越小[公式(6)],因此 VEGF 和 LAST 试验 中的表层土壤热传导率低于其他试验(图 4b)。交 换系数越大, 地表吸收的能量向大气输送的越快, 感热也越大[公式(12)]; 表层土壤热传导率越大, 地表吸收的能量越容易被传递到深层土壤,土壤热 通量越大[公式(14)],地表温度则降低。受净辐 射以及交换系数、表层土壤热传导率等因子的综合 影响,LAST 试验感热和潜热通量较大,土壤热通 量较小(图 3b-d)。表层土壤热传导率是计算土壤 温度和土壤热通量的重要参数。净辐射差异较小 时,白天表层土壤热传导率越大,地表温度越低, 夜间则相反(图 4b 和图 5b)。当表层土壤热传导率 差异很小时,交换系数成为影响地表温度的重要因 子, 白天交换系数越大, 地表温度越低(如 LAST 试验交换系数较 VEGF 试验大, 地表温度低), 夜 间则相反。这说明与交换系数相比,地表温度对表 层土壤热传导率更敏感。近地面气温不仅受地表能 量平衡影响,还受大气能量水平和垂直输送影响,不 同试验气温变化与地表通量变化趋势不完全相 同。LAST 试验模拟的地表温度和气温白天比 BASE 试验的模拟值高, 夜间比 BASE 试验的模拟值 低,使气温(尤其是夜间气温)模拟误差减小。

491

表 4 皋兰站部分陆面信息和陆面参数

Table 4Land surface information and parameters atGaolan

_	陆面参数							
		地形高	植被覆	植被覆盖			粗糙	
试验	土地利用	度/m	盖度	度比率	反照率	发射率	度/m	
BASE	稀疏灌丛	1676	1%	0	0.3	0.93	0.01	
LULC	草地	1676	1%	0	0.23	0.92	0.1	
VEGF	稀疏灌丛	1676	27.3%	0.19	0.285	0.934	0.019	
LUVE	草地	1675	27.3%	0.19	0.223	0.928	0.104	
LAST	草地	1675	27.3%	0.19	0.223	0.928	0.104	

3.2 陆面资料对近地面风场的影响

与气温相比,风场的变化更加复杂。研究区地 形复杂,风速相对较小,目前中尺度模式对小风速 的模拟还存在较大的误差(Miao et al., 2009),有研 究指出 WRF 模式模拟风速效果好于 MM5 模式(刘 振鑫等, 2012),但模拟风速偏大(张碧辉等, 2012)。

风场对陆面资料精度不敏感,使用新的陆面资料后 WRF 模拟的风速误差略有减小,风向误差略有增加 (表 2)。研究区观测风速平均值是 1.3 m s^{-1} ,而模 式模拟风速偏大,平均风速最小是 1.6 m s^{-1} (BASE),最大达到 1.8 m s^{-1} (LAST 和 LUVE)。 研究区域整体风速较小, H_R 较高,5个敏感性试验 模拟的风速 H_R 均超过50%,但NME超过80%, I_A 也相对较低(表2)。LAST试验模拟风速统计结果 满足 M_B 和 R_{MSE} 的统计基准(表3)。LAST试验模 拟白天气温和风速的 F_{SD} (Fractional Standard Deviation) 分别是 0.5%和 15.8%, 夜间气温和风速 的 Fsb 分别是 0.4%和 14.4%,风速水平不均匀特征 比气温明显。WRF 模拟风场误差较气温大的可能原 因是 WRF 低估了城市对风速的摩擦减弱作用(张 碧辉等, 2012); WRF 模式对低层风速模拟存在系 统性偏差 (Shimada et al., 2011); 与气温相比, 复 杂地形对风场 (尤其是风向)的影响大,风场水平 不均匀特征更显著。图 6 是 LAST 试验和观测的 10 m 风速和风向频率分布。从图中可以看出 WRF 模 拟的风速偏大,模拟的风向和风速频率分布与观测 基本一致, 说明 WRF 模式能较准确地模拟研究区 风场演变特征。通过对比风场模拟值与观测值在各 站点统计参数的差异,发现山坡处风场模拟效果要 好于山谷处, LAST 试验在皋兰站模拟的风向 HR 达到 48.7%。综合而言,不同陆面资料引起风场统 计参数的变化较小(表2),陆面资料的精度对风场 的影响不明显。如何改进复杂地形区风场模拟,需

要从边界层参数化和近地面参数化等方面进一步研究。

493

3.3 陆面资料对气象场分布的影响

陆面资料通过地表能量平衡和水文过程影 响近地面气象场,进而影响边界层结构和局地环 流。相关性分析可以定量描述不同试验模拟结果的 关系,同时能反映重要的物理过程(Gilliam et al., 2006; Jeong et al., 2012)。通过计算两组试验模拟的 第四重嵌套区域(图 1a) 白天和夜间平均气象场 的相关系数,可以确定不同土地利用、植被覆盖度 和地形对气象场的影响程度,相关系数越低,说明 不同试验模拟结果差异越明显。图7是使用不同陆 面资料模拟的位温和水汽混合比相关性分析,纵坐 标是距离地表的高度。陆面资料精度对气温分布影 响明显(图 7a),从相关系数可以看出土地利用对 近地面气温分布影响最大。植被覆盖度对温度场影 响高度可达 500 m 左右,土地利用和地形对温度场

Fig. 6 Occurrence frequency of 10-m (a) wind speed and (b) wind direction for LAST simulation and observation

图 7 使用不同陆面资料模拟的(a)位温和(b)水汽混合比相关性分析。LU是 BASE 和 LULC 相关性分析, VG 是 BASE 和 VEGF 相关性分析, TR 是 LUVE 和 LAST 相关性分析; 下标 D 表示白天(12:00~16:00),下标 N 表示夜间(20:00~06:00)

Fig. 7 The correlation analysis of the (a) potential temperature and (b) water vapor mixing ratio simulated using different land surface information data. LU: the correlation between BASE and LULC; VG: the correlation between BASE and VEGF; TR: the correlation between LUVE and LAST; subscript D: daytime average (1200–1600 LST); subscript N: nighttime average (2000–0600 LST)

影响高度在 300 m 左右。兰州地区冬季边界层高度 较低,白天最大高度在 500 m 左右,陆面资料精度 可影响整个边界层温度场分布,这也说明准确的陆 面资料对提高 WRF 模式模拟近地面乃至整个边界 层气象场至关重要。白天由于湍流混合较强,陆面 资料精度(土地利用除外)对温度场的影响不如夜 间明显。由于两种土地利用资料差异较大(图 1c、 d),使地表反照率等陆面参数差异较大,对白天温 度场影响大于夜间。陆面资料对水汽混合比分布的 影响整体上弱于对温度场的影响。LULC 和 BASE 试验水陆分界存在明显差异(图 1c、d),导致 WRF 模拟的水汽分布差异较大(图 7b)。与温度和水汽 混合比相比,不同陆面资料对风速分布的影响更小 (图略)。

3.4 模式格点精度对近地面气象场的影响

模式格点陆面信息反映该区域主要陆面信息 (如土地利用和土壤类型)或平均陆面信息(如地 形和植被覆盖度),提高模式水平分辨率可以更准 确的描述陆面信息。表5给出了四个观测点实际海 拔高度和 LAST 试验第三重嵌套区域(D03)和第 四重嵌套区域(D04)中距离观测点最近格点的地 形高度,高分辨率下模式格点与观测站点地形更接 近。本文比较了 LAST 试验1 km (D04)和3 km

(D03)水平分辨率模拟的近地面气象场的差异(表 6)。由于1 km 水平分辨率可以更准确的描述陆面 信息,模拟的2m气温、10m风速和风向的 H_R总 体上高于3 km 水平分辨率模式模拟结果,说明精

确地陆面信息可以提高 WRF 模式模拟性能,提高 模式水平分辨率可以改进模式模拟结果, 与吕光辉 等(2009)的研究结果一致。但模式水平分辨率受 诸多因子限制,如高分辨率下物理过程参数化方法 的适用性有待进一步研究,模式动力框架限制了水 平分辨率的进一步提高。随着陆面资料精度逐步提 高,次网格参数化是进一步提高 WRF 模拟性能的 方法之一。永靖站 3 km 分辨率模拟的 10 m 风场优 于1 km 分辨率的模拟结果(表 6),是由于格点代 表性误差造成的。利用站点观测资料评估高分辨率 模式模拟性能时,一般将距离站点最近的格点的模 拟值与观测值进行比较,但格点的陆面信息与观测 点的陆面信息可能会有较大偏差(主要有以下几种 情形:由于格点地形高度是区域平均值,在复杂地 形区格点地形高度与站点地形高度易出现较大差 异;迎风坡与背风坡差异;山谷与山顶位置差异; 土地利用方式差异;土壤类型差异等),这导致最 近格点的模拟值与观测值差异较大,影响模式评估

表 5 四个观测点及 LAST 试验 D03 和 D04 距离观测点最 近格点的地形高度(m)

Table 5	Elevations	of	observation	stations	and	the	nearest
grids to o	bservation s	stat	ions in D03 a	nd D04 o	of LA	ST 1	test (m)

-			
	观测点海拔	D03 中格点	D04 中格点
观测点	高度/m	地形高度/m	地形高度/m
兰州	1518	1538	1502
榆中	1875	1854	1871
皋兰	1670	1688	1675
永靖	1648	1764	1721

表 6 不同水平分辨率下 (D03 和 D04) LAST 试验模拟近 地面物理量的 $H_{\rm R}$

Table 6 $H_{\rm R}$ of near-surface meteorology elements simulated in expt LAST at different horizontal resolutions (D03 and D04)

			$H_{\rm R}$	
水平分辨率	观测点	2 m 气温	10 m 风速	10 m 风向
D03	兰州	47.3%	64.2%	15.7%
	榆中	59.0%	59.0%	24.8%
	皋兰	40.1%	41.8%	35.6%
	永靖	55.7%	61.4%	34.2%
D04	兰州	61.1%	70.9%	15.7%
	榆中	62.3%	60.4%	29.0%
	皋兰	44.4%	56.1%	48.7%
	永靖	60.6%	53.6%	19.7%

结果,因此完善模式模拟值与站点观测值比较的方 法也非常重要。格点代表性误差问题非本文研究重 点,作者将在其它论文中详细分析该问题。

4 讨论

数值模式模拟结果对土壤湿度非常敏感(陈海山和周晶,2013)。LAST 试验改进了 WRF 模式对近地面气温的模拟,但模拟的夜间气温仍偏高较多(图 2),特别是 12 月下旬,这一方面与土壤湿度的初值有关,另一方面与模式初始时刻地面积雪不

准确有关。NCEP/FNL资料空间分辨率低(1°×1°), 插值后得到的第四重嵌套区域第一层(深 10 cm) 土壤湿度平均值是 24.6%, 而位于第四重嵌套区域 东南部的 SACOL (Semi-Arid Climate and Environment Observatory of Lanzhou University) 站 观测的 2006 年 12 月 10 cm 土壤湿度是 8%, 冬季 平均土壤湿度是 10% (Guan et al., 2009), 较大的 土壤湿度误差影响了模式的模拟结果。在 LAST 试 验基础上将第四重嵌套区域 10 cm 深度土壤湿度设 为 8%,保持其空间分布不变,模拟研究了土壤湿 度对近地面气温的影响。图 8a 是 LAST 试验和在 LAST 试验基础上修改土壤湿度后模拟的皋兰站 2 m气温与观测值的比较。由于土壤湿度减小后土壤 热容和热传导率随之减小,同时白天地表蒸发减 小,感热通量增加,模式模拟的白天气温升高,夜 间气温降低,模拟的2m气温的H_R由44%提高到 58%, R_{MSE}减小 0.5 K。在半干旱区, WRF 模式模 拟的气温对土壤湿度非常敏感,准确的土壤湿度可 以提高近地面气温的模拟精度。

Wang et al. (2010) 观测发现,地表有积雪时 反照率增加,最大反照率可达 0.9。本文研究时段 研究区有积雪,且积雪维持时间较长,由于 NCEP/FNL资料空间分辨率低,造成地表积雪初值

图 8 皋兰站模拟的 2 m 气温与观测值的比较: (a) 修改土壤湿度前后模拟; (b) 连续和分段积分

Fig. 8 Comparison of modeled 2 m temperature with observations at Gaolan: (a) From LAST and LAST with modified soil moisture; (b) from segmented and continuous simulations

误差较大。与观测值相比,WRF模式模拟的12月 21~30日2m气温偏差比前20天的大(图2)。为 了了解造成这一误差的原因,这里将WRF连续积 分21天(12月10~30日,陆面资料与LAST试验 相同),将得到的后10天的2m气温、10m风速和 风向与观测值进行比较。与LAST试验相比,采用 连续积分后,气温、风速和风向的*H*_R分别提高了 8.2%、0.1%和1.4%,*R*_{MSE}分别减小0.5K、0.1ms⁻¹ 和1.6°。图 8b 是连续积分和分段积分得到的皋兰 站2m气温与观测值的比较,分段模拟时(12月 20~30日),初始时刻地表没有积雪,与观测事实 不符,模拟的2m气温明显偏高。采用连续积分后, 地表出现积雪,地表反照率增加,模拟的2m气温 有所降低,改进了气温的模拟,说明合理选择模式 初始积分时刻对模式模拟结果也有较大影响。

5 结论

WRF 模式模拟性能受多方面因子的影响,其中陆面过程是重要的影响因子之一。本文采用高精度陆面资料(中国1km分辨率数字高程模型数据集、2006年 MODIS土地利用和植被覆盖度资料),结合近地面观测资料,评估了陆面输入资料对WRF 模式模拟复杂地形下垫面冬季气象场性能的影响,得到以下结论:

(1) 气温对陆面资料精度非常敏感,采用高精 度陆面资料后,WRF 模式模拟的近地面气温误差显 著减小,准确率提高了 15.8%,模拟夜间气温改进 幅度较白天大。采用 2006 年 MODIS 土地利用资料 对气温的改进最明显,基于 MODIS/NDVI 的植被 覆盖度资料影响次之,地形资料对 WRF 模拟的温 度场影响较小。陆面资料可以影响整个边界层温度 场分布,准确的陆面资料对提高 WRF 模式对近地 面乃至整个边界层气象场的模拟能力至关重要。干 旱半干旱区冬季数值模拟需要注意土壤湿度初值 和模式初始积分时刻对模拟结果的影响。

(2) WRF 模式对小风速的模拟误差较大,研究 区平均风速较小,WRF 模拟的风速偏大。WRF 模 式能较好地模拟山谷风环流,对山坡处风场的模拟 要好于山谷处,风向的准确率最大值超过 50%。风 场对陆面资料的精度不敏感,使用新的陆面资料 后,WRF 模拟的风速误差略有减小,风向误差略有 增加。

综合而言, WRF 模式对近地面温度场的模拟

好于对风场的模拟。在干旱半干旱区冬季,采用高精度陆面资料后,WRF模拟的近地面气温准确率提高、误差减小,特别是夜间气温。尽管风速模拟误差较大,WRF模式能较准确地模拟研究区风场的演变特征。如何改进数值模式对复杂地形区风场的模拟,特别是静风频率较高的冬季,还需要进一步的研究。需要指出,不同地区不同季节高精度陆面资料对中尺度模式模拟结果的影响存在差异,有必要综合评估中国地区采用高精度陆面资料对WRF模式模拟性能的影响,为认识WRF模式的模拟性能及提高业务预报水平提供指导。

致谢 地形数据来源于国家自然科学基金委员会"中国西部环境与生态科学数据中心"(http://westdc.westgis.ac.cn [2013-03-10]), 感谢两位 审稿专家提出的宝贵建议。

参考文献(References)

- Carvalho D, Rocha A, Gómez-Gesteira M, et al. 2012. A sensitivity study of the WRF model in wind simulation for an area of high wind energy [J]. Environmental Modelling & Software, 33: 23–34.
- Chen F, Dudhia J. 2001. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity [J]. Mon. Wea. Rev., 129 (4): 569–585.
- Chen F, Zhang Y. 2009. On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients [J]. Geophys. Res. Lett., 36 (10): L10404, doi:10.1029/2009GL037980.
- 陈海山,周晶. 2013. 土壤湿度年际变化对中国区域极端气候事件模拟 的影响研究 II. 敏感性试验分析 [J]. 大气科学, 37 (1): 1–13. Chen H S, Zhou J. 2013. Impact of interannual soil moisture anomaly on simulation of extreme climate events in China. Part II: Sensitivity experiment analysis [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37 (1): 1–13.
- Chen Y, Zhao C S, Zhang Q, et al. 2009. Aircraft study of mountain chimney effect of Beijing, China [J]. Journal of Geophysical Research, 114 (D8): D08306, doi:10.1029/2008JD010610.
- Chen Y Y, Yang K, Zhou D G, et al. 2010. Improving the Noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length [J]. J. Hydrometeor., 11 (4): 995–1006.
- 董俊玲, 韩志伟, 张仁健, 等. 2011. WRF 模式对中国城市和半干旱地区 气象要素的模拟检验和对比分析 [J]. 气象科学, 31 (4): 484-492. Dong J L, Han Z W, Zhang R J, et al. 2011. Evaluation and analysis of WRF-simulated meteorological variables in the urban and semi-arid areas of China [J]. Journal of the Meteorological Sciences (in Chinese), 31 (4): 484-492.
- Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model [J]. Journal of Atmospheric Sciences, 46 (20): 3077–3107.
- Emery C A, Tai E, Yarwood G. 2001. Enhanced meteorological modeling and performance evaluation for two Texas ozone episodes, Project Report

Prepared for the Texas Natural Resource Conservation Commission [R]. Texas: the Texas Natural Resource Conservation Commission.

- Fan S J, Fan Q, Yu W, et al. 2011. Atmospheric boundary layer characteristics over the Pearl River Delta, China, during the summer of 2006: Measurement and model results [J]. Atmos. Chem. Phys., 11 (13): 6297–6310.
- Feng J M, Wang Y L, Ma Z G, et al. 2012. Simulating the regional impacts of urbanization and anthropogenic heat release on climate across China [J]. J. Climate, 25 (20): 7187–7203.
- Gao Y H, Chen F, Barlage M, et al. 2008. Enhancement of land surface information and its impact on atmospheric modeling in the Heihe River basin, China [J]. J. Geophys. Res., 113 (D20): D20S90, doi:10.1029/ 2008JD010359.
- Gilliam R C, Hogrefe C, Rao S T. 2006. New methods for evaluating meteorological models used in air quality applications [J]. Atmos. Environ., 40 (26): 5073–5086.
- 宫鹏. 2009. 基于全球通量观测站的全球土地覆盖图精度检验 [J]. 自然 科学进展, 19 (7): 754–759. Gong P. 2009. Accuracy assessment of global land cover datasets based on global field stations [J]. Progress in Natural Science (in Chinese), 19 (7): 754–759.
- Guan X D, Huang J P, Guo N, et al. 2009. Variability of soil moisture and its relationship with surface albedo and soil thermal parameters over the Loess Plateau [J]. Adv. Atmos. Sci., 26 (4): 692–700.
- Gutman G, Ignatov A. 1998. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models [J]. Int. J. Remote Sens., 19 (8): 1533–1543.
- 何建军, 余晔, 陈晋北, 等. 2012. 植被覆盖度对兰州地区气象场影响的 模拟研究 [J]. 高原气象, 31 (6): 1611–1621. He J J, Yu Y, Chen J B, et al. 2012. Simulation study of the influence of vegetation fraction on meteorological condition in Lanzhou using WRF model [J]. Plateau Meteorology (in Chinese), 31 (6): 1611–1621.
- Hong S, Lakshmi V, Small E E, et al. 2009. Effects of vegetation and soil moisture on the simulated land surface processes from the coupled WRF/Noah model [J]. J. Geophys. Res., 114 (D18): D18118, doi: 10.1029/2008JD011249.
- Hong S Y, Lim J O J. 2006. The WRF Single-Moment 6-Class Microphysics Scheme [J]. Journal of the Korean Meteorological Society, 42 (2): 129–151.
- Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes [J]. Mon. Wea. Rev., 134 (9): 2318–2341.
- 黄菁, 张强. 2012. 中尺度大气数值模拟及其进展 [J]. 干旱区研究, 29 (2): 273–283. Huang J, Zhang Q. 2012. Mesoscale atmospheric numerical simulation and its progress [J]. Arid Zone Research (in Chinese), 29 (2): 273–283.
- Jeong J H, Song S K, Lee H W, et al. 2012. Effects of high-resolution land cover and topography on local circulations in two different coastal regions of Korea: A numerical modeling study [J]. Meteor. Atmos. Phys., 118 (1–2): 1–20.
- Jiménez P A, Dudhia J, González-Rouco J F, et al. 2012. A revised scheme for the WRF surface layer formulation [J]. Mon. Wea. Rev., 140 (3): 898–918.

- Jin J M, Miller N L, Schlegel N. 2010. Sensitivity study of four land surface schemes in the WRF model [J]. Advances in Meteorology, 2010, Article ID 167436, doi:10.1155/2010/167436.
- Kain J S. 2004. The Kain-Fritsch convective parameterization: An update [J]. Journal of Applied Meteorology and Climatology, 43 (1): 170-181.
- 李安泰,何宏让,张云. 2012. WRF 模式陆面参数扰动对一次西北暴雨 影响的数值模拟 [J]. 高原气象,31 (1): 65–75. Li A T, He H R, Zhang Y. 2012. Numerical simulation of effect of WRF land surface parameter disturbance on a rainstorm in Northwest China [J]. Plateau Meteorology (in Chinese), 31 (1): 65–75.
- Litta A J, Mohanty U C, Das S, et al. 2012. Numerical simulation of severe local storms over East India using WRF-NMM mesoscale model [J]. Atmos. Res., 116: 161–184.
- 刘树华, 刘振鑫, 李炬, 等. 2009. 京津冀地区大气局地环流耦合效应的 数值模拟 [J]. 中国科学, 39 (1): 88–98. Liu S H, Liu Z X, Li J, et al. 2009. The coupling effect of local atmospheric circulations over the area of Beijing, Tianjin and Hebei Province [J]. Sci. China Earth Sci. (in Chinese), 39 (1): 88–98.
- 刘振鑫, 刘树华, 胡非, 等. 2012. MM5 和 WRF 对北京地区低层大气局 地环流模拟能力的对比研究 [J]. 中国科学, 42 (2): 301–312. Liu Z X, Liu S H, Hu F, et al. 2012. A comparison study of the simulation accuracy between WRF and MM5 in simulating local atmospheric circulations over Greater Beijing [J]. Sci. China Earth Sci. (in Chinese), 42 (2): 301–312.
- 吕光辉, 于恩涛,向伟玲,等. 2009. WRF 模式分辨率对新疆异常降雨天 气要素模拟的影响 [J]. 气候与环境研究, 14 (1): 85–96. Lü G H, Yu E T, Xiang W L, et al. 2009. Effect of horizontal and vertical resolution on WRF simulation of the unusual rainfall event in Xinjiang [J]. Climate and Environmental Research (in Chinese), 14 (1): 85–96.
- Miao J F, Chen D, Brone K. 2007. Evaluation and comparison of Noah and Pleim-Xiu land surface models in MM5 using GÖTE2001 data: Spatial and temporal variations in near-surface air temperature [J]. J. Appl. Meteor. Climatol., 46 (10): 1587–1605.
- 缪国军,张镭,舒红. 2007. 利用 WRF 对兰州冬季大气边界层的数值模 拟 [J]. 气象科技, 27 (2): 169–175. Miao G J, Zhang L, Shu H. 2007. The numerical simulation of the wind speed and temperature field in winter atmospheric boundary layer in Lanzhou by using WRF [J]. Scientia Meteorologica Sinica (in Chinese), 27 (2): 169–175.
- Miao S G, Chen F, Lemone M A, et al. 2009. An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing [J]. J. Appl. Meteor. Climat., 48 (3): 484–501.
- Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for longwave [J]. J. Geophys. Res., 102 (D14): 16663-16682.
- Ruiz J J, Saulo C, Nogues-Paegle J. 2010. WRF model sensitivity to choice of parameterization over South America: Validation against surface variables [J]. Mon. Wea. Rev., 138 (8): 3342–3355.
- Seigneur C, Pun B, Pai P, et al. 2000. Guidance for the performance evaluation of three-dimensional air quality modeling systems for particulate matter and visibility [J]. Journal of the Waste Management Association, 50 (4): 588–599.
- Sertel E, Robock A, Ormeci C. 2010. Impacts of land cover data quality on

regional climate simulations [J]. Int. J. Climatol., 30 (13): 1942-1953.

- Shimada S, Ohsawa T, Chikaoka S, et al. 2011. Accuracy of the wind speed profile in the lower PBL as simulated by the WRF model [J]. Sola, 7: 109–112.
- Skamarock W C, Klemp J B, Dudhia J, et al. 2008. A Description of the Advanced Research WRF Version 3 [R]. NCAR Tech. Note NCAR/TN-475+STR.
- 佟华,刘辉志,赵琳娜. 2009. 半干旱区陆面模式参数对水分循环的敏 感性研究 [J]. 气候与环境研究, 14 (6): 621–630. Tong H, Liu H Z, Zhao L N. 2009. Sensitivity research of parameters to water cycle in land surface model in semi-arid area [J]. Climatic and Environment Research (in Chinese), 14 (6): 621–630.
- Wang G Y, Huang J P, Guo W D, et al. 2010. Observation analysis of land–atmosphere interactions over the Loess Plateau of Northwest China [J]. J. Geophys. Res., 115 (D7): D00K17, doi:10.1029/2009JD013372.
- 王瑾,张镭,王腾蛟,等. 2012. 兰州附近山谷典型日环流特征对比分析 [J]. 干旱气象, 30 (2): 169–177. Wang J, Zhang L, Wang T J, et al. 2012 Comparative analysis of mountain-valley wind circulation characteristics over semi-arid areas nearby Lanzhou [J]. Journal of Arid Meteorology (in Chinese), 30 (2): 169–177.
- 王颖,张镭,胡菊,等. 2010. WRF 模式对山谷城市边界层模拟能力的检验及地面气象特征分析 [J]. 高原气象, 29 (6): 1397–1407. Wang Y, Zhang L, Hu J, et al. 2010. Verification of WRF simulation capacity on PBL characteristic and analysis of surface meteorological characteristic over complex terrain [J]. Plateau Meteorology (in Chinese), 29 (6): 1397–1407.
- 王颖,隆霄,余晔,等. 2013. 复杂地形上气象场对空气质量数值模拟结 果影响的研究 [J]. 大气科学, 37 (1): 14–22. Wang Y, Long X, Yu Y, et al. 2013. The impacts of various meteorological conditions on air quality modeling results over complex terrain [J]. Chinese Journal of

Atmospheric Sciences (in Chinese), 37 (1): 14-22.

- Willmott C J, Ackleson S G, Davis R E, et al. 1985. Statistics for the evaluation and comparison of models [J]. J. Geophys. Res., 90 (NC5): 8995–9005.
- 张碧辉, 刘树华, Liu H P, 等. 2012. MYJ 和 YSU 方案对 WRF 边界层气 象要素模拟的影响 [J]. 地球物理学报, 55 (7): 2239–2248. Zhang B H, Liu S H, Liu H P, et al. 2012. The effect of MYJ and YSU schemes on the simulation of boundary layer meteorological factors of WRF [J]. Chinese Journal of Geophysics (in Chinese), 55 (7): 2239–2248.
- 张朝林, 苗世光, 李青春, 等. 2007. 北京精细下垫面信息引入对暴雨模 拟的影响 [J]. 地球物理学报, 50 (5): 1373–1382. Zhang C L, Miao S G, Li Q C, et al. 2007. Impacts of fine-resolution land use information of Beijing on a summer severe rainfall simulation [J]. Chinese Journal of Geophysics (in Chinese), 50 (5): 1373–1382.
- 张小培,银燕. 2013. 复杂地形地区 WRF 模式四种边界层参数化方案的 评估 [J]. 大气科学学报, 36 (1): 68–76. Zhang X P, Yin Y. 2013. Evaluation of the four PBL schemes in WRF model over complex topographic areas [J]. Transactions of Atmospheric Sciences (in Chinese), 36 (1): 68–76.
- 张宇, 郭振海, 张文煜, 等. 2010. 中尺度模式不同分辨率下大气多尺度 特征模拟能力分析 [J]. 大气科学, 34 (3): 653–660. Zhang Y, Guo Z H, Zhang W Y, et al. 2010. Analysis of mesoscale numerical model's ability of atmospheric multi-scale characteristics simulation in variety resolution [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34 (3): 653–660.
- 张宇, 郭振海, 林一弊, 等. 2013. 中尺度模式风电场风速短期预报能力 研究 [J]. 大气科学, 37(4): 955–962. Zhang Y, Guo Z H, Lin Y H, et al. 2013. Predictive capacity of mesoscale model for short-range wind speed forecasting at wind power farm [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37 (4): 955–962.