张弛, 王咏青, 沈新勇, 等. 2019. 东北冷涡背景下飑线发展机制的理论分析和数值研究 [J]. 大气科学, 43 (2): 361-371. Zhang Chi, Wang Yongqing, Shen Xinyong, et al. 2019. Theoretical analysis and numerical study on the development mechanism of squall line in the Northeast cold vortex [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43 (2): 361-371, doi:10.3878/j.issn.1006-9895.1806.18101.

东北冷涡背景下飑线发展机制的理论分析和 数值研究

张弛¹ 王咏青¹ 沈新勇^{1,2} 李小凡³

1 南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心,南京 210044
2 中国科学院大气物理研究所云降水物理与强风暴重点实验室,北京 100029
3 浙江大学地球科学学院,杭州 310027

摘 要 在 CM1 模式动力框架基础上,推导出结合尺度分析得到的强对流天气发生发展的必要条件,并选择典型东北冷涡背景下的飑线过程,以 200 m 的高精度水平网格距进行数值模拟和对比试验,验证理论结果的同时得到东北冷涡飑线形成的条件。通过模式数据做尺度分析,得到飑线系统中平流、对流以及沉降作用对水汽变量的影响最大,飑线的出现需要水汽分布和上升气流的配合,水汽相变影响次之,湍流作用相对较小。东北冷涡不同区域的模拟验证了理论分析的结果,冷涡西南侧受冷涡引导南下的冷空气影响,配合低层暖平流出现不稳定层结,结合有横向梯度的湿度场,可以形成飑线。在上升气流强的区域受水汽浓度和温度的影响在中高层容易形成强的雷达回波,两侧和积分一段时间后的低层受沉降作用的影响也会出现强的雷达回波。

关键词 CM1 云模式 东北冷涡 飑线 发展机制

文章编号1006-9895(2019)02-0361-11中图分类号P445文献标识码Adoi:10.3878/j.issn.1006-9895.1806.18101

Theoretical Analysis and Numerical Study on the Development Mechanism of Squall Line in the Northeast Cold Vortex

ZHANG Chi¹, WANG Yongqing¹, SHEN Xinyong^{1, 2}, and LI Xiaofan³

1 Key Laboratory of Meteorological Disaster, Ministry of Education / Joint International Research Laboratory of Climate and Environment Change / Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044

- 2 Key Laboratory of Cloud–Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
- 3 School of Earth Sciences, Zhejiang University, Hangzhou 310027

Abstract Based on the dynamic frame of CM1 model, the necessary conditions for the occurrence and development of severe convective weathers are obtained by theoretical derivation and scale analysis. A typical squall line process under the background of Northeast Cold Vortex (NECV) is selected, and the numerical simulation and comparative test are

收稿日期 2018-01-03; 网络预出版日期 2018-06-19

作者简介 张弛, 男, 1994年出生, 硕士研究生, 主要从事中小尺度气象学研究。E-mail: zc4554zc@163.com

通讯作者 王咏青, E-mail: yq.wang@163.com

资助项目 国家自然科学基金项目 41530427、41790471、41875070、41775040,北极阁开放研究基金一南京大气科学联合研究中心 NJCAR2018MS02, 国家重点基础研究发展计划 2015CB453201,江苏省 "333 高层次人才培养工程"项目

Funded by National Natural Science Foundation of China (Grants 41530427, 41790471, 41875070, 41775040), the Beijige Open Research Fund for Nanjing Joint Center of Atmospheric Research (Grant NJCAR2018MS02), National Key Basic Research and Development Project of China (Grant 2015CB453201), "333 High-Level Talent Development Program" in Jiangsu Province

carried out with a high precision horizontal grid distance of 200 m. The theoretical results are verified and the conditions for the formation of a squall line under the NECV are obtained. Through the scale analysis of model data, it is found that advection, convection and hydrometeor precipitation have the greatest influence on the change of moisture variables in the squall line system, the influence of water vapor phase change is the secondary, and the turbulence effect is relatively small. Thereby, the occurrence of the squall line needs the cooperation of water vapor distribution and the ascending air flow. Simulations over different regions of NECV have verified the results of theoretical analysis. In the southwestern side of the NECV, upper levels are affected by cold air, which, when combined with warm advection in lower levels, leads to the formation of unstable stratification. The unstable stratification and transverse gradient pattern of humidity field can jointly lead to the formation of the squall line. Under the influence of water vapor concentration and temperature, strong radar echoes can easily form in the middle and upper levels with strong updrafts. Under the influence of precipitation, strong radar echoes can also be found in lower levels.

Keywords CM1 cloud mode, Northeast Cold Vortex (NECV), Squall line, Development mechanism

1 引言

东北冷涡是指在我国东北附近地区具有一定 强度,能维持3到4天,有深厚冷空气的高空气旋 性涡旋(王培等,2012;王婉昭等,2017)。在东北 冷涡移动过程中会引导冷空气南下从而在冷涡西 侧和南侧诱发强对流天气,特别是在冷涡南侧,当 中高层的冷平流和低层的切变线结合时,更容易产 生激烈的强对流天气(李爽等,2016;刘刚等, 2017)。目前针对东北冷涡在东北地区引发强对流 天气的研究很多,但冷涡引导冷空气南下引发中纬 度地区强对流天气的研究相对较少,这类强对流天 气具有尺度小、突发性强的特点(崔慧慧和冯慧敏, 2017)。

飑线是地球上最常见的强对流系统之一,由多 个不同阶段的雷暴单体侧向排列而成,其水平尺度 为150到300km,时间尺度为4到18h(张建军等, 2016; 李少英等, 2017)。飑线过境常伴有强降水、 大风、冰雹、龙卷等剧烈天气现象,是一种破坏性 极强的中β尺度对流系统(张哲等, 2016; 康兆萍 等, 2017)。组织结构完整的飑线一般可以看到明 显的弓状回波结构。飑线的组织结构、演变及形成 机理研究一直是中尺度气象领域里一个非常重要 的课题。不同类型天气尺度系统背景下的飑线也是 人们研究的重点,飑线和孤立超级单体的合并 (French and Parker, 2014), 冷锋和飑线 (Stoelinga et al., 2003; Stechman, 2016), 热带气 旋和飑线 (Meng and Zhang, 2012; 刘佳等, 2013) 都有人进行了研究,但通过数值模拟方法研究东北 冷涡下飑线发生发展机制的很少。

CM1 模式是Bryan 开发的一个三维非静力理想

化数值模式,在水汽等要素的演变上有针对性的数 学物理推导,在水汽方程中额外考虑了沉降作用的 影响。作为一个理想化的数值模式, CM1 模式仅仅 需要少量的探空资料就可以对特定的初始场进行 高精度的数值模拟,甚至可以自己制作理想的初始 环境条件进行模拟,对中小尺度大气运动的模拟及 其敏感性试验极为有利。CM1 模式在中小尺度天气 过程模拟上的优秀表现,使得很多人用它研究各种 中小尺度天气过程,并取得了不错的成果。近两年 中,通过使用 CM1 模式, Parker (2017) 发现低层 上升气流对涡旋的抬升和拉伸决定了龙卷的形成; Diao et al. (2017)研究了飑线模拟过程中的冰成核 参数方案,并提出了一种模式资料与飞机观测对比 的方案; Dahl (2017) 发现切变涡度对超级单体风 暴中上升气流旋转的重要影响; Bryan et al. (2017) 提出了一种通过加入风的径向梯度来模拟热带气 旋边界层风速的方案; Dennis and Kumjian (2017) 发现低层风切变通过影响潜热进一步影响飑线的 发展。本文也采用 CM1 模式增加对东北冷涡背景 下飑线发展机制的认识。

本文对 CM1 模式控制方程进行数学推导,从 理论上研究了强对流形成的条件。为进一步得到影 响飑线产生的主导因素,选取典型东北冷涡背景下 的飑线过程进行模拟,以模拟得到的数据对水汽方 程进行尺度分析,研究方程各项对飑线发展的贡 献。由于东北冷涡不同区域的温度、湿度以及探空 资料不同,通过对东北冷涡不同区域的对比模拟验 证理论推导结果,同时得到东北冷涡背景下飑线的 发展机制。具体文章结构如下:第二部分从模式的 基本方程出发着重对影响水汽变量演变的因素进 行推导,得到强对流天气的产生条件,并采用飑线 模拟的模式数据对水汽方程进行尺度分析,得到影 响飑线发生发展的主要因素;第三部分阐述具体的 模拟方案以及资料来源;第四部分为东北冷涡不同 区域的对比模拟,用来验证理论分析结果并得到东 北冷涡背景下飑线的发展机制;文章的总结在第五 部分。

2 基本方程和理论分析

CM1 模式采用风速 (*u*, *v*, *w*)、无量纲气压 (π)、位温(θ)以及水汽混合比 q_v 、液态水混合比 q_1 (云水 q_c 和雨 q_r)和固态水混合比 q_{so} (冰 q_i 、雪 q_s 和雹 q_h 等)组成了控制方程,其中 $\pi = (p / p_{00})^{R/c_p}$, *p*为气压, p_{00} 为标准气压, *R* 为气体常数, c_p 为 定压比热容。

目前对于飑线的判断主要通过考察雷达回波 的强度以及是否出现弓形、逗点形结构。而雷达回 波主要体现了固、液态降水粒子的浓度,这浓度也 在一定程度上反映了降水的大小。因此本文重点研 究三个水汽成分控制方程:

$$\frac{\partial q_{\rm v}}{\partial t} = \text{ADV}(q_{\rm v}) + T_{\rm qv} + \dot{q} \tag{1}$$

$$\frac{\partial q_{\rm l}}{\partial t} = \text{ADV}(q_{\rm l}) + T_{\rm ql} + \dot{q} + \frac{1}{\rho} \frac{\partial (\rho V_{\rm l} q_{\rm l})}{\partial z}$$
(2)

$$\frac{\partial q_{so}}{\partial t} = \text{ADV}(q_{so}) + T_{qso} + \dot{q} + \frac{1}{\rho} \frac{\partial (\rho V_{so} q_{so})}{\partial z}$$
(3)

其中,ADV 为基本气流的平流项,T 为湍流项, q 表示水的相态转变,下标 v、l、so 分别表示气态、 液态和固态水,公式(2)和(3)中最后一项表示 液态和固态粒子沉降作用的影响,公式(1)~(3) 分别为气态、液态和固态水的方程。将方程右边拆 分成多个小项单独考虑,以此研究水汽局地变化的 影响因素,得出强对流出现的条件,同时各个小项 作用的总和即为总的水汽变化。拆分后的各个小项 及其尺度见表1。

对于水平方向的平流,可以发现主要跟水汽的 水平分布和速度有关,沿风方向上,当湿度呈减少 趋势时,水平风将更为潮湿的空气带来,有利于局 地水汽的增加;反之湿度呈增加趋势时,水平风将 干空气带来,局地水汽有所减少。

对于铅直方向的平流,考察各个探空资料,可 以发现一般垂直方向的水汽含量是随高度递减的, 因此这项中水汽的增减主要看风向。当有上升气流 时,一般有利于湿度的增加,而垂直速度较大 时,能把更多的潮湿空气带上来,导致水汽有较大 的增长。

对于湍流的输送作用,以x方向为例,将参数 方案带入方程,得到

$$T_{qvx} = -\frac{1}{\rho} \frac{\partial \tau_1^{q_v}}{\partial x} = \frac{1}{\rho} \frac{\partial}{\partial x} (K_h \rho \frac{\partial q_v}{\partial x}) = \frac{\sqrt{6}}{6} \frac{\partial}{\partial x} (\frac{\partial q_v}{\partial x} \frac{u'^2}{N_m}) + \frac{\sqrt{2}}{3\Delta} \frac{\partial}{\partial x} (\frac{\partial q_v}{\partial x} u' \frac{u'^2}{N_m^2}), \quad (4)$$

其中, T_{qvx} 表示 x 方向湍流涡旋扩散对水汽的输送 作用、基础状态的空气密度 ρ 假定只是高度的函 数; K_h 为涡度扩散参数、 $\Delta = (\Delta x \Delta y \Delta z)^{1/3}$ 为网格尺 寸、u' 为湍流扰动风速、 N_m^2 为布朗特—维萨拉频 率的平方,表征层结稳定状况。

对于湍流不活跃的情况,假定 $K_h = 0$,此时 $T_{qvx} = \frac{\partial}{\partial x} (K_h \frac{\partial q_v}{\partial x}) = 0$,无湍流影响。

对于湍流活跃的情况,可以看到湍流和网格距的关系,网格距越大,同等条件下的湍流作用就越小,系统发展越慢,这点在 Bryan and Morrison

表 1 水汽方程的尺度分析。 q_{χ} 为水物质粒子的混合比, V_{χ} 为粒子沉降速度 ($\chi = v$, l, so,分别表示气态、液态和固态水), s 表示水平方向

Table 1 Scale analysis of water vapor equation, where q_{χ} represents mixing ratio of water particles, V_{χ} represents particle fall velocity, ($\chi = v$, l, so represent gaseous, liquid and solid water, respectively), s represents horizontal direction

	$\frac{\partial q_{\chi}}{\partial t} =$	$-Vrac{\partial q_{\chi}}{\partial s}$	$-w \frac{\partial q_{\chi}}{\partial z}$	$+T_{q\chi x}+T_{q\chi y}$	$+T_{q\chi z}$	$+\dot{q}$	$+\frac{1}{\rho}\frac{\partial}{\partial z}(\rho V_{\chi}q_{\chi})$
	$\left(\frac{\Delta q_{\chi}}{\Delta t}\right)$	$\left(U\frac{\Delta_{\rm h} q_{\chi}}{\Delta L}\right)$	$\left(W\frac{\Delta_{\rm z} q_{\chi}}{\Delta H}\right)$	$\left(rac{\Delta_{ extsf{h}}(K_{ extsf{h}}rac{\Delta_{ extsf{h}}q_{\chi}}{\Delta L})}{\Delta L} ight)$	$\left(\frac{\Delta_z(K_z\rho\frac{\Delta_z q_z}{\Delta H})}{\rho\Delta H}\right)$	(\dot{q})	$\left(\frac{\Delta_z(\rho V_\chi q_\chi)}{\rho \Delta_z H}\right)$
$q_{ m v}$	10^{-5}	10 ⁻⁵	10 ⁻⁵	10 ⁻⁷	10 ⁻⁷	10^{-6}	/
$q_{ m c}$	10^{-6}	10^{-6}	10^{-6}	10^{-8}	10^{-8}	10^{-7}	10^{-6}
$q_{ m r}$	10^{-6}	10^{-6}	10^{-6}	10^{-8}	10^{-8}	10^{-7}	10^{-6}
$q_{ m i}$	10^{-7}	10^{-7}	10^{-7}	10 ⁻⁹	10 ⁻⁹	10^{-8}	10^{-7}
$q_{ m s}$	10^{-6}	10^{-6}	10^{-6}	10^{-8}	10^{-8}	10^{-7}	10^{-6}
$q_{ m h}$	10^{-7}	10^{-7}	10^{-7}	10^{-9}	10^{-9}	10^{-8}	10^{-7}

(2012)的研究中得到了验证。还可以看到水汽分 布也在其中,且是关于x的二阶导数,表明湿度梯 度的变化越大,湍流的输送作用就越强。u'²可以表 示湍流动能的大小,表明湍流动能越大,湍流对水 汽的输送作用也越强。此外,布朗特一维萨拉频率 表明了不稳定层结对湍流的作用。

对于水汽相变的作用,通过查找相应的文献 (Lin et al., 1983; Rutledge et al., 1984;: Tao and Simpson, 1989; Tao et al., 1989, 1993; Braun and Tao, 2000; Gilmore et al., 2004)并对比模式中相 应的代码,可以得到主要跟水汽变量浓度和温度有 关,不同相态的转变主要是热力学参数设置不同, 以蒸发为例,当水汽浓度越小(越不饱和),温度 越高时,蒸发越大。

此外,在公式(2)、(3)中还有沉降作用引起 的水汽物质粒子浓度的变化,其值与水汽变量沉降 速度以及浓度有关。

另外,为考察方程中各个分项对方程的贡 献,根据这些项的表达式进行尺度分析。由于模拟 的是中小尺度天气过程,大尺度天气过程中各场变 量的特征尺度在这里不一定适用,因此模拟典型东 北冷涡背景下的飑线过程,将模拟过程中的相关变 量输出,分析得到此次飑线过程中各场变量的特征 尺度,继而尺度分析得到影响飑线产生的因素。

以 q_v 为例,一阶导数 $\partial q_v / \partial x$ 通过计算模式中 某一层次 $\Delta_h q_v / \Delta x$ 的取值范围得到这层 $\Delta_h q_v / \Delta x$ 的量级,一般以较大的量级为准,考虑各层次,可 以得到某一时刻 $\Delta_h q_v / \Delta x$ 的量级,考虑各时次,最 终得到 $\partial q_v / \partial x$ 的量级。二阶导数 $\partial^2 q_v / \partial x^2$ 则通过 计算 $\partial (\partial q_v / \partial x) / \partial x \sim \Delta_h (\Delta_h q_v / \Delta x) / \Delta x$ 得到。对于 一些参数变量,比如 K_h 和 \dot{q} 则直接输出相应的值考 察其量级。最终得到 q_v 各项结果如下:

$$V \sim W \sim 10 \text{ m s}^{-1}, \quad \frac{\partial q_{v}}{\partial s} \sim \frac{\Delta_{h} q_{v}}{\Delta L} \sim 10^{-6} \text{ m}^{-1},$$

$$K_{h} \sim 10^{2} \text{ m}^{2} \text{ s}^{-1}, \quad \frac{\partial K_{h}}{\partial x} \sim \frac{\Delta_{h} K_{h}}{\Delta L} \sim 10^{-1} \text{ m s}^{-1},$$

$$\rho \sim 10^{0} \text{ kg m}^{-3},$$

$$\frac{\partial}{\partial x} (\frac{\partial q_{v}}{\partial x}) \sim \frac{1}{\Delta L} \Delta_{h} (\frac{\Delta_{h} q_{v}}{\Delta L}) \sim 10^{-1} \text{ m s}^{-1}, \quad \dot{q} \sim 10^{-6} \text{ s}^{-1},$$

$$\frac{\partial \rho}{\partial z} \sim \frac{\Delta_{z} \rho}{\Delta H} \sim 10^{-5} \text{ kg m}^{-4}$$

其中, Δ_h 表示变量在水平方向的差分, ΔL 表示进 行差分的两个格点间的水平距离, Δ_z 表示变量在垂 直方向的差分, ΔH 表示进行差分的两个格点间的 垂直距离。

借此,可以对各种形态的水汽方程进行尺度分 析,结果见表 1。从表中以可以知道,在直接影响 水汽变化的各项中,水汽平流项的输送作用和降水 粒子的沉降作用对局地水汽变化的影响最大。因 此,水汽的水平分布和垂直风速的影响不能忽 略,水汽相变影响次之,湍流作用相对较小。总的 来看,飑线形成需要的条件为:

(1) 合适的温度场,可以形成不稳定层结;

(2) 合适的水平水汽分布;

(3) 强的上升气流和适当的沉降作用。

3 试验方案和资料

3.1 试验方案

本文采用 CM1 模式对 2016 年 6 月 13 日东北 冷涡南侧的一次飑线过程进行数值模拟(图1),模 式初始设置是通过单站探空资料自主生成初始场, 而各种中小尺度系统则是通过叠加相应的位温扰 动实现。为使模拟结果与实况更加接近,修改模式 相应代码用 NCEP 的 0.5°×0.5° 再分析资料替换了模 式自主形成的初始位温场和湿度场,并采用模拟区 域的实际探空资料进行模拟。第二部分的推导表明 大的网格距下飑线发展缓慢,因此为了更好的模拟 这次飑线过程,同时突出 CM1 模式在中小尺度系 统高精度模拟上的优越性,采用 200 m 作为水平网 格距。具体模拟方案为:将探空资料所在台站的位 置设为水平方向的中心,水平区域取 89 km×111 km (约为中纬度地区 1°×1°的范围), 垂直方向取 7.8 km (该高度涵盖了飑线中对流强度高的区域),水 平网格距 $\Delta x=\Delta y=200$ m, 垂直网格距 $\Delta z=400$ m, 时 间步长 Δt=2 s, 总积分时间 2 h。区域大小、网格距 和时间步长在所有模拟中相同。由于此次过程形成的 飑线较长(从郑州到北京, y 方向大约跨了 5 个纬 度),本文仅选取其中一段进行模拟,因此在 y 方向 采用周期边界条件, x 方向采用开放边界条件。模拟 中考虑科氏力的作用,但忽略地形、辐射传输和表面 热通量影响。结果输出在(x, y, z)坐标系中。

为验证理论推导结果并探究东北冷涡为飑线 的形成提供的条件,考虑到东北冷涡不同区域温 度、湿度以及探空资料不同,因此选取东北冷涡东、 南、西方向四个不同测站(图 la 中的测站标记为 C1、C2、C3和C4)进行对比模拟。此外,还以飑 线所在地章丘站的模拟为基准,以水平方向均一,

图 1 2016 年 6 月 13 日天气形势: (a, b) 分别为 06 时(协调世界时,下同) 850 hPa 和 500 hPa 高空形势; (c) 为济南站的雷达回波资料,雷达回波经过章丘站; (d) 为章丘站 00 时探空资料。(a, b) 中阴影为相对湿度,黑色等值线为位势高度(单位:gpm),红色等值线为位温(单位:K), 标线为切变线(用紫色方框凸显),(a) 中 X、C1、C2、C3 和 C4 标记为模拟区域,详见(d) 右侧说明;(d) 中绿线为相对湿度探空曲线,蓝线为 状态曲线,黑色虚线为露点温度探空曲线,黑色实线为温度探空曲线,右上方为速度失端图,其中绿线为风速失端的连线,红色箭头为风暴螺旋度 Fig. 1 Weather maps on 13 June 2016: (a, b) 850 hPa and 500 hPa circulation patterns at 0600 UTC; (c) radar echoes at Jinan, and the radar echoes passed by Zhangqiu station; (d) sounding data at 0000 UTC at Zhangqiu station. In (a, b), shadings indicate the relative humidity, black contours show geopotential height(units: gpm), red contours show potential temperature(units: K), and the brown line indicates the shear line(highlight with purple box). X, C1, C2, C3, and C4 in Fig. a denote simulation regions, and details are showed on the right side of Fig. d. In (d), green line shows relative humidity sounding curve, blue line shows state curve, black dotted line shows dew point temperature sounding curve, solid black line shows temperature sounding curve; on the upper right is hodograph, in which green line shows the connection line of hodograph, red arrow shows storm-relative hulicity

垂直方向随高度减少的初始湿度场放入模式进行 对比模拟,探究湿度分布对飑线的影响。

3.2 资料

图 1a, b 中的气象要素资料来自于 NCEP 的 0.5°×0.5°再分析资料,用来替换初始场的位温和湿 度场也由该资料集插值得到通。使用的探空资料 (图 1d,图 2)来自(http://weather.uwyo.edu/upperair/ seasia.html[2017-01-10]),提取高度、位温、混合比、 风速形成模式探空资料。实况雷达资料(图 1c) 采用中国气象局提供的济南站雷达回波资料,该 站位于章丘站附近,图 1c 中的雷达回波经过章丘 站。

4 东北冷涡飑线模拟与对比

4.1 温度和不稳定层结的影响

2016年6月12日,我国东北地区上空存在东 北冷涡系统,在500 hPa上可以分析出三条闭合等 值线,到了13日,冷涡东移,强度略有减弱,受 冷涡引导南下的冷空气影响,在河北、山东境内出 现飑线。从13日的天气形势中可以看到(图1、表 2),章丘站(图 la 中 X 标记的台站)上空有不稳 定层结出现,且垂直方向上存在风向和风速的切 变。在 500 hPa 高度上, 章丘位于冷涡西南侧, 主 要受到西北气流的影响,有冷平流将干冷空气带入 模拟区域。低层 850 hPa 高度上,章丘位于两个低 压中间,主要受低压外围偏南风的影响,可以看到 明显的暖式切变线,有暖平流将暖湿空气带入到模 拟区域。这样的高低空配置有利于不稳定层结的产 生, 计算得到不稳定能量 CAPE 指数达到了 1370 J kg⁻¹,为强对流天气的出现提供了很好的条件,模 拟(图 3a)与实况(图 1c)的结果也证实了这一点。

四个对比测站,探空资料由图2给出,几个引 发对流的条件对比以及模拟情况总结在表 2 中。日 本秋田站(C1)位于冷涡的东南侧,由探空资料(图 2a)显示,存在明显的风切变,但上下层都是暖平 流,且不稳定能量为 0,温度和不稳定层结情况都 不利于强对流天气的发生,模拟结果中也没有反射 率出现。在秋田东北方向的钏路(C2),同样位于 冷涡东南方向,有着明显的垂直风切变(图 2b), 不稳定能量为 0, 但与秋田稍有不同的是钏路中低 层有暖平流,高层有冷平流,温度场的配置对于未 来不稳定层结的发展有一定作用,因此在模拟中也 产生了较小雷达反射率(图 3b)但无法形成强对流。 俄罗斯的哈巴罗夫斯克(C3)位于冷涡中心偏东的 位置,不稳定能量较小,垂直方向上没有明显的风 向切变(图 2c),只有极小的风速切变,并且温度 平流也较弱,不利于对流的产生,模拟结果也表明 该区域只出现了非常小的雷达回波(图 3c)。俄罗 斯的赤塔站(C4)位于东北冷涡的西侧,有较高的 不稳定能量和一定的风向切变(图 2d),风速切变 较小,在高层有冷平流,低层有暖平流,不稳定层 结和温度场配置有利于对流天气的产生,模拟也证 实了这一点,出现了较高的雷达回波(图 3d)。

总的来看,合适的温度场和不稳定层结是强对 流出现需要满足的条件,在东北冷涡东部无法满足 这两个条件,因此没有强对流产生;而在冷涡西部 和西南部,高层受冷涡引导的冷空气影响,有冷平 流,低层再配合一定的暖平流,容易形成不稳定层 结,出现较大的不稳定能量,进一步出现强对流天 气,特别在西南侧有可能形成飑线。此外,风速的 切变作用在这里并不突出,可能是由于选取台站的 风速切变都比较小。

4.2 水汽水平分布的影响

考虑到雷达反射率、降水的出现都跟固、液态 降水粒子有关,前面的分析表明这些降水粒子的出 现需要温度与水汽配合。在温度方面,东北冷涡的 西、南侧有冷涡引导冷空气南下,为水汽向固、液 态的转变提供了很好的条件。在水汽方面,从第三 部分的方程中可以看见平流输送对水汽局地变化 的影响极大,另外湍流项中也有水汽梯度的影响。 理论分析表明水汽分布有重要作用,因此本文还考 察了水汽分布对飑线形成的影响。FNL 资料插值得 到的湿度场中,章丘站相对湿度在 x 方向上有梯度 存在(图未给出),因而对比试验设计为初始时刻 模式中的湿度在水平均匀分布,每一层都分别为一 个特定的常数,数值由探空资料中的混合比信息插 值到相应的高度上得到。模拟结果(图 3e)表明在 没有相应水汽配合的情况下也难以有飑线形成。

从模拟结果可以知道,水汽的水平分布特征对 飑线的形成有重要的影响,不能忽略。东北冷涡 西南侧,在有横向(x方向)梯度的湿度场配合时, 可以有飑线形成。

			8				
							模式与探空分析
台站名	标记	相对于冷涡位置	CAPE/J kg ⁻¹	风切变	平流条件	组合反射率	是否一致
章丘(Zhangqiu)	Х	西南	1370	风向风速切变	中高层冷平流,低层暖平流	高	一致
日本秋田(Akita)	C1	东南	0	风向风速切变	暖平流	无	一致
日本钏路(Kushiro)	C2	东南	0	风向风速切变	高层冷平流,中低层暖平流	低	一致
俄罗斯哈巴罗夫斯克(Habarovsk)	C3	东	270	有风速切变	温度平流较弱	低	一致
俄罗斯赤塔(Chita)	C4	西	866	有风向切变	高层冷平流, 低层暖平流	高	一致

表 2 各个台站探空和模拟情况 Table 2 Soundings and simulations at various stations

图 2 四个对比台站的 13 日 00 时探空资料:(a) C1 为日本秋田;(b) C2 为日本钏路;(c) C3 为俄罗斯哈巴罗夫斯克;(d) C4 为俄罗斯赤塔。图 中实线为温度探空曲线,双虚线为相对湿度探空曲线,点线为状态曲线,长虚线为露点温度探空曲线

Fig. 2 Sounding data at four stations at 0000 UTC 13 June: (a) C1 is Akita; (b) C2 is Kushiro; (c) C3 is Khabarovsk; (d) C4 is Chita. Solid lines are temperature sounding curves, double dotted lines are relative humidity sounding curves, dotted lines are state curves, and long dotted lines are dew point temperature sounding curves

4.3 上升气流和沉降作用的影响

飑线的形成,从理论分析上看还受到垂直速度 和沉降作用的影响。一般而言,对流层大气低层的 温度和湿度都高于高层,这点在有低层暖平流和高 层冷平流的高低空配置下更为明显,因此当有明显 的上升气流时,会有大量的水汽被带到高空成云致 雨,而沉降作用则使中、高层的粒子落到低层。本 文从模拟飑线的水平、垂直结构考察这两项的影 响。

图 4 给出了飑线的水平结构,包括雷达回波高 值区和垂直上升速度为 15 m s⁻¹ 的等值线,另外为 方便查看气流在飑线上的转变,将风场以流线形式 给出。可以看到水平方向上气流经过飑线时会有一 个明显的弯折,对应着大的上升气流的出现。同时

图 3 不同模拟结果对比,图中阴影为组合反射率(单位:dBZ):(a)X为章丘飑线的模拟结果,图中黑色实线为选择做垂直剖面的位置;(b-d)C2~C4为图 la 相应位置的模拟结果;(e)Q为章丘去除初始湿度场后的模拟结果

Fig. 3 Results of different simulations, and shadings indicate reflectivity (units: dBZ). (a) "X" indicates the simulation results of the squall line at Zhangqiu station, and the black solid lines in the figures are the positions of the vertical cross sections; (b–d) "C2–C4" indicate simulation results at the locations corresponding to C2–C4 in Fig. 1a; (e) "Q" indicates the simulation results at Zhangqiu station after removing the initial humidity field

图 4 强雷达回波、上升气流和水平气流分布:(a-d)模拟区域低层(1 km)在不同时刻的分布;(e-h)模拟区域中层(3.8 km)在不同时刻的分布。 阴影为雷达回波(单位:dBZ),紫色线为垂直速度等于 15 m s⁻¹ 的区域

Fig.4 Distributions of strong radar echoes, updrafts and horizontal flows: (a–d) the lower level (1 km) of the simulation region at different times; (e–h) the middle level (3.8 km) of the simulation region at different times. Shadings indicate radar echoes(units: dBZ), and the purple lines indicate areas with vertical velocity equal to 15 m s⁻¹

在低层,早期强雷达回波的位置出现在上升气流的 两侧(图 4a, e),而积分一段时间后垂直速度和高 雷达回波对应的较好。垂直剖面图(图 5)也验证 了这点,从图 5a 和图 5b,d 中新生成的单体上, 可以看到在上升气流强的区域,中、高层能出现强 的雷达回波,但低层普遍较小,上升区域两侧的低 层却出现较大的雷达回波;而图 5c 和图 5b,d 中 成熟阶段的单体在强上升气流处的低层也能出现 强的雷达回波。导致这种现象的原因,可能是在早 期大的垂直速度将低层水汽抬升,上升到合适的高 度时开始大量凝结,形成强的雷达回波,同时受沉 降作用的影响,在上升气流的两侧,上升运动产生 的大量固、液态降水粒子下沉,使得低层形成较大 的雷达回波。而上升气流区域由于粒子受到向上的 浮力较大,抬升和沉降作用相互抵消,因此初始时 刻低层没有太大的雷达回波出现,而到了成熟阶 段,上层聚集了足够多的降水粒子,沉降作用产生 了更大的效果,因此在低层也出现了较大的雷达回 波。

总的来看,飑线的出现需要强的上升运动,而 沉降作用则使得低层也出现强的雷达回波。

5 结论

本文从 CM1 动力框架出发,通过数学推导结 合模式数据的尺度分析在理论上得到了飑线发生 发展的必要条件,并以东北冷涡不同区域的对比模 拟,验证了理论分析的结果,同时也得到东北冷涡 飑线形成的条件。结论如下:

图 5 雷达回波和风场垂直剖面(图中所画区域为图 3a 中画线位置的垂直剖面图)。(a, c) *x*-*z* 剖面, (b, d) *y*-*z* 剖面; (a, b) 60 min 情形, (c, d) 75 min 情形。图中阴影为雷达回波(采用相同色标,单位: dBZ); 箭头为风速; 为更好地表现垂直风的情况,将垂直风速 *w* 放大 2 倍 Fig. 5 Vertical cross sections of radar echos and wind fields (along the black solid lines in Fig. 3a). (a, c) *x*-*z* sections, (b, d) *y*-*z* sections; (a, b) the situations at 60 min, (c, d) the situations at 75 min. Shadings indicate radar echo (units: dBZ), arrows show wind speed, and the vertical wind speed *w* is multiplied by 2 for better illustration of vertical winds

(1)通过模式相应数据的输出结合方程对中小 尺度系统做尺度分析,得到东北冷涡下飑线形成过 程中平流、对流以及沉降作用对降水粒子的变化贡 献最大,水汽相变影响次之,湍流作用相对较小。

(2) 东北冷涡不同区域的模拟验证了理论分析 的结果。东北冷涡西南侧,高层受冷涡影响有冷平 流,低层有风切变配合出现暖平流时易产生不稳定 层结,配合有横向梯度的湿度场可以形成飑线。而 在冷涡东侧大气层结稳定不易有强对流天气出现。

(3) 采用 200 m 的高精度网格距较好地模拟了 飑线的结构,强的上升使得高层出现强的雷达回 波,两侧和积分一段时间后的低层受沉降作用的影 响也会出现强的雷达回波。

参考文献(References)

- Braun S A, Tao W K. 2000. Sensitivity of high-resolution simulations of hurricane Bob (1991) to planetary boundary layer parameterizations [J].
 Mon. Wea. Rev., 128 (12): 3941–3961, doi:10.1175/1520-0493(2000) 129<3941:SOHRSO>2.0.CO;2.
- Bryan G H, Morrison H. 2012. Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics [J]. Mon. Wea. Rev., 140 (1): 202–225, doi:10.1175/MWR-D-11-00046.1.

Bryan G H, Worsnop R P, Lundquist J K, et al. 2017. A simple method for

simulating wind profiles in the boundary layer of tropical cyclones [J]. Bound.-Layer Meteor., 162 (3): 475–502, doi:10.1007/s10546-016-0207- 0.

- 崔慧慧, 冯慧敏. 2017. 东北冷涡持续影响下郑州地区多日对流性天气 特征分析 [J]. 科学技术与工程, 17 (6): 7-16. Cui Huihui, Feng Huimin. 2017. Analysis of the convective weather characteristics in Zhengzhou under the sustained NECV [J]. Science Technology and Engineering, 17 (6): 7-16, doi:10.3969/j.issn.1671-1815.2017.06.002.
- Dahl J M L. 2017. Tilting of horizontal shear vorticity and the development of updraft rotation in supercell thunderstorms [J]. J. Atmos. Sci., 74 (9): 2997–3020, doi:10.1175/JAS-D-17-0091.1.
- Dennis E J, Kumjian M R. 2017. The impact of vertical wind shear on hail growth in simulated supercells [J]. J. Atmos. Sci., 74 (3): 641–663, doi:10.1175/JAS-D-16-0066.1.
- Diao M H, Bryan G H, Morrison H, et al. 2017. Ice nucleation parameterization and relative humidity distribution in idealized squallline simulations [J]. J. Atmos. Sci., 74(9): 2761–2787, doi:10.1175/JAS-D-16-0356.1.
- French A J, Parker M D. 2014. Numerical simulations of bow echo formation following a squall line–supercell merger [J]. Mon. Wea. Rev., 142 (12): 4791–4822, doi:10.1175/MWR-D-13-00356.1.
- Gilmore M S, Straka J M, Rasmussen E N. 2004. Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics [J]. Mon. Wea. Rev., 132 (8): 1897–1916, doi:10.1175/1520-0493(2004)132< 1897:PAESIS>2.0.CO:2.

康兆萍,林永辉. 2017. 华南一次飑线过程线状对流模态变异机理研究

[J]. 大气科学学报, 40 (5): 631–640. Kang Zhaoping, Lin Yonghui. 2017. The mechanism of transition of convective mode of a squall line in South China [J]. Transactions of Atmospheric Sciences, 40 (5): 631–640, doi:10.13878/j.cnki.dqkxxb.20160528001.

- 李爽, 丁治英, 戴萍, 等. 2016. 东北冷涡的最新研究进展 [J]. 干旱气 象, 34 (1): 13–19. Li Shuang, Ding Zhiying, Dai Ping, et al. 2016. Recent advances in research on Northeast China cold vortex [J]. Journal of Arid Meteorology, 34 (1): 13–19, doi:10.11755/j.issn.1006-7639 (2016)-01-0013.
- 李少英, 张述文, 毛伏平, 等. 2017. 采用不同样本集合同化地面观测对 一次飑线过程的影响 [J]. 大气科学, 41 (2): 236–250. Li Shaoying, Zhang Shuwen, Mao Fuping, et al. 2017. Influence of assimilating surface observations on a squall line with different ensembles [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41 (2): 236–250, doi:10. 3878/j.issn.1006-9895.1606.15298.
- Lin Y L, Farley R D, Orville H D. 1983. Bulk parameterization of the snow field in a cloud model [J]. J. Appl. Meteor., 22 (6): 1065–1092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.
- 刘刚, 封国林, 秦玉琳, 等. 2017. 初夏东北地区冷涡降水"累积效应" [J]. 大气科学, 41 (1): 202–212. Liu Gang, Feng Guolin, Qin Yulin, et al. 2017. "Cumulative effect" of cold vortex precipitation in Northeast China in early summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41 (1): 202–212, doi:10.3878/j.issn.1006-9895. 1602.15231.
- 刘佳, 沈新勇, 张大林, 等. 2013. 台风"麦莎"的强度对台风前部飑线 发展过程影响的研究 [J]. 大气科学, 37 (5): 1025–1037. Liu Jia, Shen Xinyong, Zhang Dalin, et al. 2013. Impact of typhoon intensity on the development of a pre-tropical cyclone squall line [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37 (5): 1025–1037, doi:10.3878/ j.issn.1006-9895.2013.12134.
- Meng Z Y, Zhang Y J. 2012. On the squall lines preceding landfalling tropical cyclones in China [J]. Mon. Wea. Rev., 140 (2): 445–470, doi:10.1175/MWR-D-10-05080.1.
- Parker M D. 2017. How much does "backing aloft" actually impact a supercell? [J]. Wea. Forecasting, 32 (5): 1937–1957, doi:10.1175/WAF-D-17-0064.1.
- Rutledge S A, Hobbs P V. 1984. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow coldfrontal rainbands [J]. J. Atmos. Sci., 41 (20): 2949–2972, doi:10.1175/ 1520-0469(1984)041<2949:TMAMSA>2.0.CO;2.

- Stechman D M, Rauber R M, McFarquhar G M, et al. 2016. Interaction of an upper-tropospheric jet with a squall line originating along a cold frontal boundary [J]. Mon. Wea. Rev., 144 (11): 4197–4219, doi:10.1175/ MWR-D-16-0044.1.
- Stoelinga M T, Locatelli J D, Schwartz R D, et al. 2003. Is a cold pool necessary for the maintenance of a squall line produced by a cold front aloft? [J]. Mon. Wea. Rev., 131 (1): 95–115, doi:10.1175/1520-0493 (2003)131<0095:IACPNF>2.0.CO;2.
- Tao W K, Simpson J. 1989. Modeling study of a tropical squall-type convective line [J]. J. Atmos. Sci., 46 (2): 177–202, doi:10.1175/1520-0469(1989)046<0177:MSOATS>2.0.CO;2.
- Tao W K, Simpson J, McCumber M. 1989. An ice-water saturation adjustment [J]. Mon. Wea. Rev., 117(1): 231–235, doi:10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2.
- Tao W, Simpson J, Sui C H, et al. 1993. Heating, moisture, and water budgets of tropical and midlatitude squall lines: Comparisons and sensitivity to longwave radiation [J]. J. Atmos. Sci., 50 (5): 673–690, doi:10.1175/1520-0469(1993)050<0673:HMAWBO>2.0.CO;2.
- 王培, 沈新勇, 高守亭. 2012. 一次东北冷涡过程的数值模拟与降水分 析 [J]. 大气科学, 36 (1): 130–144. Wang Pei, Shen Xinyong, Gao Shouting. 2012. A numerical study and rainfall analysis of a cold vortex process over Northeast China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36 (1): 130–144, doi:10.3878/j.issn.1006-9895. 2012.01.11.
- 王婉昭, 李辑, 胡春丽, 等. 2017. 东北冷涡的定义、识别与定量化研究 综述 [J]. 气象科学, 37 (3): 394-402. Wang Wanzhao, Li Ji, Hu Chunli, et al. 2017. A review of definition, identification and quantitative investigation on Northeast cold vortex [J]. Journal of the Meteorological Sciences (in Chinese), 37 (3): 394-402, doi:10.3969/2015jms.0092.
- 张建军, 王咏青, 钟玮. 2016. 飑线组织化过程对环境垂直风切变和水 汽的响应 [J]. 大气科学, 40 (4): 689–702. Zhang Jianjun, Wang Yongqing, Zhong Wei. 2016. Impact of vertical wind shear and moisture on the organization of squall lines [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40 (4): 689–702, doi: 10.3878/j.issn.1006-9895. 1505.14337.
- 张哲,周玉淑,邓国. 2016. 2013 年 7 月 31 日京津冀飑线过程的数值模 拟与结构分析 [J]. 大气科学, 40 (3): 528–540. Zhang Zhe, Zhou Yushu, Deng Guo. 2016. Numerical simulation and structural analysis of a squall line that occurred over the Beijing–Tianjin–Hebei region of China on 31 July 2013 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40 (3): 528–540, doi:10.3878/j.issn.1006-9895.1507.15127.