大气氧化能力量化研究

王跃思^{1,2*} 刘子锐¹ 胡波¹ 王润玉^{1,2}

1 中国科学院大气物理研究所,北京 100029

2 中国科学院大学,北京 100049

摘要: 大气氧化能力 (AOC) 通常是指大气通过氧化过程去除大气中微量气体成 6 分的速率总和。在对流层和近地层大气中, AOC 主要表观为对污染气体的清除 7 能力或净化能力,亦称大气氧化性。AOC 是地球大气自洁净的核心能力,但一 8 直缺乏对其内涵的深入认知和对其指标的量化描述。本文作者通过承担国家重点 9 研发计划"区域大气氧化能力与空气质量的定量关系及调控原理"研究等项目,从 10 大气化学基本理论入手,对 AOC 开展了系列研究,并在其量化表达方面取得了 11 12 突破性进展。本文将围绕"大气氧化能力量化研究"这一科学问题,对这些进展进 行简要的描述。首先在深入认知 AOC 内涵的基础上,分别从大气化学的热力学 13 和动力学基本原理出发,构建了大气氧化能力表观指数(AOle)和潜势指数 14 (AOIp),并通过二者归一化指数日变化闭合研究,发现了非均相化学过程对 15 16 AOC 的贡献不容忽视。随着 PM25 污染的加重,无论夏季还是冬季, AOIe 亦随 之增加,但在冬季 AOIp 则出现了相反的情景,表现出 AOIp 的变化受气象条件 17 的影响更大。AOC闭合研究思路用于大气OH自由基的储库分子HONO"未知 18 源"研究,发现了北京大气 HONO 的重要非均相来源, 阐释了 MCM 机制对冬季 19 20 AOC 低估的重要原因。AOIp 用于预测我国大气臭氧污染潜势格局,发现 AOIp O3 与 J(NO₂)直接相关,全国 J(NO₂)的年均值为 4.39×10⁻³ s⁻¹,高值区主要分布在四 21 川、贵州、重庆和湖南等地。与其他化学反应氧化性指数对比, AOIe 与 AOIp 22 23 组合指数更具准确性、普适性和实用性,可评价已发生的污染过程 AOC 的变化, 亦可预测城市或区域重污染发生的可能性及其变化和格局。 24

25 关键词: 大气氧化能力表观指数(AOIe); 大气氧化能力潜势指数(AOIp);

- 26 闭合; HONO; 光化辐射
- 27

1

2

3

4

5

Quantitative study of atmospheric oxidation capacity

- 28 Yuesi Wang ^{1,2*}, Zirui Liu¹, Bo Hu¹, Runyu Wang ^{1,2}
- ¹ Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,
 收稿日期: 2023-05-31; 网络预出版日期

30 China

² University of Chinese Academy of Sciences, Beijing, 100049, China

32

33 Abstract: Atmospheric oxidation capacity (AOC) is usually defined as the sum of the rates at which the atmosphere removes trace gaseous constituents from the 34 atmosphere through oxidative processes. In the troposphere and near-surface 35 atmosphere, AOC is mainly characterized as the removal or purification of pollutant 36 gases, also known as atmospheric oxidizability. AOC is the essential driving force of 37 tropospheric chemistry, but its quantitative representation remains limited. 38 Undertaking research on "Quantitative Relationship between Regional Atmospheric 39 Oxidizing Capacity and Air Quality and the Principles of Regulation" supported by 40 41 the National Key R&D Program of China and other projects, the authors of this paper have carried out a series of researches on AOC from the basic theories of atmospheric 42 chemistry and made breakthroughs in the quantitative expression of AOC. In this 43 paper, we will give a brief description of these advances focus on the "quantitative 44 45 study of atmospheric oxidation capacity". Firstly, on the basis of in-depth knowledge of AOC, we constructed the evaluation index of AOC (AOIe) and the potential index 46 of AOC (AOIp) from the thermodynamic and kinetic fundamentals of atmospheric 47 chemistry, respectively, and found that the contribution of heterogeneous chemical 48 49 processes to the AOC should not be neglected through the study of the daily variation of the normalized AOIe and AOIp. With the increase of PM_{2.5} pollution, AOIe also 50 increased in both summer and winter campaigns, but the opposite scenario was 51 observed for AOIp in winter, showing that the variation of AOIp was more influenced 52 by meteorological conditions. The AOC closure research idea was used to explore the 53 "unknown source" of HONO, the reservoir molecule of atmospheric OH radicals, and 54 found an important heterogeneous source of atmospheric HONO in Beijing, which 55 would explains the underestimation of winter AOC by the MCM mechanism. The 56 AOIp was used to predict the potential pattern of atmospheric ozone pollution in 57 58 China, and found that the annual mean $J(NO_2)$ value of AOIp O_3 is directly correlated with J(NO₂). O₃ is directly correlated with J(NO₂), and the annual average value of 59

 $J(NO_2)$ is $4.39 \times 10-3$ s⁻¹ in the whole country, with the high value areas mainly distributed in Sichuan, Guizhou, Chongqing and Hunan. The combined AOIe and AOIp indices are more accurate, generalizable and useful when compared with other chemical reaction oxidizability indices, and could evaluate the variations in the AOC during the pollution process, and predict the likelihood of the occurrence of urban or regional heavy pollution, as well as its variations and patterns.

- 66 Keywords: Evaluation index of AOC (AOIe); Potential index of AOC (AOIp);
- 67 Budget; HONO; Photochemical radiation
- 68
- 69 *通讯作者: wys@mail.iap.ac.cn
- 70
- 71 1 前言

大气是一个复杂的物理与化学体系,也是一个开放的动态系统,与海洋、陆 72 地和生态圈层之间密切相互作用。各圈层向大气中排放的活性微量气体,往往是 73 通过大气氧化反应被清除脱离大气,清除速率与大气的氧化能力有关,表观为大 74 气氧化性的强弱。大气氧化能力(Atmospheric Oxidation Capacity -AOC)的传 75 统定义是大气通过氧化过程去除其中活性微量气体成分的速率总和 (Prinn, 76 2003)。在对流层和近地层大气中,大气氧化能力主要表观为对污染气体的清除 77 能力或净化能力(Cheng et al., 2007; 林云萍和赵春生, 2009), 亦称大气氧化性。 78 地球大气形成初期是一个还原性体系,如果没有大气氧化过程,大气的化学成分 79 80 及天气过程就会和我们今天所见显著不同。

羟基(OH, hydroxyl radical)自由基是大气中最活跃的氧化剂,尽管其在大气中 81 的浓度非常低,但有很高的化学活性,能与大气中绝大多数痕量组分发生化学反 82 应(Seinfeld and Pandis, 2016)。参与对流层大气化学过程的主要氧化剂除OH自 83 由基外,还有过氧自由基(HO2和RO2, hydroperoxyl and organic peroxyl radicals)、 84 硝基自由基(NO3, nitrate radical)和卤素自由基等(Thornton et al., 2010)。经自由 85 基引发形成的O3、HONO、HCHO、H2O2、N2O5、HNO3和PAN等分子型次生氧 86 化剂,被称之为自由基的"储库分子"。白天光照情况下,储库分子可光解再次 87 产生OH,使自由基反应链加长;夜间NO3自由基在气相氧化反应中最为重要, 88

89 而分子型氧化剂(O₃、H₂O₂、N₂O₅和HNO₃等)参与液相和固相非均相化学反应
90 亦十分活跃(葛茂发等,2009)。包含在大气液滴和颗粒物中的分子型氧化剂对
91 大气污染物的形成和清除作用也不可小觑,这类非均相化学过程在高湿度、高污
92 染条件下往往会成为氧化反应的主导,但以往研究并未将其计入AOC的一部分。
93 本文将对这一问题进行重点探讨。

大气氧化能力对大气二次颗粒物和臭氧污染形成具有关键作用,可以说是两 94 种表象,一个本质,然而国内外对其量化研究却十分有限。经历了半个多世纪, 95 美欧等发达国家或地区尚未完全解决大气臭氧污染问题,亦表现出对 AOC 的认 96 知仍显不足。虽然早有经典文献报道,可遵循 EKMA 曲线通过调控前体物氮氧 97 化物 (NO_x, nitrogen oxides) 和挥发性有机物 (VOCs, volatile organic compounds) 98 控制臭氧产率(Kelly and Gunst, 1990),但由于前体物(尤其是 VOCs)的种类 99 100 和化学活性及其气象环境条件的巨大差异(Wang et al., 2021),使得这一方法很 难付诸实施,更无法揭示我国大气氧化能力对二次颗粒物和臭氧污染形成的准确 101 定量作用。国际上关于 AOC 的研究大多集中在氧化剂与人为/自然源 VOCs 光化 102 学产生 O3 和二次有机气溶胶 (SOA, secondary organic aerosol) 的机制、潜势以 103 及环境效应研究等方面,研究手段主要是运用烟雾箱结合数值模式,模拟大气环 104 境下 OH、Cl 和 O3 等氧化剂与各种 VOCs 相互作用的动力学和热力学过程,为 105 模式提供参数化方案(Surratt et al., 2010; Carlton et al., 2010; Zhang et al., 2015; 106 Wang et al., 2020)。研究呈现出三种发展趋势: (1)由单一均相气相过程向更 107 加复杂的气-固、气-液和液-固等非均相过程转变; (2)由单一 VOCs 物种研究 108 109 向多物种、实际大气 VOCs 复合研究转变; (3) 由自然源 VOCs 向人为源或混 合源 VOCs 研究转变。以期获得更加接近真实大气情况下各种氧化过程的认识 110 (Laskin et al., 2015) 。 111

112 我国最初对AOC的研究主要集中在光化学污染最重要的标志物-O₃。20世
113 纪70年代,北京大学唐孝炎首先发现我国兰州西固地区O₃污染严重,直到80年代,
114 该地区O₃浓度还经常超过400µg/m³(Tang et al., 1989)。90年代开始,北京相继
115 出现高浓度O₃污染,1997年夏季,臭氧峰值平均一度达到240µg/m³(Zhang et al.,
116 1998),而文献记载最严重一次臭氧污染发生在2005年夏季的北京昌平,小时均
117 值高达615µg/m³(Wang et al., 2006)。当城市O₃污染引起关注后,我国近地面

O3污染研究相继在多地展开,但主要集中在污染最为严重的华北、长三角、珠三
角和成渝等重点城市群区域(Xue et al., 2021),研究方法主要是外场观测和数
值模式相结合,研究区域主要集中在近地面与人群直接接触的环境大气,研究成
果主要体现在O3污染和前体物及气象要素的相互关系(安俊琳等, 2010; Ran et al.,
2012; Zheng et al., 2010)。依然十分缺乏臭氧和其他氧化剂的关系及氧化剂对二
次颗粒物生成速率的影响研究,且对大气氧化性垂直结构及区域差异影响等方面
的研究仍十分匮乏。

目前,很多研究以OH浓度来衡量大气氧化性,并在自由基测定技术方面取 125 得一些重要成果(Ren et al., 2001; Shao et al., 2004), 总氧化剂Ox(近似等于 126 O3+NO2)也常用于反映大气氧化能力的变化。程艳丽等(2008)使用还原性污 127 染物在大气中的准一级化学反应速率常数定量表征大气氧化性,并尝试用于珠三 128 角大气氧化能力数值模拟研究。Hofzumahaus et al. (2009)的研究发现,我国珠 129 三角大气OH存在与传统光化学理论不同的未知再生机制,可极大地提升痕量气 130 体的降解速率,但并未伴随臭氧光化学生成率的增加,而且对细颗粒物的影响尚 131 不明确。大量文献报道,数值模式对我国现阶段重霾污染过程颗粒物浓度的模拟 132 结果普遍低于实测值,对大气氧化能力考虑不足或机制缺失,可能是造成不同程 133 度低估颗粒物中二次成分的生成速率和产率的重要原因。大量的NOx排放极大地 134 促进了SO2(S-IV)向硫酸盐(S-VI)的转化,气态NO2(N-IV)及存在于液滴 135 中的HNO3(N-V)和颗粒物中NO3-(N-V)等亦可充当S-IV的氧化剂,矿尘和水 136 成为非均相反应的催化剂及反应界面(王跃思等, 2014; He et al., 2014; Wang et 137 al., 2016)。Gao et al. (2016) 将这一氧化过程机理SO₂ (S-IV)→SO₄²⁻ (S-VI) 138 参数化后加入到数值模式研究中,使硫酸盐的产率提高了15倍,并与观测结果高 139 度吻合;在香港的研究也证实上述反应途径对夜间硫酸盐的贡献高63%(Chow et 140 al., 2016)。由于我国改革开放初期经济的迅猛发展,燃煤和燃油污染超量排放, 141 大量还原性和氧化型污染物同时混存于大气中,相互间发生了非常复杂的非线性 142 化学反应。氧化反应与中和反应相互促进,物理吸湿增长与二次化学过程相互耦 143 合反馈,一度表现为重污染频繁突发。我国大气氧化性、氧化能力演变和氧化过 144 程、路径及其污染形成的方式均显著区别于其他国家或地区,需要系统量化研究。 145 146 长期以来,国外学者大多将研究重点集中在大气氧化剂对自然源 VOCs 的清

除作用,而我国尚未完全解决大气氧化对 SO2、NOx 和 NH3等无机污染气体的氧 147 化去除机制问题,对人为源 VOCs 的氧化机理研究也刚刚起步,鲜见大气氧化能 148 力和空气质量水平的相互关系定量研究,对大气氧化能力缺乏具体的定量表达方 149 式,难以提出通过调控大气氧化能力控制大气复合污染的理论依据。为此,本文 150 作者近年来在国家和地方多项科研项目的资助下,开展系列 AOC 与空气质量的 151 定量关系研究,并在 AOC 量化研究方面取得了突破性进展。主要表现在:建立 152 了 AOC 研究方法体系,阐明了 AOC 的内涵,构建一套定量表征指标体系;完善 153 了大气氧化剂收支平衡理论,并将其模块化引入了数值模式,提高了数值模式对 154 AOC 的模拟能力; 建立了大气氧化剂水平输送、垂直交换和局地生成过程的诊断 155 方法,揭示出残留层大气存储的氧化剂或污染物,可直接对近地面环境空气质量 156 造成不利影响。结果表明, AOC 与二次污染存在明确的量化关系, 基于 AOC 调 157 控大气 O₃和 PM_{2.5}复合污染具有可行性。本文则重点介绍构大气氧化能力表观指 158 数(AOIe, the evaluation index of AOC)和潜势指数(AOIp, the potential index of 159 AOC)的建立方法和理论基础,并通过二者归一化指数闭合研究,探讨"丢失" 160 的大气氧化过程或通道; AOI 随污染程度不同的变化及其时空分布; AOC 主控者 161 大气 OH 自由基与其典型储库分子 HONO 的收支关系; 阐释 J(NO_2) 与 AOIp 162 的内在关系,使用 AOIp 预测我国大气臭氧污染潜势格局;与其他化学反应量化 163 指数对比,探讨其准确性、普适性和实用性。 164

165

166 2 大气氧化能力的内涵和量化指数的建立

167 本文作者从微观动力学和宏观热力学两个方面探讨了 AOC 的内涵,建立了
 168 定量表达式,并开展了闭合示范研究,取得了突破性进展 (Liu et al., 2021b; Yang
 169 et al., 2021)。

170 2.1 表观大气氧化指数(AOIe)的建立

171 化学反应的本质是原子或原子团重新拆分组合,形成新的物质分子;而大气
中的氧化反应全称应是"氧化-还原"反应,其内涵是必须存在元素化合价的变化,
173 本质是原子间有电子得失。失电子者被氧化称还原剂,大气中最常见的还原剂为
174 还原性污染物 SO₂、NO、CO 和异戊二烯等烯烃类有机物;得电子者被还原称氧
175 化剂,大气中最常见的氧化剂污染物为 O₃,氧气为大气中量最大的氧化剂但不
176 是污染物,自由基 OH、HO₂和 NO₃等是活性最强的氧化剂,虽然浓度低,但活

性极高,作用极大。在认知大气氧化性内涵基础上,作者从化学反应热力学原理 177 出发,推算出一次排放的还原性前体物向氧化性二次污染物转化过程中得失电子 178 的总摩尔数量,用以定量表征太气氧化能力,从宏观角度构建了一个大气氧化能 179 力量化表达式。自定义为"表观大气氧化指数",缩写为"AOIe"。"AOIe"这个指数 180 的含义是指这个大气氧化指数 (AOI) 可通过实验 (experiment) 获得, 具有一 181 定的经验性(empirical)。其计算相对简单,只关心一次排放的污染物氧化降解 182 变成二次污染物过程中得失的电子摩尔数量,通过污染物中心元素化合价的前后 183 变化即可计算获得,而不关心反应速度、转化途径和通道。其表达式和各项具体 184 说明如下: 185

- 186 $AOIe = f_{e1(S-IV \to S-VI)} + f_{e2(N-II,III,VI \to N-V)} + f_{e3(O_2 \to O_3)} + f_{e4(VOC \to OVOC,SOA)} + \xi.....(1)$
- AOIe 代表参与大气氧化-还原反应(包括均相和非均相)所有化学物种得失 187 电子摩尔量总和,单位可选用"µmol/m3"。fel(s-IV-s-VI) 代表大气中四价硫化合物(主 188 要包括二氧化硫、亚硫酸或亚硫酸盐)转化为六价硫化合物(主要是硫酸或硫酸 189 盐)过程中得失电子的总摩尔量(或当量,下同); fe2(N-ILIII, VI-N-V) 代表二价氮(NO)、 190 三价氮(HONO 或亚硝酸盐)、和四价氮(NO₂)转化为五价氮(主要是 N₂O₅, 191 HNO3 和硝酸盐)或是之间相互转化得失电子的摩尔量; fe3(02-03)代表大气中的氧 192 气 (O_2) 通过任何途径转化为臭氧 (O_3) 过程中得失电子的总摩尔量; $f_{e4(VOC-OVOC,SOA)}$ 193 代表 VOCs 在大气中被氧化生成含氧挥发性有机物(OVOCs)或氧化性二次有 194 机气溶胶(SOA)得失电子的摩尔数当量,有机物中增加1摩尔氧(O) 计算 195 为交换 2 摩尔电子。如,甲烷(CH4)氧化成为甲醛(HCHO)计为 2 摩尔电子转 196 移; *č*表示大气中其他痕量物种参与大气化学反应得失电子的摩尔量。如重金属、 197 半挥发或难挥发有机物等。 198

199 对 SOA 生成过程得失电子的表征,假定一次排放的挥发性有机物均为不含
200 氧化合物,而氧化产物 SOA 中含氧量的多少即代表其氧化程度,因此 SOA 生成
201 过程的得失电子量可由下式计算:

202 $f_{e4(VOC - OVOC, SOA)} = [SOA(O/C)]/[8(1+O/C]....(2))$

203 其中,O/C质量比由气溶胶飞行时间质谱仪直接监测获得,而 SOA 主组成
204 质量浓度可由 HR-TOF-MS 监测得到的有机物质谱信息结合 PMF 解析获取。

205 AOle 这一指数的特点是:只关注结果而忽略过程。通过实测的污染物浓度拆
206 分出氧化-还原反应产物质量浓度,计算出反应过程得失电子摩尔数量。易获得,
207 准确度高,能够反应客观事实。容易与数值模式对接,也可用于预测。但计算时,
208 在一/二次污染物的分类上方面存在经验判断,尤其是对有机物的氧化产物判断
209 要依赖气溶胶飞行时间质谱这类高端仪器设备的分类探测数据。

210 2.2 大气氧化潜势指数(AOIp)的建立

 $AOI_{p} = \sum_{i=1}^{m} \left\{ \left[C_{j} \right] \times \sum_{i=1}^{n} k_{ij} \left[X_{i} \right] \right\} + \xi$

211 受到国内外学者早期研究工作的启发(程艳丽等,2008;林云萍等,2009),
212 作者从化学反应动力学基本原理出发,定量一次污染物在大气中准一级化学反应
213 氧化去除速率加和来表征大气氧化性,建立了另一个AOC评估指标,自定义为
214 大气氧化潜势指数(AOIp)。表达式为:

(3)

其中 AOIp 代表各还原性污染物种在大气中通过准一级氧化反应去除速率总 216 和,单位可选用"ppb/h"或者"moleculer cm-3 s-1"分子数; Ci 表示第 i 种还原性污 217 染物(SO₂、NO、CO、CH₄和 NMHCs 等);Xi 表示第 i 种氧化剂(OH、HO₂、 218 $NO_3 和 O_3$ 等); k_{ii}表示第 i 种污染物与第 i 种氧化剂反应的准一级化学反应速 219 率常数。目前,大多数学者选择采用 MCM 光化学机制中的速率常数。č表示未 220 测定的活性还原性污染物消耗氧化剂的去除速率,可通过计算的 OH 反应活性 221 (KoH) 与实测的 OH 总反应活性的差值来表征。由于观测技术的发展,与国内 222 外早期研究不同,目前 AOIp 计算所需大多数物种和浓度,均可通过外场观测实 223 验获取(Yang et al., 2021)。尤其是 OH、HO2 和 NO3 自由基浓度观测技术,中 224 国学者目前均取得了突破性进展(Lu et al., 2019; Yan et al., 2021)。 225

226 AOIp 这一指数的特点是:计算式中的"k"值大多数都可从文献获取,还原性
227 反应物主要物种可通过观测获取。自由基氧化剂观测数据目前并不丰富,但可通
228 过相应经验模型计算获得。因此,AOIp 计算难度不大,更容易与数值模式对接,
229 容易扩展应用。但总的来说,AOIp 计算的只是一种潜势,一种可能性,并不一
230 定真实发生,这一点与AOIe 截然不同,这也是二者可以进行闭合研究,寻找"丢
231 失"大气氧化过程的理论基础。

232 2.3 大气氧化性指数 AOIe 和 AOIp 的闭合研究方法

本文作者从大气氧化反应的结果(AOIe)和大气氧化的潜势(AOIp)两个 233 方向去描述同一个大气特性-AOC,试图从分析二者的差异寻找未被发现或是不 234 明确的大气氧化反应通道或是新机制。但两个指数的量纲不同,为了方便比对研 235 究,作者利用各自氧化进程的百分比法进行了无量纲归一化处理。以研究 AOC 236 日变化为例,具体做法为:计算出当天 AOIe 或 AOIp 的小时均值(也可以是分 237 钟或秒均值),然后计算出每个小时均值与当日最大值(或中值或平均值)的比 238 值作为归一化的数值,简写为"N AOIe"和"N AOIp"。如果评估或是预测一个污 239 染过程 AOC 的变化形式,可参照上述处理方法,先找出过程最大值(或中值) 240

241 进行归一化处理。

242 2.4 大气氧化能力指数的实际测算

243 为了研究这一大气化学理论问题,借助国家重点研发计划"区域大气氧化能
244 力与空气质量的定量关系及调控原理"研究,于 2017-2020 年,在中国科学院大
245 气物理研究所铁塔分部实验站和河北香河实验站开展了为期 4 年的观测实验。

246 2.4.1 北京铁塔观测站和河北香河观测站 AOIe 统计日变化

247 根据公式(1)和公式(2)以及北京铁塔观测站和河北香河观测站的外场观
248 测数据,对观测期间的AOIe进行了计算。本文所使用的夏季观测期时间段为2018
249 年6月1日至7月15日,冬季观测期时间段为2018年12月1日至2019年1
250 月15日,其中计算用到的观测数据包括臭氧、一氧化氮、二氧化氮,颗粒物化
251 学组分(硫酸盐、硝酸盐和二次有机气溶胶(SOA))以及颗粒物氧化状态(O:C
252 比)。其中,SOA来自气溶胶飞行时间质谱数据结合正交矩阵因子模型解析得
253 到,O:C来自气溶胶飞行时间质谱数据。

254 表1 北京和香河站点计算夏季和冬季 AOIe 所用到的外场观测数据统计

Table 1 Summary of the average pollutant concentrations used for calculating the AOIe values for the summer and winter campaigns at the urban site of Beijing and the suburabn site of Xianghe.

参数	北京铁塔观	测站	香河观测站	
	夏季	冬季	夏季	冬季
SOA (µg m ⁻³)	4.8±2.5	5.1±5.6	7.9±4.6	11.3±10.2
NO ₃ ⁻ (µg m ⁻³)	2.9±5.4	6.2±11.2	7.6±6.6	5.7±6.8

3.1±6.4

6.0±3.5

4.2±6.1

4.8±3.3

图 1 北京城市秋冬季和春夏季大气表观氧化指数变化特征。图中"P"代表从颗粒 263 态二次污染物浓度变化计算出的 AOIe, 简写成 AOIe P; "G"代表二次气态污染 264 物变化计算出 AOIe, 简写成 AOIe G; "T"代表大气氧化能力总量, 简写成 TAOIe。 265 Fig.1 Diurnal variation of the evaluation index of AOC during the summer and winter 266 campaigns at an urban site of Beijing. The "P" in the figure represents the AOIe 267 268 calculated from the particle-phase oxidation products, abbreviated as AOIe P. "G" represents the AOIe calculated from the gas-phase oxidation products, abbreviated as 269 AOIe G; "T" represents the total atmospheric oxidation capacity, abbreviated as 270 TAOIe. 271

由图1可知,北京城区 AOC 由两部分组成,通过气相均相氧化-还原反应生 273 成二次污染物计算出的大气氧化指数 AOle G 统计日变化 (观测期所有日变化过 274 程的平均)形式为午间单峰型(图1-2、⑤),准确表达出均相大气光化学过程 275 每日中午前后最为剧烈;通过颗粒态非均相氧化-还原反应生成二次污染物计算 276 出的大气氧化指数 AOle P 统计日变化形式则为双峰型(图 1-①、④),但夜间 277 的峰值远高于白天。准确表达出非均相大气化学过程往往发生在夜间,而白天的 278 气-粒转化非均相化学过程较弱。从 AOC 日变化总体形式 TAOle(图 1-③、⑥) 279 分析,北京城市大气 AOIe 总体日变化形式由均相大气光化学主控,但非均相化 280 学过程不可忽视, 尤其是秋冬季。较高的辐射强度和气温是驱动白天气相均相光 281 化学过程的主动力,而夜间较高的相对湿度造成的较高的气溶胶含水量加之较低 282 的混合层高度,造成了夜间较为强烈的非均相化学反应。图1-①、④午间出现的 283 次峰值,准确反应出白天强烈的气相化学反应过程均会伴随着气-粒转化发生, 284 往往是新粒子的生成过程。 285

286

272

287 图 2 河北香河秋冬季和春夏季大气表观氧化指数变化特征。图中"P"代表从颗粒
288 态二次污染物浓度变化计算出的 AOIe,简写成 AOIe_P; "G"代表二次气态污染
289 物变化计算出 AOIe,简写成 AOIe G; "T"代表大气氧化能力总量,简写成 TAOIe。

Fig.2 Diurnal variation of the evaluation index of AOC during the summer and winter campaigns at a suburban site in Xianghe, Hebei, China. The "P" in the figure represents the AOIe calculated from the particle-phase oxidation products, abbreviated as AOIe_P. "G" represents the AOIe calculated from the gas-phase oxidation products, abbreviated as AOIe_G; "T" represents the total atmospheric oxidation capacity, abbreviated as TAOIe.

296

图 2 是河北香河秋冬季和春夏季大气表观氧化指数变化特征。总体变化形式 297 与北京城区相似,尤其是春夏季几乎相差无几,但秋冬季表现出颗粒态非均相过 298 程对 TAOle 的贡献比例更大。但无论是香河郊区还是北京城区,与秋冬季节不同, 299 春夏季 AOIe P 峰值出现在早晨 8:00-10:00,并不完全与交通早高峰时间段吻合。 300 分析发现,这一时段,颗粒物中硝酸盐占比往往上升最快,其中硝酸铵比重最大, 301 并与早间大气中气态浓度峰值相一致。关于北京城市氨气早高峰原因的研究结果 302 为,汽车尾气排放的氨气被水汽吸收,夜间富集于植物叶片表面的露水中,随着 303 早间气温升高,露水蒸发释放气态氨,形成氨气早间高值(Gu et al., 2022)。碱 304 性氨气的早间高值无疑增加了对气态硝酸的中和,引发了颗粒态硝酸铵 305 (NH4NO3)的生成。酸碱中和反应并没有元素化合价的变化或是电子转移,对 306 AOIe 没有贡献,但却促发了四价氮 N(IV)-NO2 向五价氮 N(V)-HNO3 氧化-还原反 307 应平衡的向右移动。高氧化态产物增加,电子转移数目增多,AOIe 值升高。研 308 究揭示了华北大气中过量的氨释放,中和了氧化过程产生的酸性物质,一方面增 309 加了二次颗粒物的产率,另一方面引发的大气氧化性增强,也可能增加了臭氧的 310 产率(研究论文投稿中),造成了以PM2.5和臭氧为代表的大气复合污染增加。 311 因此, 通过降低氨排放降低大气复合污染, 表观上是控制了大气中和反应造成的 312 颗粒态污染增加,实际上对 AOC 具有间接的降低作用,也会同步降低气态臭氧 313 污染的上升。 314

本研究表明,大气中的 O_x (O₃+NO₂ 的摩尔浓度)是北京城区 AOIe 的最大
贡献者,夏季对 TAOIe 最高值 (14:00)的贡献为 93%,冬季为 84%。换句话说,
颗粒态非均相过程对 TAOIe 的贡献,夏季为 7%,而冬季高达 16%。在以往的大
气氧化能力研究中,非均相大气化学过程往往被忽视,从而在数值模式模拟二次
颗粒物产率时,往往会低估,造成对颗粒物污染浓度的预估严重偏低,同时也可
能造成对臭氧浓度模拟的过大偏差。

321 2.4.2 北京铁塔观测站和河北香河观测站 AOIp 统计日变化

根据公式(3)以及北京铁塔观测站和河北香河观测站的外场观测数据,对 322 观测期间的 AOIp 进行了计算。本文所使用的夏季观测期时间段为 2018 年 6 月 1 323 日至7月15日,冬季观测期时间段为2018年12月1日至2019年1月15日, 324 其中计算用到氧化剂包括臭氧,OH 自由基和 NO3 自由基,其中 OH 自由基和 325 NO3自由基由经验公式计算得到;还原性污染物观测数据包括一氧化碳、一氧化 326 氮、二氧化氮、二氧化硫以及 68 种挥发性有机物,详细的物种信息及其与主要 327 氧化剂的反应速率常数见(Liu et al., 2021b, 表 S1)。表 2显示了北京和香河站 328 点夏季和冬季观测期间主要氧化剂和还原性污染物的统计结果。 329

330 表 2 北京和香河站点计算夏季和冬季 AOIp 所用到的外场观测数据统计

Table2 Summary of the average concentrations of oxidants and gaseous pollutant used for calculating the AOIp values for the summer and winter campaigns at the urban site of Beijing and the suburban site of Xianghe.

参数	北京铁塔观测站		香河观测站	
_	夏季	冬季	夏季	冬季
$O_3 (\times 10^{12} \text{ cm}^{-3})$	1.3±0.8	0.2±0.2	1.5±1.0	0.3±0.3
OH (×10 ⁶ cm ⁻³)	1.2±1.7	0.5±0.9	1.8±2.4	0.2±0.6
NO ₃ (×10 ⁷ cm ⁻³)	1.3±1.0	0.1±0.2	2.0±1.8	0.2±0.5
NO (ppb)	3.8±4.8	22.5±31.0	2.7±5.0	68.1±85.5
NO ₂ (ppb)	18.9±9.8	19.1±11.2	15.2±7.8	29.1±17.0
CO (ppm)	1.4±0.4	1.1±0.6	$1.1{\pm}0.5$	1.7±1.2
SO ₂ (ppb)	0.8±0.9	4.1±2.7	2.8±1.2	4.2±24
Alkanes(ppb)	17.8±6.8	21.0±14.1	13.5±8.6	33.1±36.6
Alkenes(ppb)	3.7±1.1	8.1±6.9	2.8±2.3	11.6±13.5
Aromatics(ppb)	4.9±1.9	4.7±3.5	3.7±4.7	10.2±14.8
OVOCs(ppb)	10.5±3.3	4.2±5.1	3.6±1.2	3.4±4.9
Haloalkanes(ppb)	5.2±2.1	3.2±2.7	4.7±3.7	9.1±15.4

334

335

北京和香河夏季和冬季的大气氧化能力潜势日变化均呈现午间单峰型[见 336 Liu et al., 2021b, 图 5], 无论是夏季还是冬季, 其白天总量变化 TAOIp 均由分量 337 AOIp OH 主控,而夜间则由 AOIp O3 主控,但 NO3 的氧化作用也不可忽视,尤 338 其是夜间城市上空(Yan et al.,2021)。北京城区春夏季观测期 OH、O3 和 NO3 339 自由基表征的大气氧化能力分别为 2.38×107、3.10×106 和 4.89×105 molecules cm-3 340 s⁻¹,分别占总 AOIp 的 76.7%、22.2%和 1.0%。城区秋冬季观测期 OH、O3 和 NO3 341 自由基表征的大气氧化能力分别为 0.50×107、0.22×106 和 0.02×105 molecules cm-3 342 s⁻¹, 分别占总 AOIp 的 95.9%、4.1%和<0.01%。北京郊区春夏季观测期 OH、O3 343 和 NO3 自由基表征的大气氧化能力分别为 2.50×107、3.74×106 和 4.55×105 344 molecules cm⁻³ s⁻¹, 分别占总 AOIp 的 85.6%、12.8%和 1.6%。郊区秋冬季观测期 345 OH、O3 和 NO3 自由基表征的大气氧化能力分别为 0.81×107、0.19×106 和 0.05×105 346 molecules cm⁻³ s⁻¹, 分别占总 AOIp 的 80.9%、18.9%和 0.2%。无论是城区还是郊 347 区, 白天 AOIp 的主要贡献者均为 OH, 其次为 O3, 其氧化的主要燃料是烯烃 348 (>95%),而芳香烃贡献了其余部分;而夜间 AOIp 的主要贡献者均为 O3,由 349 于 OVOCs 浓度较低, NO3 自由基贡献较小。相比较夏季, 城区 OH 自由基对 AOC 350 的贡献在冬季进一步上升,而城郊则正好相反,冬季相比夏季 O3 表征的大气氧 351 化能力有所上升,这与氧化剂的主要燃料-挥发性有机物的物种组成在城区和郊 352 区存在较大差异有关。 353

AOIp 还原剂分量贡献最大者为烯烃,其次为芳香烃、OVOCs 和烷烃,氟氯 354 烃贡献最小[见 Liu et al., 2021b, 图 6]。综合分析来看,对大气氧化能力潜势影响 355 最大的是大气中的 OH 自由基与烯烃、芳烃和烷烃的一级光化学反应,需要指出 356 的是此处计算 OVOCs 的贡献时并未包含甲醛和乙醛等的观测结果, OVOCs 对 357 AOIp 的贡献可能存在低估,这从 2.4.3 节 AOIe 与 AOIp 的闭合分析可以看出上 358 述 OVOCs 物种对日间 AOIp 贡献较大;同时本研究发现,OVOCs 近年来对大气 359 氧化能力的作用越来越强,已经达到了十分显著的程度,这与最近在珠三角(Wu 360 et al., 2020; Wang et al., 2022) 等地报道的结果一致。 361

362 必须指出的是,本文定义的 AOIe 和 AOIp 算法公式,均是一个开放的体系,
363 可根据观测站点或区域的大气污染实际状况增减大气二次污染物、氧化剂或还原
364 剂的种类,但必须以客观实验数据为依据,对于无法获取的化学量,如 RO2 自

365 由基,暂不纳入计算体系,但不影响二者的归一化对比研究工作的开展和研究结366 果的相对客观性。

367 2.4.3 AOIe 与 AOIp 的闭合研究及其科学价值

368 根据研究者的定义, AOIe 只关注最终结果,忽略中间过程,但优势为全面
369 考虑了均相与非均相氧化反应过程,因此,更加接近客观的 AOC 量化表达。这
370 是本文作者独创的对 AOC 一种全新量化表达方式。AOIp 仅考虑气相均相过程,
371 而且是大气氧化反应发生潜势的一种表达方式,并不能反映出大气氧化反应的最
372 终结果,其优势是可以对大气氧化性进行预测。但理论上,二者应能趋于闭合。
373 为了分析导致 AOIe 和 AOIp 日变化差异的原因,研究者挑选了夏季和冬季外场
374 观测案例,评估可能忽略的反应途径和活性 VOCs 物种对 AOIp 的影响。

图 3-①和②显示了北京城区和城郊站点香河夏季和冬季的 AOIe 和 AOIp 归 375 一化指数的统计日变化特征的比对图,而图 3-③和④分别是夏季和冬季京津冀重 376 污染过程某一天的北京城区和香河修订后的归一化 AOIe 和 AOIp 比对图。正如 377 前文所述,由于 AOIe 和 AOIp 表征大气氧化性变化过程依据的化学反应途径和 378 时间尺度各有不同,因此,二者的量纲不同。为了对二者闭合分析以寻求可能"丢 379 失"的大气氧化反应或是途径,本文作者通过指数的每一个小时均值除以日最大 380 小时值将上述两个 AOC 指数归一化,转换为无量纲的百分比变化单位,简写为 381 NAOIe 和 NAOIp。从图 3-①和②可以看出, NAOIe 和 NAOIp 各自的统计日变化 382 形式城区与郊区夏季差别不大,但冬季有一定差异,但不十分显著。但两指数之 383 间相比,除了中午,其他时间段呈现较大差异,尤其是夜间,城市站点 NAOIe 384 和 NAOIp 差异约为 83%-96% [图 3-①], 而城郊站点为 80%-97% [图 3-②]。冬季, 385 两者的差异也同样出现在夜间,城市站点相差 98%- 99%,城郊站点相差 94%-386 96%。总体而言,两站点、两季节 NAOIp 出现峰值的时间均在午间,表现出气 387 相均相光化学过程对 AOC 潜势的主控;但两站点、两季节 NAOIe 出现峰值的时 388 间发生了显著变化,夏季与 NAOIp 相同出现在中午,而冬季则出现在夜间,表 389 明这两个 AOC 指数在表征大气氧化能力方面尚不能完全闭合,显示出我们对大 390 气氧化过程和机理的认知存在盲区。显然,冬季 AOle 的最大贡献者来自非均相 391 大气氧化过程,而这一点在以往的大气氧化能力研究中往往被忽视,因此,有必 392 要深入探讨。 393

395 图 3 北京城区和香河郊区①夏季观测期和②冬季观测期 NAOIe 和 NAOIp 统计日
396 变化图。北京为红色点线图,香河为黑色点线图;③夏季观测期典型污染个例和
④冬季观测期典型污染个例中 NAOIp 分量组成日变化累加图(柱状图)与 NAOIe
398 (点线图)的比对。

394

Fig.3 Diurnal variation of normalized AOIe (NAOIe) and normalized AOIp (NAOI) at the urban site of Beijing and the suburban site of Xianghe during ① summer campaign and ② winter campaign. The red dotted line and black dotted line represent for Beijing and Xianghe, respectively. Comparison of cumulative plots of daily variations in the composition of NAOIp components (histograms) with NAOIe (dotted line plots) in typical pollution cases during ③ summer campaign and ④ winter campaign.

406 在理解 AOC 内涵的基础上, 计算 AOIp 时考虑了主要氧化剂与 OVOCs 的一
407 级动力学均相氧化反应与多路径硫酸盐和硝酸盐的非均相化学反应。具体做法如
408 下:首先,使用了基于 MCM3.3.1 的箱式模型(F0AM)来模拟 OVOCs 的贡献。选
409 择夏季臭氧污染天(2018 年 7 月 4 日)和冬季颗粒物污染天(2019 年 1 月 12
410 日)作为案例的模型结果表明,甲醛、乙醛和苯甲醛是贡献 OH 消耗的重要物种,
411 三者贡献的 OH 消耗率可达 10 ppb/h,占 OH 总消耗率的近 30%;但三者对冬季

OH 消耗量贡献相对较低, OH 消耗率约为 2 ppb/h, 约占 OH 总消耗率的 12%。 412 因此,将 OVOCs 种类补充进 AOIp 的计算,可减少对 AOC 的低估。其次,为了 413 评估非均相过程对 AOC_的贡献, 研究者使用多相化学箱模型 414 (RACM-CAPRAM),并耦合了四种非均相硫酸盐生成机制(气溶胶相中H₂O₂、 415 O3、NO2和TMI催化氧化途径)来模拟硫酸盐和硝酸盐形成的非均相机制。为 416 了与 OVOCs 模拟结果一致,同样选择了夏季和冬季同时间案例。多相化学箱模 417 型模拟结果显示,在冬季案例中,气相均相反应的贡献仅占硫酸盐生成的45% 418 左右,而非均相反应的贡献超过 50%并主导了硫酸盐增长; Ye et al. (2021)的 419 研究也指出华北冬季重霾期间非均相反应途径对硫酸盐二次生成的贡献可达 420 70%左右,这证实了如果不考虑非均相机制,AOIp 会大幅低估 AOC。对于硝酸 421 盐,气相均相反应贡献了95%,在污染高峰阶段 N₂O₅ 水解途径贡献了5%。以 422 往的研究指出由于污染高峰阶段高浓度 NO 的存在, 使得近地面的 N₂O₅ 浓度接 423 近于零,因而 N₂O₅ 水解途径对硝酸盐生成的贡献可以忽略不计 (Wang et al., 424 2018),与本研究模拟的结果一致。 425

426 图 3-③和④显示了改进的 AOIp 的日变化特征,计算中加入了二次无机气溶
427 胶(SIA)形成的液相和非均相生成过程,分别为 2018 年 7 月 4 日京津冀区域
428 夏季重污染过程和 2019 年 1 月 12 日京津冀区域冬季重污染过程两站点 NAOIe
429 和 NAOIp 的日变化形式。在计算中添加 OVOCs 活性物种和非均相氧化过程在很
430 大程度上改善了 AOIp 对 AOC 的低估,从另一个角度反映出以往 AOC 研究对含
431 氧有机物的贡献考虑不足,而对多介质的非均相过程更是缺乏考虑,尤其是颗粒
432 物污染严重的冬季。

与图 3-①和②相比,考虑了非均相过程的 NAOIp 与同时测算的 NAOIe 数值 433 更加接近。图 3-③显示, 夏季重污染过程经过补充均相 OVOCs 和非均相 SIA 氧 434 化过程计算出的 NAOIp 与相应的 NAOIe 更加接近,尤其是中午时段 9:00-13:00 435 二者几乎重合,但下午直到夜间,差异仍然显著,有可能是 SOA 对 AOC 的贡 436 献计算的欠缺。图 3-④显示,冬季重污染过程经过补充均相 OVOCs 和非均相 437 SIA 氧化过程计算出的 NAOIp 发生了显著性变化, 夜间峰值与相应的 NAOIe 接 438 近重合,但白天午间峰值出现较大偏差。分析原因可能是冬季重污染过程光线弱、 439 温度低,不利于光化学反应的发生,大气中的氧化-还原反应几乎以非均相的二 440 次颗粒物生成过程主导。换句话说, AOIp 计算的仅是一种均相大气光化学反应 441

潜势,如果光热条件具备不充分,这种反应真实发生的可能性就会大幅度降低, 442 此时,大气氧化性主要由二次颗粒物生成的化学过程体现。这一点,也是以往相 443 关研究中被忽略的一个大气氧化过程或途径。需要强调的是, AOIp 和 AOIe 的计 444 算是一个开放的体系,开展归一化闭合研究的目的是为了寻找或是确认大气中 445 "丢失"的大气氧化过程或是通道,"填补"二者之间差异是本研究的目标和动力。 446 目前,AOIp和AOIe产生差异的原因可能是基于参数化方法计算的自由基浓度有 447 误差,另一方面原因是 AOIp 计算中仍未全面考虑 SOA 的非均相生成;此外, 448 二次污染物的区域传输或是排放源高氧化态污染直排均可造成局地 AOIe 计算值 449 虚假偏高。进一步研究不仅需要大气自由基的直接外场观测数据和厘清一次/二 450 次各类污染物来源,还需要进一步确认模式计算中采用各种反应动力学常数的准 451 确性,考虑多界面、多层次和多级大气氧化反应。 452

453 3 大气氧化能力研究的拓展与应用

454 3.1 不同颗粒物污染程度下 AOI 的演变

将北京城市和香河郊区站观测时段污染状况按照PM2.5日均浓度的环境空气 455 质量标准分成优-良-轻度-中度及以上四种状况,可得到 AOI 随颗粒物污染加重 456 变化趋势。随着污染程度的加重,无论是夏季或是冬季、城区或是郊区,总体上 457 AOIe 均随之升高;但 AOIp 的变化有所不同[见 Liu et al., 2021b, 图 9], 夏季随着 458 颗粒物污染的增强, AOIp 出现先升高后下降的趋势, 表现出较高的颗粒物浓度 459 对气相均相光化学过程产生了抑制作用。京津冀区域,这一 PM2.5 阈值区间为 460 75-115μg/m³。辛金元等研究认为,我国北方大气中 PM_{2.5}浓度达到 80μg/m³就会 461 显著影响大气水平能见度(Zhao et al., 2021),也就是说中度及以上污染太阳辐 462 射显著降低,大气均相光化学反应减弱,但不影响非均相大气化学过程的继续加 463 强。冬季随着颗粒物污染的加重,AOIp 整体下降的趋势,几乎与 AOIe 的变化完 464 全相反。说明我国北方区域冬季大气氧化能力主要受非均相化学过程所控制。 465

466 3.2 大气氧化能力与大气中的气态亚硝酸收支

467 大气中的气态亚硝酸(HONO)中心化学元素为N元素,价态为中间价态
468 +3 价,所以HONO既可以作为大气中的氧化剂,也可作为还原剂。HONO是对
469 流层大气HO_x(HO_x=OH+HO₂)的重要来源,是影响大气AOC变化的重要要素
470 之一。有研究认为,白天HONO光解对OH自由基的贡献可高达 60%以上,在
471 加速气相化学反应的同时,也可能导致硝酸盐和 SOA 的爆发性增长。但当前针

472 对 HONO 的来源尚未完全厘清,尤其是其非均相形成过程,探索其来源已成为
473 大气化学领域的难点和热点。针对上述问题,本文作者基于与 AOIe 的闭合研究
474 思路,以 HONO 实验观测的与盒子模型模拟的 AOIp 的差异性作为收支平衡研
475 究的突破口,两条路径交叉耦合,确立了适用于北京城市复杂大气环境下的
476 HONO 生成、降解机制的闭合研究方法,量化了 HONO 生成对大气关键氧化剂
477 HO_x的贡献。

研究结果显示,北京城区白天 HONO 主要来源于气相均相反应、颗粒物表 478 面光增强非均相反应、机动车尾气直排和地表面光增强非均相反应生成:夜间则 479 来自气相均相反应、大气 NO2 在地表面或颗粒物表面的非均相反应以及机动车 480 直排[见 Liu et al., 2021a, 图 5]。夏季白天 HONO 主要来自颗粒物和地表光增强 481 非均相反应、气相均相反应、机动车直排和硝酸盐颗粒的光解;其平均贡献分别 482 为 34.4%、22.0%、18.5%和 8.4%; 夜间, HONO 主要来源于 NO2 地表和颗粒物 483 表面的非均相化学反应、气相均相反应及机动车直排,其贡献分别为42.0%、 484 30.1%和 12.0%。冬季北京大气 HONO 来源夜间和白天没有显著区别,颗粒物表 485 面和地表光增强反应及机动车直排是三种主要来源,其日间的平均贡献分别为 486 29.7%、24.9%和 20.4%, 而夜间的平均贡献分别为 25.0%、17.5%和 27.9%。 487

以往研究 HONO 的来源时往往仅考虑气相均相反应, 大气中 HONO 浓度的 488 低估造成关键氧化剂 OH 自由基浓度的显著低估,从而造成 AOC 的严重低估。 489 耦合 HONO 新增源后,尤其是非均相化学源,使 OH 自由基的峰值平均浓度在 490 夏季提升了 39.7%, 而冬季则提升了 212.5%。 与 OH 自由基浓度变化相比, HO2 491 和 RO2 自由基浓度变化较小。耦合 HONO 新增源后,HO2 自由基的峰值浓度分 492 别提升了 20.0% (夏季) 和 195.7% (冬季)。RO2 自由基的峰值浓度分别提升了 493 8.3% (夏季) 和 240.7% (冬季)。HONO 新增源的加入, 使冬季 AOI 值提升更 494 显著,表明 MCM 机制对冬季 AOC 低估较为严重,迫切需要在数值模型中充分 495 考虑 HONO 的非均相来源(Liu et al., 2021a)。 496

497 3.3 AOIp 用于全国大气臭氧污染潜势预测

498 本文作者利用在华北区域不同背景条件(城市、乡村)的光化辐射通量、地
499 基太阳辐射分波段要素的同步观测数据,结合辐射传输模式建立了适合于华北区
500 域光化辐射通量重构的参数方案,并通过了不同气候带的适用性检验,结果显示
501 该参数化方案能够较好地应用于我国。利用中国生态研究网络(CERN)联网观

502 测的长时间紫外辐射数据,结合参数化方案利用辐射传输模式实现了全国光化辐
503 射通量的重构,最终形成了全国光化辐射通量数据集。利用光化辐射通量和观测
504 的污染气体建立了臭氧光化学生成表观潜势(AOIp_O₃)测算技术方法。

505 3.3.1 中国臭氧生成潜势指标的空间分布特征

研究表明,近地层大气中的臭氧主要来自于环境大气中 NO2 的光解产生的 506 氧原子 O(³P)与大气中占比 21%氧气的化学反应,参见以下反应方程式[1]-[3]; 507 而其主要汇是反应方程式(3)的臭氧被 NO 滴定。此时大气臭氧浓度平衡方程 508 可简写为: [O₃]=k₁[NO₂]/k₂[NO]。k₁大小取决于 NO₂的光解系数 J(NO₂), K₂也 509 接近于常数,因此,根据本文对 AOIp 的定义,臭氧生成潜势主要取决于 J(NO2) 510 和 NO₂ 及 NO。挥发性有机物对 O₃ 生成潜势的影响,则可通过其光化学反应生 511 成的 RO2 自由基对 NO 的氧化,最终也是通过 NO2 的环境大气浓度反映到臭氧 512 生成潜势,因此可以将 J(NO2)作为臭氧生成潜势指标。 513

514	NO ₂ + hv (^{$+$} L $)$ → NO + O(³ P) (k ₁)	[1]
515	$O_2 + O(^{3}P) (+ M) \rightarrow O_3(+ M)$	[2]

527 研究结果表明 J(NO₂)和紫外辐射一样主要受到云、气溶胶的影响,到达地面
528 的理想状况下的 J(NO₂)、紫外辐射都能够通过辐射传输模式精确获得。紫外辐射
529 和 J(NO₂)观测值与晴空条件下模拟值的比值定义为云修正因子为(分别表示为
530 CMF_{UV}和 CMF_J),通过紫外观测数据和模式获得紫外辐射和 J(NO₂)的云修正因
531 子,分析分析紫外辐射云修正因子与 J(NO₂)云修正因子存在很好的指数关系

(Zhao et al, 2021),从而利用紫外辐射云修正因子来进行 J(NO₂)云修正因子的 532 计算,然后结合模式计算的 J(NO₂)可以获得高精度的 J(NO₂)。把河北香河和北 533 京观测的 J(NO₂)和紫外辐射数据随机分为两组,一组用于重构方法的建立,另一 534 组用于重构效果的验证。在重构过程中假设云和气溶胶对辐射和光解速率的影响 535 是相互独立的,紫外辐射和 J(NO2)的云修正因子用公式(4)和(5)表示: 536

537
$$CMF_{UV} = \frac{UV_{obs}}{UV_{clear}}$$
 (4)

(5)

(6)

(7)

<u>Jobs</u> Jclear $CMF_I =$ 其中, UV_{clear}和 J_{clear}分别代表用 TUV 模型计算的无云条件下的紫外辐射和 539 光解速率, UV_{obs}和 J_{obs}分别代表紫外辐射和光解速率的观测值。分别将香河和 540 北京的 CMF_{UV} 和 CMF_J进行拟合即可得到基于紫外辐射观测的 CMF_J。 541

542
$$CMF_{Icloud} = 0.38 \times e^{1.07 \times CMF_{UV}}$$

538

543
$$J_{cloud} = J_{clear} \times 0.38 \times e^{1.07 \times CMF_{UV}}$$

检验结果表明建立的重构方法能够获得较高精度的计算值, J(NO₂)瞬时观测 544 值与计算瞬时线性拟合回归系数为 0.96, 平均相对误差为 6.5% (图 4)。并进行 545 重构方法适用性检验,把北京站点建立的参数化方案应用与香河,分析重构方法 546 的精度较北京本地有较小的下降。这个表明该区站点建立的参数化方案可以较好 547 地应用于该气候区域。 548

Fig.4 Comparison of modeling and observed $J(NO_2)$ (1) Beijing and (2) Xianghe. 552

553 The red dotted line represent for linear regression.

554

利用上面的方法对长期的光解速率 J(NO2)进行重构值, 2005~2019 年期间, 555 J(NO₂)同样呈上升趋势,年均增幅为1.19%,且上升趋势在2014之后尤为明显; 556 紫外辐射总体也呈上升趋势,但年均增幅仅为0.31%。整个时段内J(NO2)的平均 557 值为 2.70×10⁻³ s⁻¹, 明显小于香河地区; 其中, 年平均最高值为 3.07×10⁻³ s⁻¹ (2019 558 年),最低值为2.42×10⁻³ s⁻¹(2008年)。紫外辐射年均值为0.39 MJ·m⁻²·d⁻¹,同 559 样小于香河地区;年平均最高值和最低值对应年份与 J(NO2)不同,最高值在 2016 560 年(0.41 MJ·m⁻²·d⁻¹),最低值在 2006 年(0.36 MJ·m⁻²·d⁻¹)。与香河地区一致的 561 是,北京地区 J(NO₂)的增幅同样比紫外辐射的增幅更大。AOD 在 2005~2019 年 562 间总体呈下降趋势,年平均值为0.82,平均每年下降2.56%[见 Zhao et al., 2021, 图 563 564 5]。

利用重构获得 1961-2020 年全国 724 个气象站点紫外辐射数据(吴彤等, 565 2023),结合辐射传输模式获得全国 CMFuv,通过 CMFuv和 CMF1 的拟合方程 566 获得了全国范围不同区域的 CMF_J; 然后结合 TUV 计算获得的晴空条件下的 J 567 (NO₂) 计算获得了 J(NO₂)数据。利用重构的 60 年 J(NO₂)发现全国 J(NO₂)的年 568 均值为4.39×10-3 s-1。光解速率高值区主要分布在四川、贵州、重庆和湖南等地, 569 而我国东北、华北、西北以及青藏高原地区的J(NO2)相对较小(图5)。2020 570 年全国绝大多数地区的 J(NO2)与 1961 年相比都呈现为增长的趋势,特别是中东 571 部增长趋势更为明显。该数据为使用 AOIp O3测算我国各重点区域臭氧污染潜 572 势提供了高精度的数据支撑。 573

575 图 5 2020 年较 1961 全国各站点 J(NO2)变率

576 Fig.5 The spatial variation of change rate of J(NO₂) compared 1961 to 2020 in China

577

574

578 3.4 大气氧化能力指数与其他氧化指数的比对

基于香河地区 2019 年夏季 O3 及前体物挥发性有机化合物 (VOCs)、NOx 579 的连续观测, 划分 O3 超标天与非超标天, 依据经验公式并结合 0-D 光化学箱模 580 型(NCAR-MM)探究前体物对 O3生成的影响,评价指标包括 OH 反应性(K^{OH}, 581 OH reactivity)、臭氧生成潜势(OFP, O3 formation potential)和相对增量反应活 582 性(RIR, relative incremental reactivity),同时与AOC 表征指数(AOIp G 和 583 AOIe G)比对研究,从气态氧化过程及气态氧化产物的角度,量化观测期间 AOC 584 的变化。由图 6-①~③可以清晰地看出, K^{OH}、OFP 与 RIR 类似, 均表征出 O3 585 超标天的前体物 VOCs 反应性高于非超标天,较高的前体物反应性对应着较高浓 586 度的 O₃, 白天均值分别为 10.4 s⁻¹、331.7 μg m⁻³ 和 0.91 %/%。其中人为源 VOCs 587 (AVOCs)的活性占比均较高,超标天日均 K^{OH}-AVOCs、OFP-AVOCs、 588 RIR-AVOCs 分别占 65% (6.7 s⁻¹) 、86% (284 µg m⁻³) 和 72% (0.66%/%)。就 589 VOCs 的不同类别而言, K^{OH}中含氧 VOCs (OVOCs)的份额(占 K^{OH}-VOCs 44%) 590 超过异戊二烯(占 K^{OH}-VOCs 的 35%),对 O₃的形成起着至关重要的作用,而烷 591 烃、烯烃和芳烃所占比例均小于 10%; OVOCs 与芳香烃有着较高的臭氧生成潜 592 势,这两类 VOCs 的 OFP 占比均超过异戊二烯(14%),分别为 48、23%;而 593 芳香烃在 RIR 中占比最高(30%),异戊二烯、OVOCs 与烯烃的 RIR 占比也较 594

595 高(28、22、16%)。

597 图 6 香河地区分时段的平均 K^{OH}、OFP、RIR、AOIp_G 和 AOIe_G,统计分析时段为白天(day, 06:00-18:00)、上午(forenoon, 06:00-12:00)和下午(afternoon, 13:00-18:00)
599 Fig.6 Comparison of daytime (06:00–18:00 LT), forenoon (06:00–12:00 LT), and afternoon (13:00–18:00 LT) K^{OH} (1), OFP (2), RIR (3), total AOIp_G (4), and AOIe_G (5) during different

601

periods.

602

596

AOC 量化指数 AOIp_G 和 AOIe_G 变化形式具有一致性,O3 超标天的
AOIp_G 和 AOIe_G 均显示出强于非超标天,日均分别为 6.7×10⁷ molec cm⁻³ s⁻¹
和 8.5mol m⁻³,表征出较高的大气氧化能力可能促发 O3 污染的发生。总体上,上
午时段臭氧前体物光化学活性表征指数 K^{OH}、OFP 和 RIR 均高于下午时段,
AOIp_G 和 AOIe_G 的变化与上述三个指数具有一致性,表明它们具有相同的内
在驱动力。K^{OH}、OFP、RIR 通常用于表征一次前体物通过大气中复杂的氧化还

609 原反应对二次污染物 O₃的相对贡献,而大气氧化性指数 AOIp_G 和 AOIe_G 作
610 为大气氧化能力的量化指标则更为全面,还囊括了最终生成其他二次污染物如
611 SOA 的部分大气氧化能力。AOIe_G 从产物的角度出发,包含多种相态的反应过
612 程,更接近实际的大气氧化能力,而 AOIp_G 仅量化气态前体物被氧化剂氧化的
613 潜势(可能性),仅考虑了气相反应部分所对应的大气氧化能力。

614

615 图 7 香河地区白天 AOIp_G (1)、(3)和 AOIe_G (2)、(4)与 O₃小时浓度变化与 O₃生成速率的
616 相关性,色阶和圆圈大小表示 RIR VOCs 与 RIR NO_x的大小。

Fig.7 Correlation of daytime AOIp_G with (1) hourly O₃ concentrations, (3) but for correlation of daytime AOIp_G with P(O₃) with color indicted RIRs of VOCs (AVOC plus isoprene) and size of the circle represented RIRs of NOx. Correlation of daytime AOIe_G with (2) hourly O₃ concentrations, (4) but for correlation of daytime AOIe_G with P(O₃) while meaning of the circle size and color is similar to (a) and (b).

而发生变化,前体物处于持续消耗的状态,得益于 BVOC 与气温正相关的排放 626 率对 VOCs 总浓度的补给。环境大气上午早间时段从富 NO_x条件向下午时段贫 627 NO_x 的状态转变, O_3 生成敏感性也由 VOCs 控制区转向 VOCs 与 NO_x的协同控 628 制区。AOIp G 和 AOIe G 可以较好地指示环境 O3 的污染水平,其中 AOIe G 与 629 O3小时浓度呈现良好的线性相关。AOIp G 增加表征出 ROx氧化 NO 的气相均相 630 反应增加, 臭氧产量增加, 在贫 NO_x条件下, RO_x之间的反应增强, 部分 AOIp G 631 表征二次有机气溶胶产率的增加。AOIe G 涵盖了多相反应过程,较好地捕捉了 632 大气光化学过程,即二次产物的水平和变化;相比之下,AOIp G 只评估了前体 633 物气态氧化过程的可能性,并且以 VOCs 氧化为主,因此表征出 AOIp G 和 O3 634 浓度之间的较为复杂的相关关系。 635

636

637 4 结论

在认知大气氧化性内涵的基础上,创新性地建立了AOC的量化研究方法, 638 构建出表观大气氧化能力指数AOIe和大气氧化能力潜势指数AOIp,并通过二者 639 归一化闭合量化研究,揭示出了非均相化学过程对AOC具有显著性贡献,尤其 640 641 在重霾污染或是在夜间高湿环境条件下,非均相大气氧化过程往往成为AOC的 主导。随着颗粒物污染的加重,表观大气氧化能力指数AOIe随之呈线性增加, 642 并且不受季节变化影响;大气氧化能力潜势指数AOIp夏季有与AOIe相似的变化 643 趋势,但其冬季则出现了相反的情景,表现出AOIp的变化受气象条件影响更大, 644 主要是温度和辐射变化的限制。闭合思路用于大气最重要氧化剂OH自由基储库 645 分子HONO研究,发现北京大气HONO具有重要的非均相来源,由此阐释了广泛 646 应用的MCM机制对冬季AOC低估的重要原因。大气氧化能力潜势指数用于预测 647 我国大气臭氧污染潜势格局,发现AOIp O3与J(NO2)直接相关,全国J(NO2)的年 648 均值为4.39×10-3 s-1,高值区主要分布在四川、贵州、重庆和湖南等地。与其他大 649 气化学反应氧化性指标对比,本文构建的AOI更具准确性、普适性和实用性,不 650 但可评价已发生的污染过程AOC的变化,亦可预测城市或区域重污染发生的可 651 能性及其变化趋势。本研究在理论和技术上获得了双重突破,为基于AOC调控 652 653 原理的大气PM2.5和臭氧复合污染的协同控制策略制定提出了一条新的路径。

654

655 致谢:本研究得到国家重点研发计划项目"区域大气氧化能力与空气质量的定量
656 关系及调控原理,编号: 2017YFC0210000"和国家"大气重污染成因与治理公
657 关项目"课题"京津冀及周边地区大气污染综合立体观测网,编号: DQGG0101"
658 的资金支持。感谢项目研究过程中中国科学院大气物理研究所香河试验站、325
659 米铁塔维护工作人员和北京大学等诸多合作单位的鼎力支持。

660 参考文献:

- 661 安俊琳, 杭一纤, 朱彬, 等. 2010. 南京北郊大气臭氧浓度变化特征 [J]. 生态环
 662 境学报, 19(6): 4. An Junlin, Hang Yixian, Zhu Bin, et al. 2010. Observational
 663 study of ozone concentrations in northern suburb of Nanjin [J]. Ecology and
 664 Environmental Sciences (in Chinese), 19(6): 1383-1386.
- 665 Carlton A G, Pinder R W, Bhave P V, et al. 2010. To What Extent Can Biogenic SOA
 666 be Controlled [J]? Environmental Science & Technology, 44(9): 3376-3380.
 667 doi:10.1021/es903506b
- 668 程艳丽, 王雪松, 刘兆荣, 等. 2008. 大气氧化性定量表征方法的建立及其应用
- [J].中国科学 B: 化学, 38(10): 938-946. Cheng Yanli, Wang Xuesong, Liu
 Zhaorong, et al. 2008. Establishment and application of quantitative
 characterization method for atmospheric oxidation [J]. Science in China Series B:
 Chemistry (in Chinese), 38(10): 938-946.
- Cheng Y L, Bai Y H, Li J L, et al. 2007. Modeling of air quality with a modified
 two-dimensional Eulerian model: A case study in the Pearl River Delta (PRD)
 region of China [J]. Journal of Environmental Science, 19(5): 572-577,
 doi:10.1016/S1001-0742(07)60095-3
- Chow K S, Huang X H H, Yu J Z, 2016. Quantification of nitroaromatic compounds
 in atmospheric fine particulate matter in Hong Kong over 3 years: field
 measurement evidence for secondary formation derived from biomass burning
 emissions [J]. Environmental Chemistry, 13(4): 665-673. doi:10.1071/EN15174
- Gao M, Carmichael G R, Wang Y S, et al. 2016. Improving simulations of sulfate 681 aerosols during winter haze over Northern China: the impacts of heterogeneous 682 oxidation by NO_2 [J]. Front. Environ. Sci. Eng., 10, 16. 683 doi:0.1007/s11783-016-0878-2 684
- 685 葛茂发, 刘泽, 王炜罡. 2009. 二次光化学氧化剂与气溶胶间的非均相过程 [J].

- b 地球科学进展, 24(04): 351-362. Ge Maofa, Liu Ze, Wang Weigang. 2009.
 Heterogeneous Processes between Secondary Photochemical Oxidants and
 Aerosols [J]. Advances In Earth Science (in Chinese), 24(04): 351-362.
- Gu M N, Pan Y P, Walters W W, et al. 2022. Vehicular Emissions Enhanced Ammonia
 Concentrations in Winter Mornings: Insights from Diurnal Nitrogen Isotopic
 Signatures [J]. Environ. Sci. Technol., 56: 1578–1585.
- He H, Wang Y S, Ma Q X, et al. 2014, Mineral dust and NO_x promote the conversion
- of SO₂ to sulfate in heavy pollution days [J]. Scientific Reports, 4: 4172.
 doi:10.1038/srep04172
- Hofzumahaus A, Rohrer F, Lu K D, et al. 2009. Amplified Trace Gas Removal in the
 Troposphere [J]. Science, 324(5935): 1702-1704. doi:10.1126/science.1164566
- Kelly N A, Gunst R F, 1990. Response of ozone to changes in hydrocarbon and
 nitrogen-oxide concentrations in outdoor smog chambers filled with Los Angeles
 air [J]. Atmos. Environ., Part A, 24 (12): 2991-3005
- Kylling A, Webb A R, Bais A F, et al. 2003. Actinic flux determination from
 measurements of irradiance [J]. J. Geophys. Res., 108(D16): 4506.
 doi:10.1029/2002JD003236
- Laskin A, Laskin J, Nizkorodov S A, 2015. Chemistry of atmospheric Brown carbon
 [J]. Chem. Rev., 115 (10): 4335-4382.
- Li J T, An X Q, Cui M, et al. 2021. Simulation study on regional atmospheric
 oxidation capacity and precursor sensitivity [J]. Atmospheric Environment, 263:
 118657. doi:10.1016/j.atmosenv.2021.118657
- 708 林云萍,赵春生. 2009. 对流层大气氧化性研究进展 [J].地球科学进展, 24(5):
- 488-496. Lin Yunping, Zhao Chunsheng. 2009. The Oxidation in the
 Troposphere: A Review [J]. Advances In Earth Science (in Chinese), 24(5):
 488-496.
- Liu J Y, Liu Z R, Ma Z Q, et al. 2021a. Detailed budget analysis of HONO in Beijing,
 China: Implication on atmosphere oxidation capacity in polluted megacity [J].
 Atmospheric Environment, 244: 117957.
- Liu Z R, Wang Y S, Hu B, et al. 2021b. Elucidating the quantitative characterization
 of atmospheric oxidation capacity in Beijing, China [J]. Science of the Total
 Environment, 771: 145306. doi:10.1016/j.scitotenv.2021.145306
- 718 Lu K, Guo S, Tan Z, et al. 2019. Exploring atmospheric free-radical chemistry in

- China: the self-cleansing capacity and the formation of secondary air pollution
 [J]. Natl Sci Rev, 6: 579-594. doi:10.1093/nsr/nwy073
- Madronich S, 1987. Photodissociation in the atmosphere: 1. Actinic flux and the
 effects of ground reflections and clouds [J]. J. Geophys. Res., 92(D8):
 9740–9752, doi:10.1029/JD092iD08p09740
- 724Palancar G G, Fernandez R P, Toselli B M, 2005. Photolysis rate coefficients725calculations from broadband UV-B irradiance: model-measurement interaction726[J].AtmosphericEnvironment, 39(5): 857-866.
- 727 doi:10.1016/j.atmosenv.2004.10.033
- Prinn G R, 2003. The cleansing capacity of the atmosphere [J]. Annu. Rev. Environ.
 Resour., 28: 29–57.
- Ran L, Zhao C S, Xu W Y, et al. 2012. Ozone production in the megacities of Tianjin
 and Shanghai, China: a comparative study [J]. Atmospheric Chemistry and
 Physics, 12: 7531–7542. doi:10.5194/acpd-12-9161-2012
- Ren R X, Shao K S, Tang S Y, 2001. Measurement of gas-phase OH using liquid
 phase scrubbing and high performance liquid chromatography [J]. Environ.
 Chem. 20 (1): 81–85.
- Seinfeld J, Pandis S, 2016. Atmospheric chemistry and physics: from air pollution to
 climate [M], third edition, John Wiley & Sons, Inc., Hoboken, New Jersey.
- Shao M, Ren X R, Wang H X, et al. 2004. Quantitative relationship between the
 formation and elimination of hydroxyl radicals and hydrogen peroxide radicals in
 urban air [J]. Chin. Sci. Bull. 49 (17): 1716–1721.
- Surratt J D, Chan A W H, Eddingsaas N C, et al. 2010. Reactive intermediates
 revealed in secondary organic aerosol formation from isoprene [J]. Proceedings
 of the National Academy of Sciences of the United States of America, 107(15):
 6640-6645. doi:10.1073/pnas.0911114107
- Tang X, Li J, Dong Z X, at al. 1989. Photochemical pollution in Lanzhou, China-A
 case study [J]. Journal of Environmental Science, 1(1): 31-37.
- Toon O B, McKay C P, Ackerman T P, et al. 1989. Rapid calculation of radiative
 heating rates and photodissociation rates in inhomogeneous multiple scattering
 atmospheres [J]. J. Geophys. Res., 94(D13): 16287–16301.
 doi:10.1029/JD094iD13p16287
- Trebs I, Bohn B, Ammann C, et al. 2009. Relationship between the NO₂ photolysis
 frequency and the solar global irradiance [J]. Atmos. Meas. Tech., 2: 725–739.

- Thornton J, Kercher J, Riedel T, et al. 2010. Large atomic chlorine source inferred
 from mid-continental reactive nitrogen chemistry [J]. Nature 464: 271–274.
 doi:10.1038/nature08905
- Wang F L, Du W, Lv S J, et al. 2021. Spatial and temporal distributions and sources of
 anthropogenic NMVOCs in the atmosphere of China: A review [J]. Adv. Atmos.
 Sci., 38(7): 1085-1100. doi:10.1007/s00376-021-0317-6
- Wang G H, Zhang R Y, Zamora M L, et al. 2016. Persistent Sulfate Formation from
 London Fog to Chinese Haze [J]. Proceedings of the National Academy of
 Sciences of the United States of America, 48 (113):13630-13635.
- Wang H C, Lu K D, Chen X R, et al. 2018. Fast particulate nitrate formation via
 N2O5 uptake aloft in winter in Beijing [J]. Atmos. Chem. Phys., 18,
 10483-10495. doi:10.5194/acp-18-10483-2018
- Wang T, Ding A J, Gao J, et al. 2006. Strong ozone production in urban plumes from
 Beijing, China [J]. Geophysical Research Letters, 33(21): 320-337.
- Wang W J, Yuan B, Peng, Y W, et al.. 2022. Direct observations indicate
 photodegradable oxygenated volatile organic compounds (OVOCs) as larger
 contributors to radicals and ozone production in the atmosphere [J]. Atmos.
 Chem. Phys., 22, 4117-4128. doi:10.5194/acp-22-4117-2022
- Wang Y H, Riva M, Xie H B, et al. 2020. Formation of highly oxygenated organic
 molecules from chlorine-atom-initiated oxidation of alpha-pinene [J]. Atmos.
 Chem. Phys., 20: 5145-5155.
- 774 王跃思,姚利,王莉莉,等. 2014. 2013 年元月我国中东部地区强霾污染成因分析
- 775 [J]. 中国科学: 地球科学, 44: 15-26. Wang Yuesi, Yao Li, Wang Lili, et al. 2014.
- Mechanism for the formation of the January 2013 heavy haze pollution episode
 over central and eastern China [J]. Science China: Earth Sciences (in Chinese),
 57: 14–25. doi:10.1007/s11430-013-4773-4
- Wu C H, Wang C M, Wang S H, et al. 2020. Measurement report: Important
 contributions of oxygenated compounds to emissions and chemistry of volatile
 organic compounds in urban air [J]. Atmos. Chem. Phys., 20, 14769-14785.
 doi:10.5194/acp-20-14769-2020
- 783 吴彤, 刘慧, 胡波, 等. 2022. 2015-2020 年中国紫外辐射重构数据集 [J]. 中国科
 784 学数据:中英文网络版, 7(4): 12. Wu Tong, Liu Hui. Hu Bo, et al. 2022. A
 785 dataset of ultraviolet radiation reconstruction in China during 2015-2020 [J].

- 786 Science Data Bank (in Chinese), 2022-07-18.
- Xue M, Ma J Z, Tang G Q, et al. 2021. ROx budgets and O₃ formation during
 summertime at Xianghe Suburban Site in the North China Plain [J]. Adv. Atmos.
 Sci., 38(7): 1209-1222. doi:10.1007/s00376-021-0327-4
- Yan Y H, Wang S S, Zhu J, et al. 2021. Vertically increased NO₃ radical in the
 nocturnal boundary layer [J]. Science of the Total Environment, 763: 142969.
- Yang Y, Wang Y H, Huang W, et al. 2021. Parameterized atmospheric oxidation
 capacity and speciated OH reactivity over a suburban site in the North China
 Plain: A comparative study between summer and winter [J]. Science of The Total
 Environment, 773(15): 145264.
- Ye C, Chen H, Hoffmann E H, et al. 2021. Particle-phase photoreactions of HULIS
 and TMIs establish a strong source of H2O2 and particulate sulfate in the winter
 North China Plain [J]. Environ. Sci. Technol., 55 (12): 7818-7830.
- Zhang R Y, Wang G H, Guo S, et al. 2015. Formation of Urban Fine Particulate
 Matter [J]. Chemical Review, 115(10): 3803-3855. doi:
 10.1021/acs.chemrev.5b00067
- Zhang Y H, Shao K S, Tang X Y, 1998. The Study of Urban Photochemical Smog
 Pollution in China [J]. Acta Scientiarum Naturalium Universitatis Pekinensis,
 34(2): 392-400. doi:10.13209/j.0479-8023.1998.116
- Zhao D D, Xin J Y, Gong C S, et al. 2021. The impact threshold of the aerosol
 radiation forcing on the boundary layer structure in the pollution region [J].
 Atmospheric Chemistry and Physics., 21: 5739–5753.
 doi:10.5194/acp-21-5739-2021
- Zhao S M, Hu B, Du C J, et al. 2021. Photolysis rate in the Beijing-Tianjin-Hebei
 region: Reconstruction and long-term trend [J]. Atmospheric Research, 256:
 105568. doi:10.1016/j.atmosres.2021.105568.
- Zheng J, Zhong L, Wang T, et al. 2010. Ground-level ozone in the Pearl River Delta
 region: Analysis of data from a recently established regional air quality
 monitoring network [J]. Atmospheric Environment, 44(6): 814-823.
 doi:10.1016/j.atmosenv.2009.11.032
- 816