沙尘和生物气溶胶的环境和气候效应 沙尘和生物气溶胶的环境和气候效应
  大气科学  2018, Vol. 42 Issue (3): 559-569   PDF    
沙尘和生物气溶胶的环境和气候效应
石广玉1,2, 檀赛春1,2, 陈彬2,3     
1 中国科学院大气物理研究所大气科学与地球流体力学国家重点实验室, 北京 100029
2 南京信息工程大学气象灾害预报预警与评估协同创新中心, 南京 210044
3 中国科学院大气物理研究所云降水物理与强风暴重点实验室, 北京 100029
摘要: 沙尘气溶胶对海洋生态系统的影响及其气候与环境效应,以及生物气溶胶对人类健康的影响及其气候效应是近年来大气气溶胶研究的热点问题。沙尘气溶胶和生物气溶胶之间有很强的联系,沙尘可作为空气中微生物的载体,沙尘气溶胶影响海洋生态系统之后又会影响海洋上空生物气溶胶的产生。本文回顾了国内外沙尘气溶胶对太平洋海域生态系统影响的研究进展,以及生物气溶胶的研究历史和气候效应,特别是中国科学院大气物理研究所十多年来的有关工作。
关键词: 沙尘      生物气溶胶      生态环境      气候效应     
Environmental and Climatic Effects of Mineral Dust and Bioaerosol
SHI Guangyu1,2, TAN Saichun1,2, CHEN Bin2,3     
1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
2 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044
3 Key Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
Abstract: Effects of mineral dust aerosol on marine ecosystem and impacts of bioaerosol on human health, their climatic and environmental effects are a hot issue in the study of atmospheric aerosols in recent years. There is a strong connection between dust aerosol and bioaerosol. Dust can be used as a carrier of airborne microorganisms. The formation and emission of bioaerosol over ocean can be affected by mineral dust deposited into the marine ecosystem. This paper reviews the researches of the impacts of mineral dust aerosol on marine ecosystem in the Pacific Ocean and the research history and climatic effects of bioaerosol, especially the works of the Institute of Atmospheric Physics, Chinese Academy of Sciences over more than ten years.
Key words: Mineral dust      Bioaerosol      Ecological environment      Climatic effects     
1 引言

政府间气候变化专门委员会第5次科学评估报告(Stocker et al., 2013)指出,全球平均地面温度从19世纪后期开始增暖,线性趋势得出在1880~2012年间上升了0.85℃。这种增暖不仅出现在地面,而且自20世纪中期以来对流层温度也在增暖。因此会引起地球气候系统其他要素的变化,例如,大气环流的变化、海平面上升、降水格局、海冰和极端事件的变化。在联合国气候变化大会上,从1997年《京都议定书》到2015年《巴黎协定》的签订都表明各国对全球气候变化的关注。因此,全球气候变化是当前国际社会普遍关心的重大全球性问题。造成气候变化的原因是对地球能量平衡造成直接或间接影响的各种因子,包括自然(太阳辐射变化和火山活动等)和人为(温室气体、大气气溶胶、气溶胶—云相互作用、土地利用变化、凝结尾迹等)因子。大气气溶胶是悬浮在大气中的固体和液体微粒共同组成的多相体系的颗粒物质。一般认为,大气气溶胶粒子的直径在几纳米到几十微米之间。大气气溶胶可作为云凝结核(Cloud Condensation Nuclei,CCN)和冰核(Ice Nuclei,IN)影响云的形成。大气气溶胶和云在估计和解释地球能量平衡的因子中不确定性最大,依然是今后需要加强研究的热点科学问题(石广玉等,2008)。

沙尘气溶胶,即矿物沙尘(mineral dust),是大气气溶胶的重要组成部分,主要来源于沙漠和干旱半干旱地面的风蚀、土壤再悬浮以及一些农业和工业活动(如水泥生产等)(王明星,1999石广玉等,2008)。沙尘暴的发生不仅造成源区和下风方区域的土壤风蚀、退化,人畜伤亡等直接灾害,还会通过增加大气中可吸入颗粒物、减少能见度和入射辐射而引起气候、环境和人体健康等重要作用(王明星和张仁健,2001石广玉和赵思雄,2003Wang et al., 2006;石广玉等,2008高会旺等,2009; Yue et al., 2010)。沙尘气溶胶因其可以成为人为物质和微生物的输送和反应的载体而具有重要的气候环境效应,并增加其作为冰核和云凝结核的潜力,引起气溶胶—云相互作用(Yin and Chen, 2007; Matsuki et al., 2010; Li et al., 2011, 2012; Solomos et al., 2011Jeon et al., 2013Soleimani et al., 2016; Yuan et al., 2017)。沙尘气溶胶在沉降入海以后,还会影响海洋生物地球化学循环和生物生产力,影响海洋上空生物源气溶胶的产生,进而对气候和沙尘产生引起反馈作用(Jickells et al., 2005)。

沙尘气溶胶对海洋生态系统的影响及其气候环境效应一直是大气科学和海洋科学界交叉研究的热点,特别是国际上层海洋—低层大气研究计划(SOLAS)及其特设工作组——亚洲沙尘与海洋生态系统(ADOES)的核心研究内容。SOLAS计划将“大气沉降和海洋生物地球化学循环”列为2015~2025年的五个核心主题之一(Brévière and the SOLAS Scientific Steering Committee, 2016)。其他一些重要国际研究计划,如国际全球大气化学计划(IGAC)、痕量元素与同位素海洋生物地球化学(GEOTRACES)和海洋生物圈整合研究计划(IMBeR)等也涉及大气气溶胶和海洋生物地球化学的相关研究。

生物气溶胶是指悬浮在大气中的生物性颗粒物,是大气气溶胶的重要组成部分,它来源于全球生态系统包括海洋生态系统(王明星, 1999;石广玉等, 2008)。生物气溶胶因对人类健康的影响而受到广泛关注,之后有研究发现生物气溶胶粒子能够作为冰核和云凝结核参与降水形成(祁建华和高会旺, 2006),生物气溶胶的气候效应开始受到关注。大气生物气溶胶作为一门新兴的交叉学科,涉及大气科学、生命科学、物理学、化学、地理科学等多种学科,与各个领域都有密切关系,其对于空气环境、人类健康以及气候效应的影响都已成为今后大气气溶胶科学研究的重要科学问题之一(杜睿, 2006;魏文斐等, 2018)。

一方面大气气溶胶沉降对海洋生态系统的影响和生物气溶胶是近年来大气气溶胶研究的热点科学问题;另一方面沙尘可作为微生物的载体,很多生物气溶胶伴随沙尘而出现(Jeon et al., 2013Soleimani et al., 2016Yuan et al., 2017);再者,大气沉降影响海洋生态系统之后,又会影响海洋上空生物气溶胶的产生,二者之间具有紧密的联系。因此,本文将从大气气溶胶沉降和生物气溶胶角度出发,回顾1980年代末以来大气沉降对太平洋海域生态系统影响的研究进展,以及生物气溶胶的研究历史和气候效应,特别是中国科学院大气物理研究所十多年来的有关工作。

2 大气(沙尘)气溶胶沉降及其对海洋生态系统的影响 2.1 背景

大气气溶胶沉降,特别是沙尘气溶胶沉降,会给海洋带来宏量(如氮、磷等)和微量(如铁等)营养物质(Jickells et al., 2005; Duce et al., 2008;陈莹等, 2010; Furutani et al., 2010; Qi et al., 2013; Shi et al., 2013;高会旺等, 2014),从而影响这些海域的海洋生物地球化学循环和生态系统,影响海洋初级生产力,进而影响CO2和二甲基硫(dimethyl sulfide,DMS)等辐射活性气体的交换和释放,影响海洋上空海洋源气溶胶的产生,最后导致海洋和全球碳循环的变化,带来极为重要的气候和环境效应。这正是从著名的“铁假说(iron hypothesis)”(Martin and Fitzwater, 1988; Martin and Gordon, 1988)发展而来的科学思想。“铁假说”认为,在高营养盐(指氮、磷等)低叶绿素海区,如亚极太平洋、南大洋等,铁限制了其浮游植物的生长,加铁会促进浮游植物生长和海洋对CO2的吸收,地质历史时期大气CO2浓度与这些海域大气铁沉降有关。“铁假说”使得大气沉降—海洋—气候相互影响和反馈的研究成为备受关注的问题。这是一个非常复杂的过程,其中有很多问题亟待加强研究。例如,各海域气溶胶的来源及其入海通量,气溶胶的长距离输送沉降过程及其中所发生的物理化学特性变化,影响气溶胶营养盐生物可利用性的主要因子及其对海洋生态系统的影响,气溶胶输入对海气界面重要辐射活性气体交换量的影响,以及这些过程的气候含义。

2.2 沙尘释放和沉降通量

据估算,全球每年约有1000~3321 Mt a-1(Mt表示百万吨)的沙尘粒子注入大气(Takemura et al., 2000; Penner et al., 2001; Zender et al., 2003; Mikami et al., 2006; Yue et al., 2009; Shao et al., 2011),另有估计更高达1000~5000 Mt a-1Tegen and Fung, 1994; Duce, 1995),不确定性因子为3~5,而且具有高度的时空可变性。全球每年输送到海洋的沙尘大约为300~500 Mt a-1Prospero, 1999; Ginoux et al., 2001; Luo et al., 2003; Zender et al., 2003; Tegen et al., 2004; Jickells et al., 2005; Yue et al., 2009; Shao et al., 2011),Duce et al.(1991)的估计则高达910 Mt a-1。亚洲的蒙古沙漠地区、中国的塔克拉玛干、巴丹吉林、腾格里以及乌兰布和等沙漠地区是东亚沙尘气溶胶的重要源区,它们的释放量占总释放量的70%(李栋梁等, 2003; Zhang et al., 2003;周自江和章国材, 2003; Wang et al., 2005;钱正安等, 2006; Zhao et al., 2006)。东亚沙尘释放量大约在200~1100 Mt a-1张小曳, 2001; Tanaka and Chiba, 2006; Park et al., 2012),对全球沙尘释放量有重要贡献。

从沙尘的释放和沉降通量来看,其时空变化较大,有强、弱沙尘事件之分(Mikami et al., 2006; Zheng et al., 2016)。影响沙尘释放时空变化的主要因子是地表风速和与土壤相关的因子,如土壤质地、湿度、植被覆盖等(Zhang et al., 2003;钱正安等, 2006; Tan et al., 2012)。气候变化会影响强风、降水、温度、土壤湿度、植被生长、沙漠沙地的地表状况,进而影响沙尘的释放、输送和沉降(叶笃正等, 2000; Kurosaki and Mikami, 2003;李栋梁等, 2003; Zhang et al., 2003; Tegen et al., 2004;康杜娟和王会军, 2005; Wang et al., 2005; Mikami et al., 2006;钱正安等, 2006; Liu and Ding, 2007; Zhu et al., 2008; Tan et al., 2012; Zheng et al., 2016)。研究表明,强沙尘年的颗粒物浓度约为弱沙尘年的18倍(Gao et al., 1992b)。在黄海的观测表明,2007年春季3个沙尘事件的平均质量浓度为1498 μg m–3,比非沙尘天高约10倍(Shi et al., 2013)。不同的模式估算得出北太平洋沙尘沉降通量的变化范围大约为31~500 Mt a-1Duce et al., 1991; Prospero, 1999; Ginoux et al., 2001;张小曳, 2001; Luo et al., 2003; Zender et al., 2003; Tegen et al., 2004; Jickells et al., 2005; Yue et al., 2009; Shao et al., 2011),可相差1个量级之多。再如,对黄海沙尘通量的估计大约为9 g m–2 a–1Gao et al., 1992a;刘毅和周明煜, 1999)、13.3 g m–2 a–1Uematsu et al., 2003),也有高达51.3 g m–2 a–1Zhang and Gao, 2007)、53.7 g m–2 a–1Zhang et al., 1993)和76 g m–2 a–1Gao et al., 1992a),亦相差1个量级。此外,近海的沙尘气溶胶沉降量比大洋高一个量级左右(Zhang et al., 1993; Uematsu et al., 2003; Tan et al., 2016)。

大气沉降对中国近海(黄海和东海)的重要性也得到了很多观测和模拟的证实。早在1990年代,在青岛的大气沉降和雨水采样观测结果表明,大气干沉降中铁的浓度与海洋沉积物中的浓度相当,湿沉降中铁的浓度是海洋沉积物中浓度的1.6倍,而大气沉降中铜、铅、锌、镍、钴和铬的浓度则比海洋沉积物中的浓度高2~25倍(刘素美等, 1991)。研究进一步表明很多近海包括黄海和东海,大气沉降的营养盐和部分微量元素可能超出了河流输入的量(陈莹等, 2010)。在黄海,大气氨氮沉降显著大于河流输入的量,大气硝氮稍低于或者可与河流输入的量相比较,大气磷沉降稍大于河流输入的量(Zhang et al., 2010;韩丽君等, 2013; Qi et al., 2013)。在东海,TIN(NO3- +NO2- +NH4+)沉降可与河流输入的量相比,其中大气氨氮沉降稍大于河流输入,大气磷沉降小于河流输入(Zhang et al., 2007, 2010)。沙尘事件对大气物质向海洋的沉降有非常重要的事件性特征。观测分析表明,黄海沙尘暴期间,总悬浮颗粒物(TSP)中TIN、总磷、总铁的浓度比非沙尘天要高2、7和35倍,一次沙尘事件的TIN沉降量为772.0±198.0 mg m–2,占黄海年沉降通量(482 mg m–2 a–1)的160%(Zhang et al., 2007)和月平均沉降通量(139.5 mg m–2 month–1)的553%(Qi et al., 2013),一次沙尘事件的溶解磷和溶解铁的沉降量分别为10.3±2.6 mg m–2和42.5±10.9 mg m–2Shi et al., 2013)。不仅在黄海,东海的气溶胶观测也表明,沙尘影响的气溶胶中沙尘源(铁、铝等)和人为源(铜、锌等)化学物质的总浓度都更高(Hsu et al., 2010)。一次沙尘事件在东海的溶解磷和溶解铁的平均沉降通量约分别为3.3~10.3 μg m–2 d–1和37.5~39 μg m–2 d–1Hsu et al., 2010; Tan et al., 2016)。

2.3 沙尘对海洋生态系统的影响

近十多年来,一些研究开始关注亚洲沙尘和海洋生物生产力的直接关联,目前的进展主要有两方面:一是长期相关性研究;二是个例关联研究。长期相关性研究方面,中国大陆沙尘与西北太平洋站点KNOT(43°58′N,155°03′E)、50N(50°01′N, 165°01′E)、SA(49°N,174°E)和PAPA(50°N,145°W)滞后1个月的海洋生物生产力(以硅藻、总物质通量等为例)明显相关(Yuan and Zhang, 2006;邓祖琴等, 2008; Han et al., 2011)。除西北太平洋外,亚洲沙尘发生频率与太平洋近海和大洋不同海域的叶绿素a浓度都有不同程度的相关(Tan et al., 2011, 2013; Tan and Shi, 2012a)。个例关联研究方面,包括非常少的海上观测、实验室和船基围隔实验以及卫星遥感统计。结果表明,沙尘沉降过后或者围隔实验直接添加沙尘之后,叶绿素a浓度确实增加,滞后时间为几天到3周左右(Bishop et al., 2002;韩永翔等, 2005; Jo et al., 2007;孙佩敬等, 2009; Tan et al., 2011, 2016; Shi et al., 2012; Tan and Shi, 2012b; Wang et al., 2012; Tan and Wang, 2014)。Bishop et al.(2002)观测到2001年4月沙尘过境亚极地北太平洋PAPA站(50°N, 145°W)之后,该海域生物量大幅增加,为“铁假说”提供了自然状态下最有力的证据。孙佩敬等(2009)的实验室培养实验表明在营养盐贫乏的条件下,沙尘的添加对藻类的生长具有明显的促进作用。Tan et al.(2011)的分析发现,22次沙尘个例中有16次事件在沙尘过境1~22天之后,黄海中部叶绿素a浓度和初级生产力都有增加,且发生了藻华事件。Tan and Shi(2012b)的研究发现2007年3月31日一次较强的沙尘事件从蒙古和内蒙古的沙漠地区输送到黄海,在黄海中部的沉降量为0.56 g m–2 d–1,沙尘过境大约3~4天后,藻华事件发生,且沙尘年的叶绿素a浓度比非沙尘年高40%以上。Shi et al.(2012)的海上气溶胶观测分析进一步发现此次沙尘事件携带的氮足以满足此次藻华事件增长的需要,铁则远远超过藻华所需要的量,磷可以满足浮藻华生长需要的30%。不仅在黄海,在南海的北部,研究也表明沙尘年的日平均叶绿素a浓度几乎是气候平均值的2倍(Wang et al., 2012)。在西北太平洋副热带环流海区,2010年春季东亚沙尘暴也可能对该海域夏季藻华事件有贡献(Calil et al., 2011)。最新的研究发现,在东海和西北太平洋副热带环流海区,一次强沙尘事件提供的铁最大可完全满足浮游植物生长的需要(贡献比115%~291%)。氮其次,最大可支持浮游植物生长的1.7%~4.0%。磷最小,最大可支持浮游植物生长的0.2%~0.5%(Tan et al., 2016, 2017)。

上述研究表明亚洲沙尘对海洋生物生产力的“施肥”作用。需要注意的是,并非所有的沙尘事件都会带来正的影响,比如研究表明22次入黄海的沙尘事件中有6次并没有引起藻华事件。研究也发现,并非所有的气溶胶沉降都对海洋浮游植物生长起促进作用,一些气溶胶是有生物毒性的(Paytan et al., 2009)。毒性作用会抑制某些种类浮游植物(如真核球藻和聚球藻)的生长。毒性可能是因为气溶胶中含有高浓度的铜,因为人为源释放导致大气铜沉降快速增加,而气溶胶中的其他元素和各种元素之间的未知协同作用也可能产生毒性(Paytan et al., 2009; Wang et al., 2017)。

3 生物气溶胶 3.1 背景

生物气溶胶同其他气溶胶一样,会通过许多过程影响天气、气候、环境和空气质量,但又有着不同的特性。其一,生物气溶胶的形成机制和成分有独特性,生物气溶胶又分为原生生物气溶胶(Primary biological aerosol particles,PBAP)和次生生物气溶胶(Biogenic secondary organic aerosol,BSOA)。PBAP是指微生物和生物有机体直接释放到空气中形成的各种颗粒,包括活的和死的生物(如藻类、古细菌、细菌、病毒)、真菌孢子、植物花粉和各种生物碎片及其代谢产物等(Fröhlich-Nowoisky et al., 2016; Yue et al., 2016),BSOA指由生物源排放的挥发性有机化合物等气态前体物通过化学反应转化生成的气溶胶。其二,生物气溶胶的粒径变化范围很大,包括了几纳米的病毒、蛋白质到几十微米的孢子、花粉等。其三,部分生物气溶胶还具有传染性和致敏性(Fang et al., 2005)。

有关生物气溶胶的研究最早可以追溯到19世纪,1830年研究人员首次报道了空气中的微小生物体和孢子可以随风传播(Ehrenberg, 1830),随后Pasteur(1860)最先采集到空气微生物并指出空气中微小生物体的传播与疾病传染有关。对生物气溶胶的研究深入与技术的进步不可分离。20世纪40年代电子显微镜的出现,使得对空气微生物的研究从宏观认识(Winslow, 1908)发展到微观层面。1958年安德森采样器的发明,改进了传统的空气微生物采样技术。近年来,分子生物学手段的应用不仅完善了人们对空气中微生物的群落结构、数量、理化特性的研究,还深化了对其健康效应的认识(魏文斐等, 2018)。随着研究的深入,Soulage(1957)在冰晶体中发现细菌细胞,之后陆续发现几类细菌、真菌也可以作为有效冰核与云凝结核参与降水过程(Maki et al., 1974; Vali et al., 1976),生物气溶胶的气候效应开始受到关注。

与国外相比,中国在生物气溶胶领域的研究起步较晚。20世纪80年代开始有研究人员进行空气中细菌含量的变动规律及其影响因素的实验(金梓良, 1985),室内空气微生物浓度种类的调查(何启芬, 1988)和采样方法的比较(车凤翔等, 1987)。90年代陈皓文等一批学者探究了不同城市中生物气溶胶的种类、浓度和气象因子的关系(陈皓文和宋庆云, 1993)、时空分布(陈皓文, 1998)及空气微生物含量与人类活动和空气质量的关系(陈皓文, 1996)。刘苗苗等(2008)通过分析在青岛采集的生物气溶胶样品比较了陆源和海源细菌及真菌的浓度和粒径分布特征。Fu et al.(2008)研究了华北地区生物质燃烧所释放的气溶胶的理化特性;高敏等(2014)胡凌飞等(2015)调查了北京灰霾污染背景下生物气溶胶的浓度变化和粒径分布规律。Yue et al.(2016)结合在线监测与离线化学组分分析技术,研究了北京春季一次降水过程中真菌类气溶胶、类细菌气溶胶以及非荧光生物颗粒物在降水不同时期的变化特征,细化了降水对生物气溶胶释放的影响。国内的研究主要集中在城市(方治国等, 2004; Fang et al., 2005)和医院(张敬党等, 2004)等地的空气微生物污染及其对人类健康影响,观测也多为单点调查研究,缺少网络式观测,对生物气溶胶气候效应的研究甚少。

3.2 沙尘与生物气溶胶

很多研究表明一些生物气溶胶(细菌、真菌等)往往伴随沙尘而出现,沙尘的长距离输送有利于生物气溶胶的输送和扩散,从而对下风方的生态系统和人类健康产生重要影响(Hua et al., 2007; Jeon et al., 2013Soleimani et al., 2016Yuan et al., 2017)。沙尘事件可将大量的微生物从地表土壤输送到空气中,在亚洲沙尘源区敦煌的观测表明空气沙尘中含有大量的细菌(Kakikawa et al., 2008)。在北京一次沙尘事件的观测表明,沙尘天的细菌浓度比沙尘之前和沙尘过后高一个量级(Yuan et al., 2017)。在首尔的观测表明,沙尘天不同种类的真菌浓度增加了5~12倍,沙尘不仅影响空气中真菌的浓度还影响它的群落结构(Jeon et al., 2013)。观测研究证明亚洲沙尘可将细菌输送至日本的自由对流层中(Hua et al., 2007; Maki et al., 2013)。在伊朗阿瓦士市一家医院的观测发现,沙尘天医院室内和室外的细菌和真菌浓度比非沙尘天都要高(Soleimani et al., 2016)。这些研究表明,沙尘事件对生物气溶胶的浓度和群落结构以及输送都有重要的影响。

除陆源外,海洋也是生物气溶胶的源(Fröhlich-Nowoisky et al., 2016),包括藻类、病毒、细菌、古细菌、真菌等海洋微生物(Aller et al., 2005; Després et al., 2012)。海洋微生物会影响铁、铜等金属和氮、磷、硅等重要元素的生物地球化学循环(Falkowski et al., 2008)。如前所述,沙尘气溶胶沉降会给海洋提供铁、氮、磷等营养盐,影响海洋浮游植物生长和初级生产力过程,影响海洋微生物的数量甚至结构的变化(Jickells et al., 2005;陈莹等, 2010;高会旺等, 2014)。因此,也会影响海洋源生物气溶胶的释放。

3.3 生物气溶胶的气候效应

利用探空气球、气象火箭、飞机等工具进行观测实验,世界各地的研究人员在大气边界层(Lindemann and Upper, 1985)、对流层(Pratt et al., 2009)、平流层(Rogers and Meier, 1936)、中间层(Imshenetsky et al., 1978)均发现了生物气溶胶的存在。如Pratt et al.(2009)在俄怀明利用飞机采样,在海拔高度7000 m左右的高空冰晶云样品中检测到微小生物体,证明在对流层中存在冰核活性细菌。生物气溶胶在大气冰核活化过程中的特殊性在于可以在较高温度下活化成核(Maki et al., 1974)。生物气溶胶引发的降雪在全球范围内作用并不显著,但却能影响局地的水文循环(Hoose et al., 2010),尤其是在远离城市的偏远地区和植被茂盛的地区,其在云和降水的形成过程中是一个重要的调节因子(Fröhlich-Nowoisky et al., 2016)。

在过饱和条件下,自然云中能够活化和凝结增长形成云滴的气溶胶质粒称为CCN。生物气溶胶除了可以作为冰核之外,也可以活化为CCN。直径大于1 μm的生物气溶胶粒子在相对湿度超过饱和时可以提供一个能够附着并凝结水蒸气的表面(Bauer et al., 2003)。例如,有些革兰氏阴性菌的细胞膜外表面覆盖的脂多糖复合物,其脂酰链嵌入于细菌的外膜,糖链暴露于细菌的表面,这种结构可以提高细胞表面的亲水性,进一步对生物CCN的“吸湿性”产生影响(Möhler et al., 2007)。生物气溶胶因表面特殊结构,在低饱和度时就能活化成核(Bauer et al., 2003)。相较于普通CCN,部分具有较大直径的生物气溶胶,比如孢子、花粉和植物碎片还可以作为巨凝结核影响云过程(魏文斐等, 2018)。生物气溶胶还可与大气中其他种类CCN发生化学反应,进而改变其组成、理化性质,空气微生物的代谢产物还可能对大气化学过程产生潜在影响(Herlihy et al., 1987; Ariya et al., 2002; Ariya and Amyot, 2004; Amato et al., 2007)。

4 未来展望

关于大气气溶胶沉降对海洋生物地球化学、生态系统和生物生产力的影响,已有一定认识。但是,因为缺乏准确、长期、大范围的观测,一些问题的认识仍然是不充分的,未来仍有许多方面值得进一步研究。包括:(1)大气气溶胶输送过程中理化特征的变化以及影响其变化的大气过程和大气化学变化;(2)控制大气气溶胶营养盐生物可利用性的机制;(3)系统和准确测量大气干湿沉降、粒子特性、营养盐和生态系统的响应,特别是在大气沉降扮演重要作用的海域;(4)大气沉降对海洋生物生产力以及生态系统结构的影响和机制;(5)大气、海洋、化学耦合模式模拟研究。

生物气溶胶的气候效应已受到广泛关注,但目前认识是非常有限的,仍有许多方面有待进一步深入。包括:(1)充分利用不断进步的观测分析手段,研究生物气溶胶的种类、理化特性、二次变性以及作为冰核和云凝结核的作用机制;(2)地空联合取样观测以及在不同天气过程中的连续观测研究;(3)微生物在云中的原位生理活动的观测;(4)生物气溶胶的生成机制及其对有机气溶胶的贡献;(5)深入理解生物气溶胶的气候效应,需要加强数值模式模拟研究。

5 结论

全球气候变化和人类活动导致大气污染事件发生,进而对近海甚至大洋的生态环境产生影响,给社会经济可持续发展、人类健康、海洋环境都带来巨大压力。大气沉降与海洋生物地球化学循环以及生物气溶胶的研究涉及大气污染、人类健康、海洋健康、渔业、海洋施肥和碳截存等问题,因而必将是未来气溶胶间接效应的研究焦点之一。大气气溶胶的生态环境和气候效应是一个十分复杂的问题,亦可能是一把双刃剑,一方面矿物沙尘和生物气溶胶等释放量的增加会导致大气颗粒物污染,可作为微生物的载体,影响环境和健康;另一方面,沙尘沉降会促进生物生产力,影响海洋碳吸收,甚至影响海洋渔业,这是对人类有益的事情。未来值得更多、更全面、更深入的研究。

参考文献
Aller J Y, Kuznetsova M R, Jahns C J, et al. 2005. The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols [J]. Journal of Aerosol Science, 36(5): 801-812. DOI:10.1016/j.jaerosci.2004.10.012
Amato P, Demeer F, Melaouhi A, et al. 2007. A fate for organic acids, formaldehyde and methanol in cloud water: Their biotransformation by micro-organisms [J]. Atmos. Chem. Phys., 7(15): 4159-4169. DOI:10.5194/acp-7-4159-2007
Ariya P A, Amyot M. 2004. New directions: The role of bioaerosols in atmospheric chemistry and physics [J]. Atmos. Environ., 38(8): 1231-1232. DOI:10.1016/j.atmosenv.2003.12.006
Ariya P A, Nepotchatykh O, Ignatova O, et al. 2002. Microbiological degradation of atmospheric organic compounds [J]. Geophys. Res. Lett., 29(22): 341-344. DOI:10.1029/2002GL015637
Bauer H, Giebl H, Hitzenberger R, et al. 2003. Airborne bacteria as cloud condensation nuclei [J]. J. Geophys. Res., 108(D21): 4658. DOI:10.1029/2003JD003545
Bishop J K B, Davis R E, Sherman J T. 2002. Robotic observations of dust storm enhancement of carbon biomass in the North Pacific [J]. Science, 298(5594): 817-821. DOI:10.1126/science.1074961
Brévière E, the SOLAS Scientific Steering Committee. 2016. SOLAS 2015-2025: Science Plan and Organisation [M]. Kiel: SOLAS International Project Office, 76pp.
Calil P H R, Doney S C, Yumimoto K, et al. 2011. Episodic upwelling and dust deposition as bloom triggers in low-nutrient, low-chlorophyll regions [J]. J. Geophys. Res., 116(C6): C06030. DOI:10.1029/2010JC006704
车凤翔, 胡庆轩, 徐秀芝, 等. 1987. 两种空气微生物采样器采样方法的研究[J]. 消毒与灭菌, 4(4): 205-208. Che Fengxiang, Hu Qingxuan, Xu Xiuzhi, et al. 1987. Study on the method of sampling with two types of air viable sampler (in Chinese)[J]. Disinfection and Sterilization (in Chinese), 4(4): 205-208.
陈皓文. 1996. 庐山旅游区空气微生物污染调查[J]. 环境监测管理与技术, 8(2): 21-23. Chen Haowen. 1996. Investigation of airborne microbial content in tourist zone, Lushan Mountain (in Chinese)[J]. The Administration and Technique of Environmental Monitoring (in Chinese), 8(2): 21-23.
陈皓文. 1998. 北海市空气微生物含量时空分布[J]. 广西科学, 5(2): 83-86. Chen Haowen. 1998. Spatial and temporal distributions of air borne microbes above Beihai City (in Chinese)[J]. Guangxi Sciences (in Chinese), 5(2): 83-86.
陈皓文, 宋庆云. 1993. 国际五城市空气微生物概况[J]. 黄渤海海洋, 11(1): 50-57. Chen Haowen, Song Qingyun. 1993. General situation of air-borne microbes in five international cities (in Chinese)[J]. Journal of Oceanography of Huanghai & Bohai Seas (in Chinese), 11(1): 50-57.
陈莹, 庄国顺, 郭志刚. 2010. 近海营养盐和微量元素的大气沉降[J]. 地球科学进展, 25(7): 682-690. Chen Ying, Zhuang Guoshun, Guo Zhigang. 2010. Atmospheric deposition of nutrients and trace elements to the coastal oceans: A review (in Chinese)[J]. Advances in Earth Science (in Chinese), 25(7): 682-690. DOI:10.11867/j.issn.1001-8166.2010.07.0682
邓祖琴, 韩永翔, 白虎志, 等. 2008. 中国大陆沙尘气溶胶对海洋初级生产力的影响[J]. 中国环境科学, 28(10): 872-876. Deng Zuqin, Han Yongxiang, Bai Huzhi, et al. 2008. Effect of dust aerosol production in China mainland on marine primary productivity (in Chinese)[J]. China Environmental Science (in Chinese), 28(10): 872-876. DOI:10.3321/j.issn:1000-6923.2008.10.003
Després V, Huffman J A, Burrows S M, et al. 2012. Primary biological aerosol particles in the atmosphere: A review [J]. Tellus B: Chemical and Physical Meteorology, 64(1): 15598. DOI:10.3402/tellusb.v64i0.15598
杜睿. 2006. 大气生物气溶胶的研究进展[J]. 气候与环境研究, 11(4): 546-552. Du Rui. 2006. The progress of atmospheric bioaerosol research (in Chinese)[J]. Climatic and Environmental Research (in Chinese), 11(4): 546-552.
Duce R A. 1995. Sources, distributions, and fluxes of mineral aerosols and their relationship to climate [M]//Charlson R J, Heintzenberg J. Aerosol Forcing of Climate: Report of the Dahlem Workshop on Aerosol Forcing of Climate. Chichester, United Kingdom and New York: John Wiley & Sons Ltd., 43-72.
Duce R A, LaRoche J, Altieri K, et al. 2008. Impacts of atmospheric anthropogenic nitrogen on the open ocean [J]. Science, 320(5878): 893-897. DOI:10.1126/science.1150369
Duce R A, Liss P S, Merrill J T, et al. 1991. The atmospheric input of trace species to the world ocean [J]. Global Biogeochem. Cycles, 5(3): 193-259. DOI:10.1029/91GB01778
Ehrenberg C G. 1830. Neue Beobachlungen über blutartige Erscheinungen in Aegypten, Arabien und Sibirien, nebst einer Uebersicht und Kritik der früher bekannnten [J]. Annalen der Physik und Chemie, 94(4): 477-514. DOI:10.1002/andp.18300940402
Falkowski P G, Fenchel T, Delong E F. 2008. The microbial engines that drive Earth's biogeochemical cycles [J]. Science, 320(5879): 1034-1039. DOI:10.1126/science.1153213
方治国, 欧阳志云, 胡利锋, 等. 2004. 城市生态系统空气微生物群落研究进展[J]. 生态学报, 24(2): 315-322. Fang Zhiguo, Ouyang Zhiyun, Hu Lifeng, et al. 2004. Progresses of airborne microbial communities in urban ecosystem (in Chinese)[J]. Acta Ecologica Sinica (in Chinese), 24(2): 315-322. DOI:10.3321/j.issn:1000-0933.2004.02.023
Fang Z G, Ouyang Z Y, Hu L F, et al. 2005. Culturable airborne fungi in outdoor environments in Beijing, China [J]. Science of the Total Environment, 350(1-3): 47-58. DOI:10.1016/j.scitotenv.2005.01.032
Fröhlich-Nowoisky J, Kampf C J, Weber B, et al. 2016. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions [J]. Atmospheric Research, 182: 346-376. DOI:10.1016/j.atmosres.2016.07.018
Fu P Q, Kawamura K, Okuzawa K, et al. 2008. Organic molecular compositions and temporal variations of summertime mountain aerosols over Mt. Tai, North China Plain [J]. J. Geophys. Res., 113(D19). DOI:10.1029/2008JD009900
Furutani H, Meguro A, Iguchi H, et al. 2010. Geographical distribution and sources of phosphorus in atmospheric aerosol over the North Pacific Ocean [J]. Geophys. Res. Lett., 37(3): L03805. DOI:10.1029/2009GL041367
高会旺, 祁建华, 石金辉, 等. 2009. 亚洲沙尘的远距离输送及对海洋生态系统的影响[J]. 地球科学进展, 24(1): 1-10. Gao Huiwang, Qi Jianhua, Shi Jinhui, et al. 2009. Lang-range transport of Asian dust and its effects on ocean ecosystem (in Chinese)[J]. Advances in Earth Science (in Chinese), 24(1): 1-10. DOI:10.3321/j.issn:1001-8166.2009.01.001
高会旺, 姚小红, 郭志刚, 等. 2014. 大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 29(12): 1325-1332. Gao Huiwang, Yao Xiaohong, Guo Zhigang, et al. 2014. Atmospheric deposition connected with marine primary production and nitrogen cycle: A review (in Chinese)[J]. Advances in Earth Science (in Chinese), 29(12): 1325-1332. DOI:10.11867/j.issn.1001-8166.2014.12.1325
高敏, 仇天雷, 贾瑞志, 等. 2014. 北京雾霾天气生物气溶胶浓度和粒径特征[J]. 环境科学, 3(12): 4415-4421. Gao Min, Qiu Tianlei, Jia Ruizhi, et al. 2014. Concentration and size distribution of bioaerosols at non-haze and haze days in Beijing (in Chinese)[J]. Environmental Science (in Chinese), 3(12): 4415-4421. DOI:10.13227/j.hjkx.2014.12.001
Gao Y, Arimoto R, Duce R A, et al. 1992a. Input of atmospheric trace elements and mineral matter to the Yellow Sea during the spring of a low-dust year [J]. J. Geophys. Res., 97(D4): 3767-3777. DOI:10.1029/91JD02686
Gao Y, Arimoto R, Zhou M Y, et al. 1992b. Relationships between the dust concentrations over eastern Asia and the remote North Pacific [J]. J. Geophys. Res., 97(D9): 9867-9872. DOI:10.1029/92JD00714
Ginoux P, Chin M, Tegen I, et al. 2001. Sources and distributions of dust aerosols simulated with the GOCART model [J]. J. Geophys. Res., 106(D17): 20255-20273. DOI:10.1029/2000JD000053
韩丽君, 朱玉梅, 刘素美, 等. 2013. 黄海千里岩岛大气湿沉降营养盐的研究[J]. 中国环境科学, 33(7): 1174-1184. Han Lijun, Zhu Yumei, Liu Sumei, et al. 2013. Nutrients of atmospheric wet deposition from the Qianliyan Island of the Yellow Sea (in Chinese)[J]. China Environmental Science (in Chinese), 33(7): 1174-1184.
韩永翔, 奚晓霞, 方小敏, 等. 2005. 亚洲大陆沙尘过程与北太平洋地区生物环境效应:以2001年4月中旬中亚特大沙尘暴为例[J]. 科学通报, 50(23): 2649-2655. DOI:10.3321/j.issn:0023-074X.2005.23.015
Han Yongxiang, Fang Xiaomin, Xi Xiaoxia, et al. 2006. Dust storm in Asia continent and its bio-environmental effects in the North Pacific: A case study of the strongest dust event in April, 2001 in central Asia [J]. Chinese Science Bulletin, 51(6): 723-730. DOI:10.1007/s11434-006-0723-2
Han Y X, Zhao T L, Song L C, et al. 2011. A linkage between Asian dust, dissolved iron and marine export production in the deep ocean [J]. Atmos. Environ., 45(25): 4291-4298. DOI:10.1016/j.atmosenv.2011.04.078
何启芬. 1988. 贵阳市冬季居民室内空气微生物调查[J]. 环境与健康杂志, 5(4): 33. He Qifen. 1988. Investigation on indoor air microorganism of residents in Guiyang City in winter (in Chinese)[J]. Journal of Environment and Health (in Chinese), 5(4): 33. DOI:10.16241/j.cnki.1001-5914.1988.04.021
Herlihy L J, Galloway J N, Mills A L. 1987. Bacterial utilization of formic and acetic acid in rainwater [J]. Atmos. Environ. (1967), 21(11): 2397-2402. DOI:10.1016/0004-6981(87)90374-X
Hoose C, Kristjánsson J E, Burrows S M. 2010. How important is biological ice nucleation in clouds on a global scale? [J]. Environmental Research Letters, 5(2): 024009. DOI:10.1088/1748-9326/5/2/024009
Hsu S C, Wong G T F, Gong G C, et al. 2010. Sources, solubility, and dry deposition of aerosol trace elements over the East China Sea [J]. Marine Chemistry, 120(1-4): 116-127. DOI:10.1016/j.marchem.2008.10.003
胡凌飞, 张柯, 王洪宝, 等. 2015. 北京雾霾天大气颗粒物中微生物气溶胶的浓度及粒谱特征[J]. 环境科学, 36(9): 3144-3149. Hu Lingfei, Zhang Ke, Wang Hongbao, et al. 2015. Concentration and particle size distribution of microbiological aerosol during haze days in Beijing (in Chinese)[J]. Environmental Science (in Chinese), 36(9): 3144-3149. DOI:10.13227/j.hjkx.2015.09.004
Hua N-P, Kobayashi F, Iwasaka Y, et al. 2007. Detailed identification of desert-originated bacteria carried by Asian dust storms to Japan [J]. Aerobiologia, 23(4): 291-298. DOI:10.1007/s10453-007-9076-9
Imshenetsky A A, Lysenko S V, Kazakov G A. 1978. Upper boundary of the biosphere [J]. Applied and Environmental Microbiology, 35(1): 1-5.
Jickells T D, An Z S, Andersen K K, et al. 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate [J]. Science, 308(5718): 67-71. DOI:10.1126/science.1105959
金梓良. 1985. 电影院观众厅空气中细菌含量的变动规律及其影响因素[J]. 中国公共卫生, 4(1): 24-26. Jin Ziliang. 1985. Variation of bacterial content in the air of cinema audience hall and its influencing factors (in Chinese)[J]. Chinese Public Health (in Chinese), 4(1): 24-26.
Jeon E M, Kim Y P, Jeong K, et al. 2013. Impacts of Asian dust events on atmospheric fungal communities [J]. Atmos. Environ., 81: 39-50. DOI:10.1016/j.atmosenv.2013.08.039
Jo C O, Lee J Y, Park K A, et al. 2007. Asian dust initiated early spring bloom in the northern East/Japan Sea [J]. Geophys. Res. Lett., 34(5): L05602. DOI:10.1029/2006GL027395
Kakikawa M, Kobayashi F, Maki T, et al. 2008. Dustborne microorganisms in the atmosphere over an Asian dust source region, Dunhuang [J]. Air Quality, Atmosphere & Health, 1(4): 195-202. DOI:10.1007/s11869-008-0024-9
康杜娟, 王会军. 2005. 中国北方沙尘暴气候形势的年代际变化[J]. 中国科学D辑:地球科学, 48(11): 1096-1102. Kang Dujuan, Wang Huijun. 2005. Analysis on the decadal scale variation of the dust storm in North China (in Chinese)[J]. Science in China Series D: Earth Sciences, 48(12): 2260-2266. DOI:10.1360/03yd0255
Kurosaki Y, Mikami M. 2003. Recent frequent dust events and their relation to surface wind in East Asia [J]. Geophys. Res. Lett., 30(14): 1736. DOI:10.1029/2003GL017261
李栋梁, 钟海玲, 魏丽, 等. 2003. 中国北方年沙尘暴日数的气候特征及对春季高原地面感热的响应[J]. 高原气象, 22(4): 337-345. Li Dongliang, Zhong Hailing, Wei Li, et al. 2003. Climatic characteristics of annual sand-dust storm days in northern China and its response to surface sensible heat in spring of Qinghai-Xizang Plateau (in Chinese)[J]. Plateau Meteorology (in Chinese), 22(4): 337-345. DOI:10.3321/j.issn:1000-0534.2003.04.004
Li J, Wang Z, Zhuang G, et al. 2012. Mixing of Asian mineral dust with anthropogenic pollutants over East Asia: A model case study of a super- duststorm in March 2010 [J]. Atmos. Chem. Phys., 12(16): 7591-7607. DOI:10.5194/acp-12-7591-2012
Li J W, Han Z W, Zhang R J. 2011. Model study of atmospheric particulates during dust storm period in March 2010 over East Asia [J]. Atmos. Environ., 45(24): 3954-3964. DOI:10.1016/j.atmosenv.2011.04.068
Lindemann J, Upper C D. 1985. Aerial dispersal of epiphytic bacteria over bean plants [J]. Applied and Environmental Microbiology, 50(5): 1229-1232.
刘苗苗, 祁建华, 高冬梅, 等. 2008. 青岛近海秋季生物气溶胶分布特征[J]. 生态环境, 17(2): 565-571. Liu Miaomiao, Qi Jianhua, Gao Dongmei, et al. 2008. Distribution characteristics of bioaerosol in Qingdao coastal region in fall 2007 (in Chinese)[J]. Ecology and Environment (in Chinese), 17(2): 565-571. DOI:10.3969/j.issn.1674-5906.2008.02.021
刘素美, 黄薇文, 张经, 等. 1991. 青岛地区大气沉降物的化学成分研究——Ⅰ:微量元素[J]. 海洋环境科学, 10(4): 21-28. Liu Sumei, Huang Weiwen, Zhang Jing, et al. 1991. Chemical composition analysis of atmospheric deposition at Qingdao——Ⅰ: Trace elements (in Chinese)[J]. Marine Environmental Science (in Chinese), 10(4): 21-28.
Liu X H, Ding R Q. 2007. The relationship between the spring Asian Atmospheric circulation and the previous winter Northern Hemisphere annular mode [J]. Theor. Appl. Climatol., 88(1-2): 71-81. DOI:10.1007/s00704-006-0231-y
刘毅, 周明煜. 1999. 中国东部海域大气气溶胶入海通量的研究[J]. 海洋学报, 21(5): 38-45. Liu Yi, Zhou Mingyu. 1999. Atmospheric input of aerosols to the eastern seas of China (in Chinese)[J]. Acta Oceanologica Sinica (in Chinese), 21(5): 38-45.
Luo C, Mahowald N M, del Corral J. 2003. Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport, and distribution [J]. J. Geophys. Res., 108(D15): 4447. DOI:10.1029/2003JD003483
Maki L R, Galyan E L, Chang-Chien M M, et al. 1974. Ice nucleation induced by Pseudomonas syringae [J]. Applied Microbiology, 28(3): 456-459.
Maki T, Kakikawa M, Kobayashi F, et al. 2013. Assessment of composition and origin of airborne bacteria in the free troposphere over Japan [J]. Atmos. Environ., 74: 73-82. DOI:10.1016/j.atmosenv.2013.03.029
Martin J H, Fitzwater S E. 1988. Iron deficiency limits phytoplankton growth in the Northeast Pacific subarctic [J]. Nature, 331(6154): 341-343. DOI:10.1038/331341a0
Martin J H, Gordon R M. 1988. Northeast Pacific iron distributions in relation to phytoplankton productivity [J]. Deep Sea Research Part A. Oceanographic Research Papers, 35(2): 177-196. DOI:10.1016/0198-0149(88)90035-0
Matsuki A, Schwarzenboeck A, Venzac H, et al. 2010. Cloud processing of mineral dust: Direct comparison of cloud residual and clear sky particles during AMMA aircraft campaign in summer 2006 [J]. Atmos. Chem. Phys., 10(3): 1057-1069. DOI:10.5194/acp-10-1057-2010
Mikami M, Shi G Y, Uno I, et al. 2006. Aeolian dust experiment on climate impact: An overview of Japan-China joint project ADEC [J]. Global and Planetary Change, 52(1-4): 142-172. DOI:10.1016/j.gloplacha.2006.03.001
Möhler O, DeMott P J, Vali G, et al. 2007. Microbiology and atmospheric processes: The role of biological particles in cloud physics [J]. Biogeosciences, 4(6): 1059-1071. DOI:10.5194/bg-4-1059-2007
Park S U, Park M S, Choe A. 2012. Asian dust deposition over the land and seas in 2010: Estimated by the ADAM2 model [M]//Satake K, Wu C C, Gan J P. Advances in Geosciences: Volume 28: Atmospheric Science (AS) & Ocean Science (OS). Singapore: World Scientific Publishing, 41-54, doi: 10.1142/9789814405683_0004.
Pasteur L. 1860. Expériences relatives aux générations dites spontanées [J]. Comptes rendus de l'Académie des Sciences, 50: 303-307.
Paytan A, Mackey K R M, Chen Y, et al. 2009. Toxicity of atmospheric aerosols on marine phytoplankton [J]. Proceedings of the National Academy of Sciences of the United States of America, 106(12): 4601-4605. DOI:10.1073/pnas.0811486106
Penner J E, Andreae M, Annegarn H, et al. 2001. Aerosols, their direct and indirect effects [M]//Houghton J T, Ding Y, Griggs D J, et al. Climate Change 2001: The Scientific Basis. Contribution of Working Group Ⅰ to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press, 289-348.
Pratt K A, DeMott P J, French J R, et al. 2009. In situ detection of biological particles in cloud ice-crystals [J]. Nature Geoscience, 2(6): 398-401. DOI:10.1038/ngeo521
Prospero J M. 1999. Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States [J]. Proceedings of the National Academy of Sciences of the United States of America, 96(7): 3396-3403. DOI:10.1073/pnas.96.7.3396
祁建华, 高会旺. 2006. 生物气溶胶研究进展:环境与气候效应[J]. 生态环境, 15(4): 854-861. Qi Jianhua, Gao Huiwang. 2006. Environment and climate effect of bioaerosol: A review (in Chinese)[J]. Ecology and Environment (in Chinese), 15(4): 854-861. DOI:10.3969/j.issn.1674-5906.2006.04.038
Qi J H, Shi J H, Gao H W, et al. 2013. Atmospheric dry and wet deposition of nitrogen species and its implication for primary productivity in coastal region of the Yellow Sea, China [J]. Atmos. Environ., 81: 600-608. DOI:10.1016/j.atmosenv.2013.08.022
钱正安, 蔡英, 刘景涛, 等. 2006. 中蒙地区沙尘暴研究的若干进展[J]. 地球物理学报, 49(1): 83-92. Qian Zheng'an, Cai Ying, Liu Jingtao, et al. 2006. Some advances in dust storm research over China-Mongolia areas (in Chinese)[J]. Chinese J. Geophys. (in Chinese), 49(1): 83-92. DOI:10.3321/j.issn:0001-5733.2006.01.012
Rogers L A, Meier F C. 1936. The collection of microorganisms above 36, 000 feet [M]//The National Geographic Society—U. S. Army Air Corps Stratosphere Flight of 1935 in the Balloon "Explorer Ⅱ (Stratosphere Series, No. 2). Washington, DC: National Geographic Society, 146-151.
Shao Y P, Wyrwoll K H, Chappell A, et al. 2011. Dust cycle: An emerging core theme in Earth system science [J]. Aeolian Research, 2(4): 181-204. DOI:10.1016/j.aeolia.2011.02.001
石广玉, 王标, 张华, 等. 2008. 大气气溶胶的辐射与气候效应[J]. 大气科学, 32(4): 826-840. Shi G Y, Wang B, Zhang H, et al. 2008. The radiative and climatic effects of atmospheric aerosols (in Chinese)[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(4): 826-840. DOI:10.3878/j.issn.1006-9895.2008.04.11
石广玉, 赵思雄. 2003. 沙尘暴研究中的若干科学问题[J]. 大气科学, 27(4): 591-606. Shi Guangyu, Zhao Sixiong. 2003. Several scientific issues of studies on the dust storms (in Chinese)[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27(4): 591-606. DOI:10.3878/j.issn.1006-9895.2003.04.11
Shi J H, Gao H W, Zhang J, et al. 2012. Examination of causative link between a spring bloom and dry/wet deposition of Asian dust in the Yellow Sea, China [J]. J. Geophys. Res., 117(D17): D17304. DOI:10.1029/2012jd017983
Shi J H, Zhang J, Gao H W, et al. 2013. Concentration, solubility and deposition flux of atmospheric particulate nutrients over the Yellow Sea [J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 97: 43-50. DOI:10.1016/j.dsr2.2013.05.004
Soleimani Z, Goudarzi G, Sorooshian A, et al. 2016. Impact of Middle Eastern dust storms on indoor and outdoor composition of bioaerosol [J]. Atmos. Environ., 138: 135-143. DOI:10.1016/j.atmosenv.2016.05.023
Solomos S, Kallos G, Kushta J, et al. 2011. An integrated modeling study on the effects of mineral dust and sea salt particles on clouds and precipitation [J]. Atmos. Chem. Phys., 11(2): 873-892. DOI:10.5194/acp-11-873-2011
Soulage G. 1957. Les noyaux de congélation de l'atmosphère [J]. Annales de Géophysique, 13: 103-134.
Stocker T F, Qin D H, Plattner G K, et al. 2013. Technical summary [M]//Stocker T F, Qin D H, Plattner G K, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press.
孙佩敬, 李瑞香, 徐宗军, 等. 2009. 亚洲沙尘对三种海洋微藻生长的影响[J]. 海洋科学进展, 27(1): 59-65. Sun Peijing, Li Ruixiang, Xu Zongjun, et al. 2009. Effects of Asian dusts on the growth of three species of micro algae (in Chinese)[J]. Advances in Marine Science (in Chinese), 27(1): 59-65. DOI:10.3969/j.issn.1671-6647.2009.01.008
Takemura T, Okamoto H, Maruyama Y, et al. 2000. Global three- dimensional simulation of aerosol optical thickness distribution of various origins [J]. J. Geophys. Res., 105(D14): 17853-17873. DOI:10.1029/2000JD900265
Tan S C, Li J W, Che H Z, et al. 2017. Transport of East Asian dust storms to the marginal seas of China and the southern North Pacific in spring 2010 [J]. Atmos. Environ., 148: 316-328. DOI:10.1016/j.atmosenv.2016.10.054
Tan S C, Li J W, Gao H W, et al. 2016. Satellite-observed transport of dust to the East China Sea and the North Pacific subtropical gyre: Contribution of dust to the increase in chlorophyll during spring 2010 [J]. Atmosphere, 7(11): 152. DOI:10.3390/atmos7110152
Tan S C, Shi G Y. 2012a. Correlation of dust storms in China with chlorophyll a concentration in the Yellow Sea between 1997-2007 [J]. Atmos. Oceanic Sci. Lett., 5(2): 140-144. DOI:10.1080/16742834.2012.11446980
Tan S C, Shi G Y. 2012b. Transport of a severe dust storm in march 2007 and impacts on chlorophyll a concentration in the Yellow Sea [J]. SOLA, 8: 85-89. DOI:10.2151/sola.2012-022
Tan S C, Shi G Y, Shi J H, et al. 2011. Correlation of Asian dust with chlorophyll and primary productivity in the coastal seas of China during the period from 1998 to 2008 [J]. J. Geophys. Res., 116(G2): G02029. DOI:10.1029/2010JG001456
Tan S C, Shi G Y, Wang H. 2012. Long-range transport of spring dust storms in Inner Mongolia and impact on the China seas [J]. Atmos. Environ., 46: 299-308. DOI:10.1016/j.atmosenv.2011.09.058
Tan S C, Wang H. 2014. The transport and deposition of dust and its impact on phytoplankton growth in the Yellow Sea [J]. Atmos. Environ., 99: 491-499. DOI:10.1016/j.atmosenv.2014.10.016
Tan S C, Yao X H, Gao H W, et al. 2013. Variability in the correlation between Asian dust storms and chlorophyll a concentration from the north to equatorial Pacific [J]. PLoS One, 8(2): e57656. DOI:10.1371/journal.pone.0057656
Tanaka T Y, Chiba M. 2006. A numerical study of the contributions of dust source regions to the global dust budget [J]. Global and Planetary Change, 52(1-4): 88-104. DOI:10.1016/j.gloplacha.2006.02.002
Tegen I, Fung I. 1994. Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness [J]. J. Geophys. Res., 99(D11): 22897-22914. DOI:10.1029/94JD01928
Tegen I, Werner M, Harrison S P, et al. 2004. Relative importance of climate and land use in determining present and future global soil dust emission [J]. Geophys. Res. Lett., 31(5): L05105. DOI:10.1029/2003GL019216
Uematsu M, Wang Z F, Uno I. 2003. Atmospheric input of mineral dust to the western North Pacific region based on direct measurements and a regional chemical transport model [J]. Geophys. Res. Lett., 30(6): 1342. DOI:10.1029/2002GL016645
Vali G, Christensen M, Fresh R W, et al. 1976. Biogenic ice nuclei. Part Ⅱ: Bacterial sources [J]. J. Atmos. Sci., 33(8): 1565-1570. DOI:10.1175/1520-0469(1976)033<1565:BINPIB>2.0.CO;2
Wang F J, Chen Y, Guo Z G, et al. 2017. Combined effects of iron and copper from atmospheric dry deposition on ocean productivity [J]. Geophys. Res. Lett., 44(5): 2546-2555. DOI:10.1002/2016GL072349
Wang H, Shi G Y, Li S Y, et al. 2006. The impacts of optical properties on radiative forcing due to dust aerosol [J]. Adv. Atmos. Sci., 23(3): 431-441. DOI:10.1007/s00376-006-0431-5
王明星. 1999. 大气化学[M]. 第2版. 北京: 气象出版社: 166. Wang Mingxing. 1999. Atmospheric Chemistry (in Chinese)[M]. 2nd ed. Beijing: China Meteorological Press: 166pp.
王明星, 张仁健. 2001. 大气气溶胶研究的前沿问题[J]. 气候与环境研究, 6(1): 119-124. Wang Mingxing, Zhang Renjian. 2001. Frontier of atmospheric aerosols researches (in Chinese)[J]. Climatic and Environmental Research (in Chinese), 6(1): 119-124. DOI:10.3878/j.issn.1006-9585.2001.01.14
Wang S G, Wang J Y, Zhou Z J, et al. 2005. Regional characteristics of three kinds of dust storm events in China [J]. Atmos. Environ., 39(3): 509-520. DOI:10.1016/j.atmosenv.2004.09.033
Wang S H, Hsu N C, Tsay S C, et al. 2012. Can Asian dust trigger phytoplankton blooms in the oligotrophic northern South China Sea? [J]. Res. Lett., 39(5): L05811. DOI:10.1029/2011GL050415
魏文斐, 刘立超, 陈彬, 等. 2018. 生物气溶胶及其气候效应研究进展[J]. 中国科学院大学学报, 35(3): 332-339. Wei Wenfei, Liu Lichao, Chen Bin, et al. 2018. Advances in research on bioaerosols and their climate effect (in Chinese)[J]. Journal of University of Chinese Academy of Sciences (in Chinese), 35(3): 332-339.
Winslow C E A. 1908. A new method of enumerating bacteria in air [J]. Science, 28(705): 28-31. DOI:10.1126/science.28.705.28
叶笃正, 丑纪范, 刘纪远, 等. 2000. 关于我国华北沙尘天气的成因与治理对策[J]. 地理学报, 55(5): 513-521. Ye Duzheng, Chou Jifan, Liu Jiyuan, et al. 2000. Causes of sand-stormy weather in northern China and contral measures (in Chinese)[J]. Acta Geographica Sinica (in Chinese), 55(5): 513-521. DOI:10.11821/xb200005001
Yin Y, Chen L. 2007. The effects of heating by transported dust layers on cloud and precipitation: A numerical study [J]. Atmos. Chem. Phys., 7(13): 3497-3505. DOI:10.5194/acp-7-3497-2007
Yuan H, Zhang D, Shi Y, et al. 2017. Cell concentration, viability and culture composition of airborne bacteria during a dust event in Beijing [J]. Journal of Environmental Sciences, 55: 33-40. DOI:10.1016/j.jes.2016.03.033
Yuan W, Zhang J. 2006. High correlations between Asian dust events and biological productivity in the western North Pacific [J]. Geophys. Res. Lett., 33(7): L07603. DOI:10.1029/2005GL025174
Yue S Y, Ren H, Fan S Y, et al. 2016. Springtime precipitation effects on the abundance of fluorescent biological aerosol particles and HULIS in Beijing [J]. Scientific Reports, 6: 29618. DOI:10.1038/srep29618
Yue X, Wang H J, Liao H, et al. 2010. Simulation of dust aerosol radiative feedback using the GMOD. Ⅱ: Dust-climate interactions [J]. J. Geophys. Res., 115(D4): D04201. DOI:10.1029/2009jd012063
Yue X, Wang H J, Wang Z F, et al. 2009. Simulation of dust aerosol radiative feedback using the Global Transport Model of Dust. Ⅰ: Dust cycle and validation [J]. J. Geophys. Res., 114(D10): D10202. DOI:10.1029/2008jd010995
Zender C S, Bian H S, Newman D. 2003. Mineral dust entrainment and deposition (DEAD) model: Description and 1990s dust climatology [J]. J. Geophys. Res., 108(D14): 4416. DOI:10.1029/2002JD002775
Zhang G S, Zhang J, Liu S M. 2007. Characterization of nutrients in the atmospheric wet and dry deposition observed at the two monitoring sites over Yellow Sea and East China Sea [J]. Journal of Atmospheric Chemistry, 57(1): 41-57. DOI:10.1007/s10874-007-9060-3
Zhang J, Liu S M, Lü X, et al. 1993. Characterizing Asian wind-dust transport to the Northwest Pacific Ocean [J]. Tellus B, 45(4): 335-345. DOI:10.1034/j.1600-0889.1993.t01-3-00003.x
张敬党, 高丹, 连英姿, 等. 2004. 71所医院空气微生物监测结果分析[J]. 中国卫生检验杂志, 14(3): 321-322. Zhang Jingdang, Gao Dan, Lian Yingzi, et al. 2004. Analysis of the results of airborne microbe monitoring in 71 hospitals (in Chinese)[J]. Chinese Journal of Health Laboratory Technology (in Chinese), 14(3): 321-322. DOI:10.3969/j.issn.1004-8685.2004.03.031
Zhang K, Gao H W. 2007. The characteristics of Asian-dust storms during 2000-2002: From the source to the sea [J]. Atmos. Environ., 41(39): 9136-9145. DOI:10.1016/j.atmosenv.2007.08.007
张小曳. 2001. 亚洲粉尘的源区分布、释放、输送、沉降与黄土堆积[J]. 第四纪研究, 21(1): 29-40. Zhang Xiaoye. 2001. Source distributions, emission, transport, deposition of Asian dust and loess accumulation (in Chinese)[J]. Quaternary Sciences (in Chinese), 21(1): 29-40. DOI:10.3321/j.issn:1001-7410.2001.01.004
Zhang X Y, Gong S L, Zhao T L, et al. 2003. Sources of Asian dust and role of climate change versus desertification in Asian dust emission [J]. Geophys. Res. Lett., 30(24): 2272. DOI:10.1029/2003GL018206
Zhang Y, Yu Q, Ma W C, et al. 2010. Atmospheric deposition of inorganic nitrogen to the eastern China seas and its implications to marine biogeochemistry [J]. J. Geophys. Res., 115(D7): D00K10. DOI:10.1029/2009JD012814
Zhao T L, Gong S L, Zhang X Y, et al. 2006. A simulated climatology of Asian dust aerosol and its trans-Pacific transport. Part Ⅰ: Mean climate and validation [J]. J. Climate, 19(1): 88-103. DOI:10.1175/JCLI3605.1
Zheng Y, Zhao T L, Che H Z, et al. 2016. A 20-year simulated climatology of global dust aerosol deposition [J]. Science of the Total Environment, 557-558: 861-868. DOI:10.1016/j.scitotenv.2016.03.086
周自江, 章国材. 2003. 中国北方的典型强沙尘暴事件(1954~2002年)[J]. 科学通报, 48(11): 1224-1228. Zhou Zijiang, Zhang Guocai. 2003. Typical severe dust storms in northern China during 1954-2002 (in Chinese)[J]. Chinese Science Bulletin, 48(21): 2366-2370. DOI:10.1360/03wd0029
Zhu C W, Wang B, Qian W H. 2008. Why do dust storms decrease in northern China concurrently with the recent global warming? [J]. Res. Lett., 35(18): L18702. DOI:10.1029/2008GL034886