大气科学  2018, Vol. 42 Issue (3): 621-633   PDF    
大气气溶胶的卫星遥感及其在气候和环境研究中的应用
陈洪滨1,2,3, 范学花1, 夏祥鳌1,2,3     
1 中国科学院大气物理研究所中层大气和全球环境探测重点实验室, 北京 100029
2 中国科学院大学地球科学学院, 北京 100049
3 南京信息工程大学气象灾害预报预警与评估协同创新中心, 南京 210044
摘要: 卫星遥感可以获得全球范围的大气气溶胶光学特性,目前国内外已有多颗卫星观测能够提供气溶胶特性的资料。本文综述性介绍国内外卫星遥感气溶胶特性方面的研究进展和成果,并讨论了卫星遥感资料在气候和环境研究领域中的应用。主要内容包括:极轨/静止卫星平台搭载的被动遥感传感器及其反演气溶胶特性的方法;星载激光雷达获取气溶胶光学特性的方法;国内外正在研发的新一代卫星主、被动气溶胶遥感探测器;卫星气溶胶产品在气溶胶辐射强迫、气候效应、大尺度污染输送、区域空气质量监测等研究中的应用。
关键词: 卫星遥感      气溶胶特性      气溶胶产品应用     
Review of Satellite Remote Sensing of Atmospheric Aerosols and Its Applications in Climate and Environment Studies
CHEN Hongbin1,2,3, FAN Xuehua1, XIA Xiang'ao1,2,3     
1 Key Laboratory of Middle Atmosphere and Global Environment Observation(LAGEO), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
2 School of the Earth Science, University of Chinese Academy of Sciences, Beijing 100049
3 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044
Abstract: Remote sensing of aerosols from satellites is the most convenient tool for providing global information on spatial and temporal distributions of atmospheric aerosols. Current satellite sensors have begun quotidian providing quantitative distributions of aerosol optical thickness. Progresses and research findings on satellite retrievals of aerosol optical properties are introduced in this paper with the emphasis on four aspects:(1) Aerosol passive sensors onboard different platforms of polar-and geostationary-satellites; (2) aerosol retrieval methods of satellite passive sensors; (3) aerosol retrievals from space-borne lidar; (4) the next-generation satellite passive and active sensors focusing on aerosol retrieval. In addition, the applications of satellite aerosol products in climate and environment studies are also reviewed in the paper.
Key words: Satellite remote sensing      Aerosol properties      Application of aerosol products     
1 引言

大气气溶胶是地球—大气—海洋系统的重要成分,它主要通过三种机制影响气候:(1)通过散射、吸收短波和长波辐射改变地球—大气系统的辐射能量收支,对气候产生直接影响(Coakley et al., 1983;);(2)气溶胶作为云凝结核与云相互作用改变云的微观和宏观特性,进而对天气和气候产生间接影响(Twomey,1977Kaufman and Nakajima, 1993Hansen et al., 1997Jiang et al., 2008Bauer and Menon, 2012Rosenfeld et al., 2014);(3)气溶胶粒子间接影响着大气化学过程,从而改变温室气体等其他的大气成分(Chin et al., 2014)。此外,气溶胶对空气质量(能见度、酸沉降等)、人类健康也有着很大影响。我国许多城市,由于工业排放、城市交通污染、市政建设和自然生态环境的人为破坏等,大气中气溶胶浓度累积增加导致空气质量下降。因此,监测城市大气环境质量,减少污染源,加强对大气环境质量的监测分析也成为政府和公众关注的热点。

大气气溶胶有着众多的自然源和人为源,其物理、化学和辐射特性有很大的不同,气溶胶物理化学特性及其时空分布的多变增加了气溶胶监测与研究的难度。卫星遥感可以获得大范围的气溶胶光学特性,随着卫星探测手段和技术的不断提高,卫星遥感理论和方法的不断进步,卫星遥感已成为气溶胶研究不可替代的有效手段。本文针对国内外卫星遥感气溶胶特性方面的研究进展和成果进行综述,并讨论了其在气候和环境研究中的应用。

2 卫星平台被动遥感传感器及其气溶胶光学特性反演方法 2.1 极轨卫星平台被动遥感反演气溶胶光学特性

国内外搭载在极轨卫星平台上能进行气溶胶特性遥感的传感器很多,可以给出卫星过境时间气溶胶特性的全球分布。表 1总结了这些传感器的观测方式、光谱通道和气溶胶产品特点。

表 1 可获得气溶胶光学特性的极轨卫星平台被动遥感传感器信息 Table 1 Information on passive sensors for aerosol retrieval onboard polar-orbit satellites
2.2 极轨卫星平台被动遥感传感器反演气溶胶光学特性的方法

晴空条件下,卫星接收到的辐射来自于地球大气散射及地表反射的复杂相互作用,故通过卫星接收到的辐射获取气溶胶物理光学特性,首先要将地表贡献和大气的贡献区分开。通常,卫星成像辐射计遥感气溶胶光学特性的流程如图 1所示。

图 1 卫星被动遥感反演气溶胶特性流程图 Figure 1 Flow chart of retrieval of aerosol properties from satellite passive sensors

目前被动遥感反演方法的基本思路都是以查找表LUT(Look-Up-Table)为基础,即用辐射传输模式模拟计算不同气溶胶模型、不同卫星观测角度下卫星接收到的辐射,建立查找表。再将卫星实际观测的表观反射率与查找表中事先计算的值对比,直至得到最佳拟合。这时对应的气溶胶参数,即为反演值。

卫星被动遥感气溶胶光学特性的关键还在于云剔除和地表反射率的确定。通常认为在660 nm及更长波段,开阔洋面非耀斑方向的反射率接近于0,在这些通道可以忽略洋面反射贡献(Tanré et al., 1997Levy et al., 2007)。而在沿海和陆地区域,地表反射率0.01的误差就会导致气溶胶光学厚度AOD的反演误差达0.1(Kaufman et al., 1997)。针对MODIS传感器,Kaufman et al.(1997)观测发现470、660 nm的地表反射率分别是2100 nm地表反射率的0.25倍和0.5倍,据此发展了适用于浓密植被等低地表反射率的暗背景法(Dark Target,简称DT);Levy et al.(2005)分析了2001年CLAMS(Chesapeake Lighthouse and Aircraft Measurements for Satellites)观测资料,将上述比值调整为0.33和0.65。Li et al.(2005a)提出了一种基于MODIS反演方法的修正算法,改进了气溶胶模型,应用于1 km分辨率的气溶胶光学厚度反演,并与地面环境监测站的PM10数据对比,证实该产品对于城市尺度的空气质量研究具有重要意义。然而,由于地表本身的复杂多变,这个比值与地表类型、几何观测角度都有关系,这种关系式并不是全球适用的。因此,应用MODIS AOD产品前,必须对其在关注区域的可靠性和有效性做验证评估(夏祥鳌,2006)。Hsu et al.(2004, 2006)针对沙漠等亮地表,提出了深蓝(Deep-Blue,简称DB)算法。这些亮地表在可见光通道具有高反射率,但在~410 nm近紫外波段反射率很低。深蓝算法弥补了MODIS暗背景法在亮地表没有AOD反演的局限。MISR(the Multi-angle Imaging SpectroRadiometer)多角度多通道光谱成像仪,可以从9个角度观测同一目标,可以同时反演得到AOD、AE和粒子形状(Kahn et al., 2005, 2009)。

大多数陆地表面反射辐射的偏振分量小且其时空变化也较小,而分子和气溶胶散射辐射强偏振,因此大气顶偏振反射率主要来自大气,在对大气分子信号进行订正后,偏振反射率的测量可用于反演陆地上空的气溶胶。法国的PODER系列卫星传感器实现了地气系统的多角度偏振观测(图 2给出POLDER的观测示意图),在反演算法中引入偏振反射率,改进了AOD的反演精度(Deuzé et al., 2001Fan et al., 2009Cheng et al., 2011Gu et al., 2011Wang et al., 2012)。欧洲太空局(简称欧空局)预计2020年发射的3MI(the Multi-Viewing Multi-Channel Multi-Polarization Imaging)仪器在继承POLDER多角度多通道偏振探测的基础上,对前向模型和数值反演算法做了改进。此外,我国于2016年12月发射的碳卫星上搭载了云气溶胶偏振成像仪(Cloud and Aerosol Polarization Imager,简称CAPI),设置了670 nm和1640 nm两个偏振通道,也实现了对地气系统的多通道偏振成像观测。Shi et al.(2015)针对短波红外(SWIR,2~4 µm)通道实现困难、稳定性差,有些卫星传感器并不具备的情况,发展了利用可见和近红外多通道联合反演大气气溶胶光学厚度和地表反射率的方法,应用于CAPI的气溶胶反演。

图 2 POLDER多角度观测示意图 Figure 2 The schematic diagram of POLDER (POLarization and Directionality of the Earth's Reflectances) multi-angular observation

由于紫外波段的吸收气溶胶指数(Absorbing Aerosol Index,简称AAI)对散射性气溶胶和云不敏感,有学者(Herman et al., 1997Torres et al., 1998, 2007De Graaf and Stammes, 2005; De Graaf et al., 2007)利用SCIAMACHY(Scanning Imaging Absorption Spectrometer for Atmospheric Chartography)的紫外波段光谱资料研究了云上的吸收性气溶胶,联合辐射传输模式分别模拟了云与气溶胶内混合、外混合和分层出现时,生物质燃烧气溶胶的总光学厚度和吸收光学厚度。还有学者用FRESCO(Fast REtrieval Scheme for Clouds from the Oxygen A band)云资料和GOME-2(Global Ozone Monitoring Experiment)的吸收气溶胶指数数据发展了云上气溶胶层高的探测方法(Wang et al., 2012)。但是,AAI只是对气溶胶总量的一个半定量观测参数,气溶胶标高、单次散射反照率、云反照率及卫星观测角度都对云上气溶胶的AAI有影响,因此由AAI推得云上气溶胶光学厚度(Above- Cloud Aerosol Optical Depth,简称ACAOD)时,需要对气溶胶和云的微物理特性做一些假设,导致反演的ACAOD不确定性很大。近紫外波段反演ACAOD的敏感性分析显示,当云和气溶胶层厚度分别为10和0.5时,ACAOD的反演误差高达-26%~54%(Torres et al., 2012)。近期研究指出,多角度偏振观测对云上气溶胶(Waquet et al., 2009),特别是细模态或者聚集模态气溶胶(Knobelspiesse et al., 2011)具有敏感性。这类气溶胶在侧向散射角(70°~130°)范围内产生明显的偏振,而云仅仅在含有彩虹和辉光特征的散射角范围内(135°~180°)反射具有显著偏振的光。Waquet et al.(2009)联合MODIS反演的云高资料和PARASOL多角度偏振观测资料,进行了云上气溶胶的反演试验,得到大西洋地区低层云上,源自非洲南部的生物质燃烧气溶胶光学厚度。此后又在改进上述算法的基础上(Waquet等,2013a, 2013b),给出2008年云上AOD和AE(Angstrom Exponent)的全球分布,但是对我国四川盆地等云覆盖频率很高的地区,并未给出反演结果。

3 静止卫星平台传感器及气溶胶光学特性遥感方法

与极轨卫星相比,静止卫星具有更高的时间分辨率,为大范围监测气溶胶的日变化提供了很好的观测机遇。目前可以获得气溶胶光学特性的静止卫星平台传感器主要有:美国的ABI(Advanced Baseline Imager)/GOES(Geostationary Operational Environmental Satellites);欧空局Meteosat第二代静止卫星平台上的SEVIRI(the Spinning Enhanced Visible and Infra-Red Imager);韩国COMS(the Communication, Ocean, and Meteorological Satellite)静止卫星搭载的中分辨率成像仪GOCI(Geostationary Ocean Color Imager)和MI(Meteorological Imager);日本葵花(Himawari-6和Himawari-7)静止卫星系列搭载的中分辨率光谱成像仪JAMI(Japanese Advanced Meteorological Imager)。2014年7月10日发射的葵花-8(Himawari-8)静止卫星搭载了多通道成像仪(Advanced Himawari Imager,简称AHI),光谱通道覆盖可见光和近红外波段,通道数从之前的5个增加到16个。空间分辨率也从之前的1 km提高到0.5 km,时间分辨率从之前的30分钟提高到10分钟(Sekiyama et al., 2016)。此外,我国的风云FY-4A静止卫星上也搭载了中高分辨率辐射成像仪(the Advanced Geosynchronous Radiation Imager,简称AGRI),从可见光到热红外(0.47~13.5 μm)有14个观测波段,空间分辨率在可见光波段为0.5~1 km、近红外波段为2 km,其他波段为4 km,时间分辨率15分钟(Yang et al., 2017)。除了可以获得AOD外,还可以获得气溶胶粒子尺度信息。

从静止卫星传感器获取气溶胶光学特性,同样需要地表反射率作为先验信息。美国GOES卫星的ABI气溶胶反演算法GASP(GOES Aerosol/Smoke Product)用可见光通道28天的合成图得到地表反射率信息,以此为基础结合辐射传输模式建立查找表LUT,进行气溶胶特性的反演(Knapp et al., 2005)。这样反演得到的AOD不确定性很大(Zhang et al., 2011),因此Zhang et al.(2011)应用修正的多角度大气订正(Mutiangle Implementation of Atmospheric Correction,简称MAIAC)算法,提出了一个改进的反演算法,假定GOES可见光通道的地表双向反射率分布函数(Bidirectional Refelectance Distribution Function,简称BRDF)与MODIS 2.1 μm通道的季节平均BRDF成正比。由此反演得到美国地区的AOD,用AERONET(Aerosol Robotic Network),GASP和MODIS AOD产品对反演结果做了验证评估,算法提高了AOD的反演精度。

除了地表反射率模型,遥感算法所用的气溶胶模型也会影响气溶胶光学特性的反演结果(Dubovik et al., 2014Määttä et al., 2014伽丽丽等,2016)。气溶胶时空分布变化大,不同区域的气溶胶成分显著不同。Ahmad et al.(2010)通过分析AERONET在沿海站点的观测资料,发现气溶胶尺度分布的模态半径与相对湿度有很大关系,据此建立了与相对湿度相关的气溶胶模型,将该模型用于SeaWiFS(Sea-Viewing Wide Field-of-View Sensor)和MODIS气溶胶反演算法,显著提高了二者在沿海站点AOD的反演精度。Kim et al.(2016)用AERONET和2012年龙计划——亚洲试验的观测资料[Distributed Regional Aerosol Gridded Observation Networks(DRAGON)—Asia],从单次散射反照率方面优化了MI反演算法的气溶胶模型。Gassó and Torres(2016)联合MODIS和CALIOP(Cloud-Aerosol Lidar with Orthogonal Polarization)气溶胶资料,分析了气溶胶标高和气溶胶模型对OMI(Ozone Monitoring Instrument)近紫外波段AOD反演结果的影响。发现在OMAERUV业务反演算法假设的沙尘气溶胶模型中,球形粒子假设是引起AOD反演偏低的主要原因。

4 星载激光雷达气溶胶遥感

除了上述卫星被动遥感方法,美国和法国合作的CALIPSO(Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation)卫星搭载了星载激光雷达CALIOP,可以更准确地区分云和气溶胶粒子层,为气溶胶—气候—环境效应的评估提供了气溶胶的三维时空分布(Winker et al., 2007Yang et al., 2012)。CALIOP可以获得昼夜两次两个波长(532 nm和1064 nm)的后向散射系数廓线、532 nm体积退偏比垂直廓线及两个波长的色比廓线。CALIOP产品还给出了气溶胶分类,包括洁净海洋型、沙尘型、陆地污染、陆地洁净、污染的沙尘和烟尘气溶胶(Vaughan et al., 2004)。然而,CALIOP气溶胶消光系数廓线的反演需要激光雷达比作为先验信息,激光雷达比是气溶胶消光系数与后向散射系数的比值。目前的反演算法,激光雷达比是根据经验给出的,这一点限制了CALIOP反演气溶胶光学厚度的准确性(Rogers et al., 2014)。

欧空局和日本宇航局合作的EarthCARE(the Earth Clouds, Aerosol and Radiation Explorer)卫星计划2019年8月发射(Pereira do Carmo et al., 2016),上面将搭载新一代激光雷达(ATmospheric LIDar,简称ATLID)。美国计划发射的云/气溶胶/生态系统卫星ACE(Aerosol/Cloud/Ecosystems;McClain et al., 2011)也将搭载高光谱分辨率激光雷达HSRL(High Spectral Resolution Lidar)。这些新计划将提供全球范围自然源气溶胶和人为源气溶胶的垂直廓线信息,并给出气溶胶微物理特性(尺度、折射指数等)的三维时空分布,用于更好地估算气溶胶对地球辐射收支的影响。

得益于星载激光雷达的垂直廓线信息,学者们开展了联合主被动卫星观测资料融合,进行云上气溶胶特性的反演试验。星载激光雷达提供的后向散射系数廓线直观地反映了云上存在气溶胶的情形。Hu et al.(2007)发展了一个用CALIOP星载激光雷达资料反演层云上气溶胶光学厚度的方法,该方法联合后向散射系数和线性退偏比观测,不需要对气溶胶微物理特性做任何假设。Chand et al.(2008)用CALIOP星载激光雷达的双波长资料(颜色比)反演了热带东大西洋海域层云上细模态气溶胶的光学厚度和AE,但作者也阐述了仅用主动信息获取云上气溶胶特性的局限性(CALIOP的扫描刈幅太窄),并指出主被动遥感信息的结合可以同时获得云天时气溶胶和云的微物理特性。

Dubovik et al.(2014)联合地基太阳光度计、激光雷达和卫星的多平台遥感资料,提出了GRASP(Generalized Retrieval of Aerosol and Surface Properties)反演算法,采用最优统计理论将算法分为前向模型和数值反演两个部分,可以同时反演获得气溶胶光学厚度、尺度分布、复折射指数、气溶胶标高及地表信息。最优统计理论(Rodgers,2000)考虑了先验信息的误差,可得到不同精度的反演结果,并估计不同数值反演方法(迭代反演法和矩阵反演法)的优劣,具有加速迭代收敛等优点。

5 卫星遥感气溶胶在气候和环境研究中的应用

卫星观测提供的大范围气溶胶产品已广泛应用于气候和环境研究中。首先,卫星气溶胶产品可用于大气订正来进行地表信息遥感(Justice et al., 1998Schaaf et al., 2002;Schroeder et al., 2005)。其次,卫星观测获得的气溶胶光学特性可以估算气溶胶直接/间接辐射效应。国内外学者开展了利用MODIS AOD(Christopher and Zhang, 2002Remer et al., 2002Ichoku et al., 2003Benas et al., 2011Xu et al., 2016Fu et al., 2017)、MISR AOD(Christopher and Wang, 2004)、SeaWiFS AOD(Chou et al., 2002)或联合多个卫星气溶胶产品(Costa et al., 2003Zhang and Christopher, 2003Bellouin et al., 2005Liu et al., 2007Xia and Zong, 2009Chen et al., 2011Guleria et al., 2011)估算不同区域气溶胶直接辐射强迫的研究。

大多数气候模式都是基于云滴数浓度和气溶胶浓度的经验关系来评估气溶胶间接效应,卫星气溶胶产品为改进全球气候模式的气溶胶间接效应参数化提供了很好的资料基础(Quaas and Boucher, 2005Quass et al., 2009)。Huang et al.(2006)用MODIS和CERES卫星2001年4月至2004年6月在我国西北地区的资料,定量评估了沙尘气溶胶对冰云粒子有效半径、云光学厚度和冰水路经的影响及其引起的辐射强迫。Costantino and Bréon(2010)联合利用MODIS气溶胶产品、PARASOL(Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar)云滴有效半径和CALIOP/CALIPSO气溶胶垂直廓线产品对西非沿海的气溶胶间接效应做了研究,结果表明:当云层和气溶胶分离时,气溶胶光学厚度和云滴半径(Cloud Droplet Radius,简称CDR)之间没有相关性;但当气溶胶和云混在一起时,两者之间有强相关。马月和薛惠文(2012)用CloudSat(Cloud Satellite)和MODIS资料研究了太平洋东部副热带地区气溶胶对该地区层积云微物理特性的影响。Ou et al.(2012)用MODIS气溶胶和云产品研究了东亚地区沙尘气溶胶间接效应。结果表明:云粒子有效半径和沙尘气溶胶光学厚度有着显著的负相关,符合Towmey效应。Tang et al.(2014)用MODIS云滴有效半径和AOD资料分析了我国东部地区气溶胶—暖云云滴有效半径之间的关系,结果表明:当AOD<0.3时我国东海和南海区域的AOD和云滴有效半径呈负相关,即符合Twomey效应;当AOD>0.3后,我国东部地区和黄海区域的AOD和云滴有效半径成正相关,与Twomey效应相反;此外,背景气象条件是研究气溶胶间接效应不能忽视的因素(Su et al., 2010Wang et al., 2015)。

卫星观测也被广泛应用于沙尘监测和预报(申莉莉等,2010Huang et al., 2015)。胡秀清等(2003, 2007)和高庆先等(2004)开展了用静止气象卫星(GMS-5)监测沙尘暴的研究工作。陈勇航等(2009)用CALIOP观测资料,分析了2007年3月28日至4月2日由西向东影响我国多个省、市、自治区的一次远程强沙尘污染传输过程,对后向散射系数、退偏比、色比等光学特性参数进行了研究,表明CALIPSO数据能较好反映强沙尘远程传输过程中沙尘气溶胶光学特性的垂直分布特征及其粒子大小、不规则性随高度的变化特征。徐成鹏等(2014)用2006年6月至2012年5月的CALIOP资料分析了我国典型地区沙尘气溶胶的垂直分布和季节变化。Ren et al.(2017)利用TOMS沙尘气溶胶光学厚度产品,分析了1978~2005年我国北部沙尘气溶胶的时空分布特征。

卫星反演的气溶胶粒子有效半径和光谱气溶胶光学厚度可用于估算大气污染物(颗粒物等)的浓度分布及其输送(Kokhanovsky et al., 2009Rohen et al., 2011Van Donkelaar et al., 2013Green et al.(2009)分析比较了美国地区GOES、MODIS AOD和地表PM2.5、PM10浓度,讨论了利用GOES、MODIS卫星AOD产品结合模式预报地表PM2.5和PM10浓度的潜力。用卫星AOD产品估计地表PM2.5浓度时,必须考虑气溶胶粒子尺度分布、大气相对湿度和边界层高度的季节及日变化(Paciorek et al., 2008Chudnovsky et al., 2012)。Wang et al.(2016)用多元统计回归模型和VIIRS/NPP昼夜通道(Day Night Band,简称DNB)的可见光辐射资料估算了夜晚的地表PM2.5浓度。研究结果表明:既考虑气象因子,又考虑DNB光强变化的回归模型可以提高PM2.5浓度估算的精度。

针对近年来国内很多城市日益严重的大气颗粒物污染,国内学者也相继开展了用卫星气溶胶产品进行区域雾霾污染的研究(李成才等, 2003, 2004王中挺等,2008何秀等,2010郑卓云等,2011徐婷婷等,2012Tao et al., 2012, 2014Liu et al., 2013)。Li et al.(2005b)提出将气溶胶光学厚度产品应用于空气污染研究,证实考虑了气溶胶垂直分布订正(垂直订正)和气溶胶吸湿增长订正(湿度订正)之后,气溶胶光学遥感产品与地面质量浓度具有很高的相关。苏小莉(2010)建立了POLDER气溶胶光学厚度与近地面PM2.5浓度之间的线性关系。由POLDER AOD估算出相应的近地面PM2.5浓度,并评估了北京及周边地区的空气质量等级,给出评估精度。指出PM2.5浓度的日变化和气溶胶垂直分布信息是影响卫星AOD和近地面PM2.5之间关系的重要因子。Xu et al.(2015)利用GOCI卫星2013年在中国东部的AOD产品和GEOS-Chem模式估算了地面PM2.5浓度,并用地面环保监测站的数据对卫星估算的PM2.5浓度进行了验证评估,两者有较好的一致性。表明GOCI卫星AOD产品可以用于东亚地区空气质量的研究。Wu et al.(2016)针对我国京津冀地区,用时空统计模型建立VIIRS AOD和地表PM2.5浓度的关系,讨论了风向、气温、相对湿度对卫星估算PM2.5浓度中的影响。Shang et al.(2017)发展了用日本葵花-8卫星资料识别雾霾污染的算法,将算法用于中国中东部地区,对识别结果用CALIOP星载激光雷达做了验证,雾霾的漏检率为4.17%。You et al.(2016)采用非线性模型,联合地面气象观测资料、MODIS AOD资料和NCEP再分析资料估算了我国西安地区的地表PM10浓度。与线性模型相比,改进的非线性模型将相关系数从0.28提高到0.78,将均方根误差从34.42降低到21.33 µg m-1

此外,将卫星气溶胶产品同化到天气气候模式里有助于沙尘和雾霾的预测。Wang et al.(2004)将GOES-8气溶胶光学厚度产品同化进中尺度区域大气模式,对波多黎各沙尘观测实验期的一次沙尘事件做了数值模拟。与地面观测比较后发现:同化了卫星气溶胶产品的模拟结果更准确地再现了地表向下的短波和长波辐射通量。这表明:同化卫星气溶胶产品后不仅改进了气溶胶预报,也有助于减小模式模拟地表能量平衡及其他大气过程方面的不确定性。

6 小结和展望

目前国内外已有多颗卫星观测能够提供气溶胶特性的全球分布[MODIS、MISR(the Multi-angle Imaging SpectroRadiometer)和VIIRS(Visible Infrared Imaging Radiometer Suite)等],还有一些能给出气溶胶光学特性的垂直分布(CALIOP),也有一些针对气溶胶吸收特性的卫星观测结果(TOMS和OMI)。然而,气溶胶辐射强迫尤其气溶胶间接辐射强迫的当前认知水平仍然为“低”,是总辐射强迫估算中的最大不确定性来源(Boucher et al., 2013)。造成这种不确定性的主要原因是目前的气溶胶卫星遥感反演还存在很多问题。首先,很难区分气溶胶来源于自然源还是人类源(Su et al., 2013),现有的卫星气溶胶产品只提供气溶胶光学厚度,而不能反演得到用于区分气溶胶来源的气溶胶尺度分布和复折射指数等信息;其次,有云时无法获得气溶胶信息。绝大多数气溶胶反演方法都先将云剔除,若云检测不严格,会将部分有云像素会被误判为气溶胶,导致气溶胶参数反演的误差。若云检测过于严格,则反演结果只有绝对晴空区的气溶胶特性。

针对上述问题,我们在发展卫星遥感气溶胶特性研究的同时,必须同步发展地面监测网络。除了继续陆地气溶胶自动观测网AERONET以外,海洋上空气溶胶的自动检测MAN(Maritime Aerosol Network)及流动观测也必不可少。地基观测不仅可以验证评估卫星气溶胶产品,也可以与卫星产品、空基观测试验联合,发挥多平台观测的优势,完善气溶胶模型,提高数值模式的模拟精度。

参考文献
Ahmad Z, Franz B A, McClain C R, et al. 2010. New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans [J]. Appl. Opt., 49(29): 5545-5560. DOI:10.1364/AO.49.005545
Bauer S E, Menon S. 2012. Aerosol direct, indirect, semidirect, and surface albedo effects from sector contributions based on the IPCC AR5 emissions for preindustrial and present-day conditions [J]. J. Geophys. Res.-Atmos., 117: D13206. DOI:10.1029/2011JD016816
Bellouin N, Boucher O, Haywood J, et al. 2005. Global estimate of aerosol direct radiative forcing from satellite measurements [J]. Nature, 438(7071): 1138-1141. DOI:10.1038/nature04348
Benas N, Hatzianastassiou N, Matsoukas C, et al. 2011. Aerosol shortwave direct radiative effect and forcing based on MODIS Level 2 data in the eastern Mediterranean (Crete) [J]. Atmos. Chem. Phys., 11(24): 12647-12662. DOI:10.5194/acp-11-12647-2011
Boucher O, Randall D, Artaxo P, et al. 2013. Clouds and Aerosols[M]//Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T F, Qin D, Plattner G K, et al, Eds. Cambridge, UK and New York, NY, USA: Cambridge University Press.
Chand D, Anderson T L, Wood R, et al. 2008. Quantifying above-cloud aerosol using spaceborne lidar for improved understanding of cloudy-sky direct climate forcing [J]. J. Geophys. Res. Atmos., 113(D13): D13206. DOI:10.1029/2007JD009433
陈勇航, 毛晓琴, 黄建平, 等. 2009. 一次强沙尘输送过程中气溶胶垂直分布特征研究[J]. 中国环境科学, 29(5): 449-454. Chen Yonghang, Mao Xiaoqin, Huang Jianping, et al. 2009. Vertical distribution characteristics of aerosol during a long-distance transport of heavy dust pollution (in Chinese)[J]. China Environmental Science, 29(5): 449-454. DOI:10.3321/j.issn:1000-6923.2009.05.001.
Chen L, Shi G Y, Wang B A, et al. 2011. Assessment Aerosol Direct Radiative Forcing over China Land Areas Based On Satellite Data[C]//Proc. SPIE, Remote Sensing of the Environment: The 17th China Conference on Remote Sensing. Hangzhou, China, 8203, doi: 10.1117/12.910427. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1344143
Cheng T H, Gu X F, Xie D H, et al. 2011. Simultaneous retrieval of aerosol optical properties over the Pearl River Delta, China using multi-angular, multi-spectral, and polarized measurements [J]. Remote Sensing of Environment, 115(7).
Chin M, Diehl T, Tan Q, et al. 2014. Multi-decadal aerosol variations from 1980 to 2009:A perspective from observations and a global model [J]. Atmos. Chem. Phys., 14(7): 3657-3690. DOI:10.5194/acp-14-3657-2014
Chou M D, Chan P K, Wang M H. 2002. Aerosol radiative forcing derived from SeaWiFS-Retrieved aerosol optical properties [J]. J. Atmos. Sci., 59(3): 748-757. DOI:10.1175/1520-0469(2002)059<0748:ARFDFS>2.0.CO;2
Christopher S A, Zhang J L. 2002. Shortwave aerosol radiative forcing from MODIS and CERES observations over the oceans [J]. Geophys. Res. Lett., 29(18): 1859. DOI:10.1029/2002GL014803
Christopher S A, Wang J. 2004. Intercomparison between multi-angle imaging spectroradiometer (MISR) and sunphotometer aerosol optical thickness in dust source regions over China:Implications for satellite aerosol retrievals and radiative forcing calculations [J]. Tellus B Chem. Phys. Meteor., 56(5): 451-456. DOI:10.3402/tellusb.v56i5.16462
Chudnovsky A A, Lee H J, Kostinski A, et al. 2012. Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES) [J]. J. Air Waste Manag. Assoc., 62(9): 1022-1031. DOI:10.1080/10962247.2012.695321
Coakley J A Jr, Cess R D, Yurevich F B. 1983. The effect of tropospheric aerosols on the earth's radiation budget:A parameterization for climate models [J]. J. Atmos. Sci., 40(1): 116-138. DOI:10.1175/1520-0469(1983)040<0116:TEOTAO>2.0.CO;2
Costa M J, Silva A M, Levizzani V. 2003. Aerosol radiative forcing assessment from polar and geostationary satellite measurements [J]. Remote Sensing of Clouds and the Atmosphere Vii, 4882: 80-89. DOI:10.1117/12.462590
Costantino L, Bréon F M. 2010. Analysis of aerosol-cloud interaction from multi-sensor satellite observations [J]. Geophys. Res. Lett., 37(11): L11801. DOI:10.1029/2009GL041828
De Graaf M, Stammes P. 2005. SCIAMACHY absorbing aerosol index-calibration issues and global results from 2002-2004 [J]. Atmos. Chem. Phys., 5(9): 2385-2394. DOI:10.5194/acp-5-2385-2005
De Graaf M, Stammes P, Aben E A A. 2007. Analysis of reflectance spectra of UV-absorbing aerosol scenes measured by SCIAMACHY [J]. J. Geophys. Res. Atmos., 112(D2): D02206. DOI:10.1029/2006jd007249
Deuzé J L, Bréon F M, Devaux C, et al. 2001. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements [J]. J. Geophys. Res. Atmos., 106(D5): 4913-4926. DOI:10.1029/2000JD900364
Fan X H, Chen H B, Lin L F, et al. 2009. Retrieval of aerosol optical properties over the Beijing area using POLDER/PARASOL satellite polarization measurements [J]. Adv. Atmos. Sci., 26(6): 1099-1107. DOI:10.1007/s00376-009-8103-x
Fu Y F, Zhu J C, Yang Y J, et al. 2017. Grid-cell aerosol direct shortwave radiative forcing calculated using the SBDART model with MODIS and AERONET observations:An application in winter and summer in eastern China [J]. Adv. Atmos. Sci., 34(8): 952-964. DOI:10.1007/s00376-017-6226-z
高庆先, 任阵海, 张运刚, 等. 2004. 利用静止卫星资料跟踪沙尘天气的发生、发展及其传输[J]. 资源科学, 26(5): 24-29. Gao Qingxian, Ren Zhenhai, Zhang Yungang, et al. 2004. Dust event and its formation, development and transportation based on satellite data (in Chinese)[J]. Resour. Sci., 26(5): 24-29. DOI:10.3321/j.issn:1007-7588.2004.05.004
Gassó S, Torres O. 2016. The role of cloud contamination, aerosol layer height and aerosol model in the assessment of the OMI near-UV retrievals over the ocean [J]. Atmos. Meas. Tech., 9(7): 3031-3052. DOI:10.5194/amt-9-3031-2016
Green M, Kondragunta S, Ciren P, et al. 2009. Comparison of GOES and MODIS Aerosol Optical Depth (AOD) to Aerosol Robotic Network (AERONET) AOD and IMPROVE PM2.5 Mass at Bondville, Illinois [J]. J. Air Waste Manag. Assoc., 59(9): 1082-1091. DOI:10.3155/1047-3289.59.9.1082
Gu X, Cheng T, Xie D, et al. 2011. Analysis of surface and aerosol polarized reflectance for aerosol retrievals from polarized remote sensing in PRD urban region [J]. Atmospheric Environment, 45(36): 6607-6612. DOI:10.1016/j.atmosenv.2011.06.047
Guleria R P, Kuniyal J C, Rawat P S, et al. 2011. The assessment of aerosol optical properties over Mohal in the northwestern Indian Himalayas using satellite and ground-based measurements and an influence of aerosol transport on aerosol radiative forcing [J]. Meteor. Atmos. Phys., 113(3-4): 153-169. DOI:10.1007/s00703-011-0149-5
Hansen J, Sato M, Ruedy R. 1997. Radiative forcing and climate response [J]. J. Geophys. Res. Atmos., 102(D6): 6831-6864. DOI:10.1029/96JD03436
何秀, 邓兆泽, 李成才, 等. 2010. MODIS气溶胶光学厚度产品在地面PM10监测方面的应用研究[J]. 北京大学学报 (自然科学版), 46(2): 178-184. He Xiu, Deng Zhaoze, Li Chengcai, et al. 2010. Application of MODIS AOD in surface PM10 evaluation (in Chinese)[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 46(2): 178-184. DOI:10.13209/j.0479-8023.2010.026
Herman J R, Bhartia P K, Torres O, et al. 1997. Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data [J]. J. Geophys. Res. Atmos., 102(D14): 16911-16922. DOI:10.1029/96JD03680
Hsu N C, Tsay S C, King M D, et al. 2004. Aerosol properties over bright-reflecting source regions [J]. IEEE Trans. Geosci. Remote Sens., 42(3): 557-569. DOI:10.1109/TGRS.2004.824067
Hsu N C, Tsay S C, King M D, et al. 2006. Deep blue retrievals of Asian aerosol properties during ACE-Asia [J]. IEEE Trans. Geosci. Remote Sens., 44(11): 3180-3195. DOI:10.1109/TGRS.2006.879540
胡秀清, 卢乃锰, 张鹏. 2007. 利用静止气象卫星红外通道遥感监测中国沙尘暴[J]. 应用气象学报, 18(3): 266-275. Hu Xiuqing, Lu Naimeng, Zhang Peng. 2007. Remote sensing and detection of dust storm in China using the thermal bands of geostationary meteorological satellite (in Chinese)[J]. J. Appl. Meteor. Sci., 18(3): 266-275. DOI:10.3969/j.issn.1001-7313.2007.03.002
胡秀清, 卢乃锰, 邱红, 等. 2003. 利用静止气象卫星监测沙尘暴[J]. 气候与环境研究, 8(1): 101-106. Hu Xiuqing, Lu Naimeng, Qiu Hong, et al. 2003. Dust-storm monitoring using geostationary meteorological satellites (in Chinese)[J]. Clim. Environ. Res., 8(1): 101-106. DOI:10.3969/j.issn.1006-9585.2003.01.012
Hu Y X, Vaughan M, Liu Z Y, et al. 2007. Retrieving optical depths and lidar ratios for transparent layers above opaque water clouds from CALIPSO lidar measurements [J]. IEEE Geosci. Remote Sens. Lett., 4(4): 523-526. DOI:10.1109/LGRS.2007.901085
Huang J P, Minnis P, Lin B, et al. 2006. Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES [J]. Geophys. Res. Lett., 33(6): L06824. DOI:10.1029/2005gl024724
Huang J, Liu J, Chen B, et al. 2015. Detection of anthropogenic dust using CALIPSO lidar measurements [J]. Atmospheric Chemistry and Physics, 15: 11653-11665. DOI:10.5194/acp-15-11653-2015
Ichoku C, Remer L A, Kaufman Y J, et al. 2003. MODIS observation of aerosols and estimation of aerosol radiative forcing over southern Africa during SAFARI 2000 [J]. J. Geophys. Res. Atmos., 108(D13): 8499. DOI:10.1029/2002JD002366
Jiang J H, Su H, Schoeberl M R, et al. 2008. Clean and polluted clouds:Relationships among pollution, ice clouds, and precipitation in South America [J]. Geophys. Res. Lett., 35(14): L14804. DOI:10.1029/2008GL034631
Justice C O, Vermote E, Townshend J R G, et al. 1998. The Moderate Resolution Imaging Spectroradiometer (MODIS):Land remote sensing for global change research [J]. IEEE Transactions on Geoscience and Remote Sensing, 36(4): 1228-1249. DOI:10.1109/36.701075
Kahn R A, Gaitley B J, Martonchik J V, et al. 2005. MISR global aerosol optical depth validation based on two years of coincident AERONET observations [J]. J. Geophys. Res. Atmos., 110(D10): D10S04. DOI:10.1029/2004JD004706
Kahn R, Petzold A, Wendisch M, et al. 2009. Desert dust aerosol air mass mapping in the western Sahara, using particle properties derived from space-based multi-angle imaging [J]. Tellus B Chem. Phys. Meteor., 61(1): 239-251. DOI:10.1111/j.1600-0889.2008.00398.x
Kaufman Y J, Nakajima T. 1993. Effect of Amazon smoke on cloud microphysics and albedo-Analysis from satellite imagery [J]. J. Appl. Meteor., 32(4): 729-744. DOI:10.1175/1520-0450(1993)032<0729:EOASOC>2.0.CO;2
Kaufman Y J, Wald A E, Remer L A, et al. 1997. The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol [J]. IEEE Trans. Geosci. Remote Sens., 35(5): 1286-1298. DOI:10.1109/36.628795
Kim M, Kim J, Jeong U, et al. 2016. Aerosol optical properties derived from the DRAGON-NE Asia campaign, and implications for a single-channel algorithm to retrieve aerosol optical depth in spring from Meteorological Imager (MI) on-board the Communication, Ocean, and Meteorological Satellite (COMS) [J]. Atmos. Chem. Phys., 16(3): 1789-1808. DOI:10.5194/acp-16-1789-2016
Knapp K R, Frouin R, Kondragunta S, et al. 2005. Toward aerosol optical depth retrievals over land from GOES visible radiances:Determining surface reflectance [J]. Int. J. Remote Sens., 26(18): 4097-4116. DOI:10.1080/01431160500099329
Knobelspiesse K, Cairns B, Redemann J, et al. 2011. Simultaneous retrieval of aerosol and cloud properties during the MILAGRO field campaign [J]. Atmos. Chem. Phys., 11(13): 6245-6263. DOI:10.5194/acp-11-6245-2011
Kokhanovsky A A, Prikhach A S, Katsev I L, et al. 2009. Determination of particulate matter vertical columns using satellite observations [J]. Atmos. Meas. Tech., 2(2): 327-335. DOI:10.5194/amt-2-327-2009
Levy R C, Remer L A, Martins J V, et al. 2005. Evaluation of the MODIS aerosol retrievals over ocean and land during CLAMS [J]. J. Atmos. Sci., 62(4): 974-992. DOI:10.1175/JAS3391.1
Levy R C, Remer L A, Mattoo S, et al. 2007. Second-generation operational algorithm:Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance [J]. J. Geophys. Res., 112: D13211. DOI:10.1029/2006JD007811
李成才, 毛节泰, 刘启汉. 2003. 利用MODIS遥感大气气溶胶及气溶胶产品的应用[J]. 北京大学学报 (自然科学版), 39(S): 108-117. Li Chengcai, Mao Jietai, Liu Qihan. 2003. Remote sensing aerosol with MODIS and the application of MODIS aerosol products (in Chinese)[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 39(S): 108-117. DOI:10.3321/j.issn:0479-8023.2003.z1.014
李成才, 刘启汉, 毛节泰, 等. 2004. 利用MODIS卫星和激光雷达遥感资料研究香港地区的一次大气气溶胶污染[J]. 应用气象学报, 15(6): 641-650. Li Chengcai, Liu Qihan, Mao Jietai, et al. 2004. An aerosol pollution episode in Hong Kong with remote sensing products of MODIS and lidar (in Chinese)[J]. J. Appl. Meteor. Sci., 15(6): 641-650. DOI:10.3969/j.issn.1001-7313.2004.06.001
Li C C, Lau A K H, Mao J T, et al. 2005a. Retrieval, validation, and application of the 1-km aerosol optical depth from MODIS measurements over Hong Kong [J]. IEEE Trans. Geosci. Remote Sens., 43(11): 2650-2658. DOI:10.1109/TGRS.2005.856627
Li C C, Mao J T, Lau A K H, et al. 2005b. Application of MODIS satellite products to the air pollution research in Beijing [J]. Sci. China Ser. D Earth Sci., 48(SII): 209-219.
Liu J, Xia X, Wang P, et al. 2007. Significant aerosol direct radiative effects during a pollution episode in northern China [J]. Geophys. Res. Lett., 34(23): L23808. DOI:10.1029/2007GL030953
Liu X G, Li J, Qu Y, et al. 2013. Formation and evolution mechanism of regional haze:A case study in the megacity Beijing, China [J]. Atmos. Chem. Phys., 13(9): 4501-4514. DOI:10.5194/acp-13-4501-2013
马月, 薛惠文. 2012. 利用CloudSat和MODIS数据研究气溶胶对层积云的影响[J]. 北京大学学报(自然科学版), 48(2): 239-245. Ma Yue, Xue Huiwen. 2012. A Study of Aerosol Effects on Stratocumulus Clouds Using CloudSat and MODIS Data (in Chinese)[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 48(2): 239-245.
Määttä A, Laine M, Tamminen J, et al. 2014. Quantification of uncertainty in aerosol optical thickness retrieval arising from aerosol microphysical model and other sources, applied to Ozone Monitoring Instrument (OMI) measurements [J]. Atmos. Meas. Tech., 7(5): 1185-1199. DOI:10.5194/amt-7-1185-2014
McClain C R, Bontempi P, Maring H. 2011. The NASA decadal survey aerosol, cloud, ecosystems mission[C]//Earth Resources and Remote Sensing. Greenbelt, MD, United States: NASA Goddard Space Flight Center. http://ntrs.nasa.gov/search.jsp?R=20110015335
Ou S C, Liou K N, Hsu N C, et al. 2012. Satellite remote sensing of dust aerosol indirect effects on cloud formation over eastern Asia [J]. Int. J. Remote Sens., 33(22): 7257-7272. DOI:10.1080/01431161.2012.700135
Paciorek C J, Liu Y, Moreno-Macias H, et al. 2008. Spatiotemporal associations between GOES aerosol optical depth retrievals and ground-level PM2.5 [J]. Environ. Sci. Technol., 42(15): 5800-5806. DOI:10.1021/es703181j
Pereira do Carmo J, Hélière A, Le Hors L, et al. 2016. ATLID, ESA Atmospheric LIDAR development status[C]//The 27th International Laser Radar Conference. New York City, USA, 119, doi: 10.1051/epjconf/201611904003. http://adsabs.harvard.edu/abs/2016EPJWC.11904003P
伽丽丽, 马, 陈兴峰, 等. 2016. 卫星近红外偏振通道反演气溶胶光学厚度的气溶胶模型影响[J]. 红外与毫米波学报, 35(5): 569-577. Qie Lili, Ma Yan, Chen Xingfeng, et al. 2016. Aerosol model assumption:The retrievals of aerosol optical depth from satellite near-infrared polarimetric measurements (in Chinese)[J]. J. Infrared Millim. Waves, 35(5): 569-577. DOI:10.11972/j.issn.1001-9014.2016.05.011
Quaas J, Boucher O. 2005. Constraining the first aerosol indirect radiative forcing in the LMDZ GCM using POLDER and MODIS satellite data [J]. Geophys. Res. Lett., 32(17): L17814. DOI:10.1029/2005gl023850
Quaas J, Ming Y, Menon S, et al. 2009. Aerosol indirect effects-general circulation model intercomparison and evaluation with satellite data [J]. Atmos. Chem. Phys., 9(22): 8697-8717. DOI:10.5194/acp-9-8697-2009
Remer L A, Kaufman Y J, Levin Z, et al. 2002. Model assessment of the ability of MODIS to measure top-of-atmosphere direct radiative forcing from smoke aerosols [J]. J. Atmos. Sci., 59(3): 657-667. DOI:10.1175/1520-0469(2002)059<0657:MAOTAO>2.0.CO;2
Ren X Y, Xie Y, Ren G Y. 2017. Spatiotemporal characteristics of TOMS-based dust aerosol optical depth in northern China during 1978-2005 [J]. Earth Sci. Inform., 10(1): 41-53. DOI:10.1007/s12145-016-0277-z
Rodgers C D. 2000. Inverse Methods For Atmospheric Sounding:Theory and Practice [M]. World Scientific Publishing Co. Ltd.: 238pp.
Rogers R R, Vaughan M A, Hostetler C A, et al. 2014. Looking through the haze:Evaluating the CALIPSO level 2 aerosol optical depth using airborne high spectral resolution lidar data [J]. Atmos. Meas. Tech., 7(12): 4317-4340. DOI:10.5194/amt-7-4317-2014
Rohen G J, Von Hoyningen-Huene W, Kokhanovsky A, et al. 2011. Retrieval of aerosol mass load (PM10) from MERIS/Envisat top of atmosphere spectral reflectance measurements over Germany [J]. Atmos. Meas. Tech., 4(3): 523-534. DOI:10.5194/amt-4-523-2011
Rosenfeld D, Andreae M O, Asmi A, et al. 2014. Global observations of aerosol-cloud-precipitation-climate interactions [J]. Reviews of Geophysics, 52(4): 750-808. DOI:10.1002/2013RG000441
Schaaf C B, Gao F, Strahler A H, et al. 2002. First operational BRDF, albedo nadir reflectance products from MODIS [J]. Remote Sensing of Environment, 83(1-2): 135-148. DOI:10.1016/S0034-4257(02)00091-3
Schroeder T, Behnert I, Schaale M, et al. 2007. Atmospheric correction algorithm for MERIS above case-2 waters [J]. International Journal of Remote Sensing, 28(7): 1469-1486. DOI:10.1080/01431160600962574
Sekiyama T T, Yumimoto K, Tanaka T, et al. 2016. Data assimilation of Himawari-8 aerosol observations:Asian dust forecast in June 2015 [J]. Sola, 12: 86-90. DOI:10.2151/sola.2016-020
Shang H Z, Chen L F, Letu H, et al. 2017. Development of a daytime cloud and haze detection algorithm for Himawari-8 satellite measurements over central and eastern China [J]. J. Geophys. Res. Atmos., 122(6): 3528-3543. DOI:10.1002/2016JD025659
申莉莉, 盛立芳, 陈静静. 2010. 一次强沙尘暴过程中沙尘气溶胶空间分布的初步分析[J]. 中国沙漠, 30(6): 1483-1490. Shen Lili, Sheng Lifang, Chen Jingjing. 2010. Preliminary analysis of the spatial distribution of the dust aerosol in a heavy dust storm (in Chinese)[J]. J. Des. Res., 30(6): 1483-1490.
Shi G M, Li C C, Ren T, et al. 2015. Retrieval of atmospheric aerosol and surface properties over land using satellite observations [J]. IEEE Trans. Geosci. Remote Sens., 53(2): 1039-1047. DOI:10.1109/TGRS.2014.2332551
Su W Y, Loeb N G, Xu K M, et al. 2010. An estimate of aerosol indirect effect from satellite measurements with concurrent meteorological analysis [J]. J. Geophys. Res. Atmos., 115(D18): D18219. DOI:10.1029/2010jd013948
Su W Y, Loeb N G, Schuster G L, et al. 2013. Global all-sky shortwave direct radiative forcing of anthropogenic aerosols from combined satellite observations and GOCART simulations [J]. J. Geophys. Res. Atmos., 118(2): 655-669. DOI:10.1029/2012JD018294
苏小莉. 2010. POLDER偏振信息遥感东亚地区气溶胶特性的研究[D]. 中国科学院大学博士学位论文. Su Xiaoli. 2010. Analyses of aerosol characteristics over East Asia using POLDER observations[D]. Ph. D. dissertation (in Chinese). University of Chinese Academy of Sciences.
Tang J P, Wang P C, Mickley L J, et al. 2014. Positive relationship between liquid cloud droplet effective radius and aerosol optical depth over eastern China from satellite data [J]. Atmos. Environ., 84: 244-253. DOI:10.1016/j.atmosenv.2013.08.024
Tanré D, Kaufman Y J, Herman M, et al. 1997. Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances [J]. J. Geophys. Res. Atmos., 102(D14): 16971-16988. DOI:10.1029/96JD03437
Tao M H, Chen L F, Su L, et al. 2012. Satellite observation of regional haze pollution over the North China Plain [J]. J. Geophys. Res. Atmos., 117(D12): D12203. DOI:10.1029/2012jd017915
Tao M H, Chen L F, Wang Z F, et al. 2014. A study of urban pollution and haze clouds over northern China during the dusty season based on satellite and surface observations [J]. Atmos. Environ., 82: 183-192. DOI:10.1016/j.atmosenv.2013.10.010
Torres O, Bhartia P K, Herman J R, et al. 1998. Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation:Theoretical basis [J]. J. Geophys. Res.-Atmos., 103(D18): 23321-23321. DOI:10.1029/98JD02709
Torres O, Tanskanen A, Veihelmann B, et al. 2007. Aerosols and surface UV products from ozone monitoring instrument observations:An overview [J]. J. Geophys. Res. Atmos., 112(D24): D24S47. DOI:10.1029/2007JD008809
Torres O, Jethva H, Bhartia P K. 2012. Retrieval of aerosol optical depth above clouds from OMI observations:Sensitivity analysis and case studies [J]. J. Atmos. Sci., 69(3): 1037-1053. DOI:10.1175/JAS-D-11-0130.1
Twomey S. 1977. The influence of pollution on the shortwave albedo of clouds [J]. J. Atmos. Sci., 34(7): 1149-1152. DOI:10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
Van Donkelaar A, Martin R V, Spurr R J D, et al. 2013. Optimal estimation for global ground-level fine particulate matter concentrations [J]. J. Geophys. Res. Atmos., 118(11): 5621-5636. DOI:10.1002/jgrd.50479
Vaughan M A, Young S A, Winker D M, et al. 2004. Fully automated analysis of space-based lidar data: An overview of the CALIPSO retrieval algorithms and data products[C]//Proc. SPIE Laser Radar Techniques for Atmospheric Sensing. Maspalomas, Canary Islands, Spain: SPIE, 5575: 16-30, doi: 10.1117/12.572024. http://spie.org/x648.xml?product_id=572024
Wang J, Nair U S, Christopher S A. 2004. GOES 8 aerosol optical thickness assimilation in a mesoscale model:Online integration of aerosol radiative effects [J]. J. Geophys. Res. Atmos., 109(D23): D23203. DOI:10.1029/2004jd004827
王中挺, 陈良富, 张莹, 等. 2008. 利用MODIS数据监测北京地区气溶胶[J]. 遥感技术与应用, 23(3): 284-288. Wang Zhongting, Chen Liangfu, Zhang Ying, et al. 2008. Urban surface aerosol monitoring using DDV method from MODIS data (in Chinese)[J]. Remote Sens. Technol. Appl., 23(3): 284-288. DOI:10.11873/j.issn.1004-0323.2008.3.284
Wang P, Tuinder O N E, Tilstra L G, et al. 2012. Interpretation of FRESCO cloud retrievals in case of absorbing aerosol events [J]. Atmos. Chem. Phys., 12(19): 9057-9077. DOI:10.5194/acp-12-9057-2012
Wang F, Guo J P, Zhang J H, et al. 2015. Multi-sensor quantification of aerosol-induced variability in warm clouds over eastern China [J]. Atmos. Environ., 113: 1-9. DOI:10.1016/j.atmosenv.2015.04.063
Wang J, Aegerter C, Xu X G, et al. 2016. Potential application of VIIRS Day/Night Band for monitoring nighttime surface PM2.5 air quality from space [J]. Atmos. Environ., 124: 55-63. DOI:10.1016/j.atmosenv.2015.11.013
Waquet F, Cairns B, Knobelspiesse K, et al. 2009. Polarimetric remote sensing of aerosols over land [J]. J. Geophys. Res. Atmos., 114(D1): D01206. DOI:10.1029/2008JD010619
Waquet F, Cornet C, Deuzé J L, et al. 2013a. Retrieval of aerosol microphysical and optical properties above liquid clouds from POLDER/PARASOL polarization measurements [J]. Atmos. Meas. Tech., 6(4): 991-1016. DOI:10.5194/amt-6-991-2013
Waquet F, Peers F, Ducos F, et al. 2013b. Global analysis of aerosol properties above clouds [J]. Geophys. Res. Lett., 40(21): 5809-5814. DOI:10.1002/2013GL057482
Winker D M, Hunt W H, McGill M J. 2007. Initial performance assessment of CALIOP [J]. Geophys. Res. Lett., 34(19): L19803. DOI:10.1029/2007GL030135
Wu J S, Yao F, Li W F, et al. 2016. VIIRS-based remote sensing estimation of ground-level PM2.5 concentrations in Beijing-Tianjin-Hebei:A spatiotemporal statistical model [J]. Remote Sens. Environ., 184: 316-328. DOI:10.1016/j.rse.2016.07.015
夏祥鳌. 2006. 全球陆地上空MODIS气溶胶光学厚度显著偏高[J]. 科学通报, 51(19): 2297-2303. Xia Xiang'ao. 2006. Significant overestimation of global aerosol optical thickness by MODIS over land (in Chinese)[J]. Chinese Sci. Bull., 51(23): 2905-2912. DOI:10.1007/s11434-006-2157-2
Xia X A, Zong X M. 2009. Shortwave versus longwave direct radiative forcing by Taklimakan dust aerosols [J]. Geophys. Res. Lett., 36(7): L07803. DOI:10.1029/2009gl037237
徐成鹏, 葛觐铭, 黄建平, 等. 2014. 基于CALIPSO星载激光雷达的中国沙尘气溶胶观测[J]. 中国沙漠, 34(5): 1353-1362. Xu Chengpeng, Ge Jinming, Huang Jianping, et al. 2014. Observations of dust aerosol over China based on CALIPSO spaceborne lidar (in Chinese)[J]. J. Des. Res., 34(5): 1353-1362. DOI:10.7522/j.issn.1000-694X.2013.00395
Xu J W, Martin R V, Van Donkelaar A, et al. 2015. Estimating ground-level PM2.5 in eastern China using aerosol optical depth determined from the GOCI satellite instrument [J]. Atmos. Chem. Phys., 15(22): 13133-13144. DOI:10.5194/acp-15-13133-2015
Xu H, Guo J P, Ceamanos X, et al. 2016. On the influence of the diurnal variations of aerosol content to estimate direct aerosol radiative forcing using MODIS data [J]. Atmos. Environ., 141: 186-196. DOI:10.1016/j.atmosenv.2016.06.067
徐婷婷, 秦艳, 耿福海, 等. 2012. 环上海地区干霾气溶胶垂直分布的季节变化特征[J]. 环境科学, 33(7): 2165-2171. Xu Tingting, Qin Yan, Geng Fuhai, et al. 2012. Seasonal variations in the vertical distribution of aerosols during dry haze periods in regions around Shanghai (in Chinese)[J]. Environ. Sci., 33(7): 2165-2171. DOI:10.13227/j.hjkx.2012.07.017
Yang W D, Marshak A, Várnai T, et al. 2012. Effect of CALIPSO cloud-aerosol discrimination (CAD) confidence levels on observations of aerosol properties near clouds [J]. Atmos. Res., 116: 134-141. DOI:10.1016/j.atmosres.2012.03.013
Yang J, Zhang Z Q, Wei C Y, et al. 2017. Introducing the new generation of Chinese geostationary weather satellites, FengYun-4 (FY-4) [J]. Bull. Amer. Meteor. Soc., 98(8): 1637-1658. DOI:10.1175/BAMS-D-16-0065.1
You W, Zang Z L, Zhang L F, et al. 2016. A nonlinear model for estimating ground-level PM10 concentration in Xi'an using MODIS aerosol optical depth retrieval [J]. Atmos. Res., 168: 169-179. DOI:10.1016/j.atmosres.2015.09.008
Zhang J L, Christopher S A. 2003. Longwave radiative forcing of Saharan dust aerosols estimated from MODIS, MISR, and CERES observations on Terra [J]. Geophys. Res. Lett., 30(23): 2188. DOI:10.1029/2003gl018479
Zhang H, Lyapustin A, Wang Y, et al. 2011. A multi-angle aerosol optical depth retrieval algorithm for geostationary satellite data over the United States [J]. Atmos. Chem. Phys., 11(23): 11977-11991. DOI:10.5194/acp-11-11977-2011
郑卓云, 陈良富, 郑君瑜, 等. 2011. 高分辨率气溶胶光学厚度在珠三角及香港地区区域颗粒物监测中的应用研究[J]. 环境科学学报, 31(6): 1154-1161.
Chen Yonghang, Mao Xiaoqin, Huang Jianping, et al. 2009. Vertical distribution characteristics of aerosol during a long-distance transport of heavy dust pollution [J]. China Environmental Science, 29(5): 449-454. DOI:10.3321/j.issn:1000-6923.2009.05.001
Gao Qingxian, Ren Zhenhai, Zhang Yungang, et al. 2004. Dust event and its formation, development and transportation based on satellite data [J]. Resour. Sci., 26(5): 24-29. DOI:10.3321/j.issn:1007-7588.2004.05.004
He Xiu, Deng Zhaoze, Li Chengcai, et al. 2010. Application of MODIS AOD in surface PM10 evaluation [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 46(2): 178-184. DOI:10.13209/j.0479-8023.2010.026
Hu Xiuqing, Lu Naimeng, Zhang Peng. 2007. Remote sensing and detection of dust storm in China using the thermal bands of geostationary meteorological satellite [J]. J. Appl. Meteor. Sci., 18(3): 266-275. DOI:10.3969/j.issn.1001-7313.2007.03.002
Hu Xiuqing, Lu Naimeng, Qiu Hong, et al. 2003. Dust-storm monitoring using geostationary meteorological satellites [J]. Clim. Environ. Res., 8(1): 101-106. DOI:10.3969/j.issn.1006-9585.2003.01.012
Li Chengcai, Mao Jietai, Liu Qihan. 2003. Remote sensing aerosol with MODIS and the application of MODIS aerosol products [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 39(S): 108-117. DOI:10.3321/j.issn:0479-8023.2003.z1.014
Li Chengcai, Liu Qihan, Mao Jietai, et al. 2004. An aerosol pollution episode in Hong Kong with remote sensing products of MODIS and lidar [J]. J. Appl. Meteor. Sci., 15(6): 641-650. DOI:10.3969/j.issn.1001-7313.2004.06.001
Ma Yue, Xue Huiwen. 2012. A Study of Aerosol Effects on Stratocumulus Clouds Using CloudSat and MODIS Data [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 48(2): 239-245.
Qie Lili, Ma Yan, Chen Xingfeng, et al. 2016. Aerosol model assumption:The retrievals of aerosol optical depth from satellite near-infrared polarimetric measurements [J]. J. Infrared Millim. Waves, 35(5): 569-577. DOI:10.11972/j.issn.1001-9014.2016.05.011
Shen Lili, Sheng Lifang, Chen Jingjing. 2010. Preliminary analysis of the spatial distribution of the dust aerosol in a heavy dust storm [J]. J. Des. Res., 30(6): 1483-1490.
Su Xiaoli. 2010. Analyses of aerosol characteristics over East Asia using POLDER observations[D]. Ph. D. dissertation (in Chinese). University of Chinese Academy of Sciences.
Wang Zhongting, Chen Liangfu, Zhang Ying, et al. 2008. Urban surface aerosol monitoring using DDV method from MODIS data [J]. Remote Sens. Technol. Appl., 23(3): 284-288.
Xia Xiang'ao. 2006. Significant overestimation of global aerosol optical thickness by MODIS over land [J]. Chinese Sci. Bull., 51(23): 2905-2912. DOI:10.1007/s11434-006-2157-2
Xu Chengpeng, Ge Jinming, Huang Jianping, et al. 2014. Observations of dust aerosol over China based on CALIPSO spaceborne lidar [J]. J. Des. Res., 34(5): 1353-1362. DOI:10.7522/j.issn.1000-694X.2013.00395
Xu Tingting, Qin Yan, Geng Fuhai, et al. 2012. Seasonal variations in the vertical distribution of aerosols during dry haze periods in regions around Shanghai [J]. Environ. Sci., 33(7): 2165-2171. DOI:10.13227/j.hjkx.2012.07.017
郑卓云, 陈良富, 郑君瑜, 等. 2011. 高分辨率气溶胶光学厚度在珠三角及香港地区区域颗粒物监测中的应用研究[J]. 环境科学学报, 31(6): 1154-1161. Zheng Zhuoyun, Chen Liangfu, Zheng Junyu, et al. 2011. Application of retrieved high-resolution AOD in regional PM monitoring in the Pearl River Delta and Hong Kong region (in Chinese)[J]. Acta Scientiae Circumstantiae, 31(6): 1154-1161. DOI:10.13671/j.hjkxxb.2011.06.011