睛空时大气红外遥感及其反演问题

I. 理论研究

李 俊 曾庆存

(中国科学院大气物理研究所，北京 100029)

摘 要 本文首先研究了睛空情况下大气温度、湿度线及表层湿度等参数的反演问题。利用一阶变分原理，从红外辐射传输方程中得到了大气温度、水汽权重函数的表达式，然后利用牛顿非线性迭代法求解大气温度反射、大气水汽反射和表层温度，并从“最佳信息层”的概念出发，指出水汽遥感反演的两个特点。

关键词 反演，权重函数，牛顿非线性迭代法

1 引言

在以前的近几十年中，在反演大气温度、湿度方面已取得一定进展，然而其精度并没有达到数值天气预报的要求。主要原因有两个，第一是目前业务上使用的是低分辨率的红外垂直探测仪器，如 TIROS-N 业务垂直探测器(TOVS)[1]，其局限在于权重函数被加宽，卫星传感器接收到的能量是来自某一厚层的大气的辐射，使得小尺度的垂直结构很难反演，解决这一问题的办法在于发展高分辨率的红外垂直探测仪器。随着光学上关键技术的突破，发展高分辨率红外垂直探测仪器成为可能，例如由维斯康星·麦迪逊大学研究的高分辨率干涉仪探测器(HISD)已装载在 NASA 的 ER-2 飞机上，能够提供机载观测资料，另外还有 NASA 正在研制的 2000 年后将安装在极轨平台上作为地球观测系统(EOS)-部分的大气红外探测器(AIRS)[3]。第二是反演处理上存在的一些问题以及大气透过率计算中的误差，下垂面的一些未知因素，云的影响等，解决的办法是高大气透过率计算精度，发展微波探测仪，例如先进微波探测器(AMSU)，另外必须发展一套高效率的反演算法。由于反演问题是一个非线性问题，即其解是非唯一，不稳定的，必须在求解过程中增加一些附加条件后才能得到一个稳定的解。

本文根据曾庆存[8]提出的一些方法，利用一阶变分原理，得到了大气各参数权重函
数在气压坐标下的解析形式，然后利用牛顿迭代法求解大气及云参数，并从“最
佳信息层”的概念出发，分析了水汽遥感反演的两个特点。

同时，将大气温度廓线、大气水汽廓线表示成经验正交函数的线性组合，使得要反
演的参数大为减少，从而提高了解的稳定性。

2 空间情况下反演表层温度及大气参数所面临的实际问题

由于晴空情况下大气参数的反演是有云情况下反演的基础，因此要解决反演问题，
必须首先解决晴空情况下大气各参数的反演。关于从卫星红外观测资料中反演大气温
为 Chahine 迭代法，由于这两种方法忽略了大气温度场的内在联系，从而影响了反演
的精度，目前业务上基本上不采用这两种方法，较常用的有 Smith[8]的物理反演法和
廓线，同时又指出可用估算方法来求解温度和水汽廓线。本文要提到的牛顿迭代性
迭代法，是该方法的一种变形。虽然晴空情况下大气温度廓线的反演已有许多研究工
作，但在实际资料处理中，仍有许多问题没有解决好，本文的工作在于进一步研究
这些实际问题，并提出一些可行的解决办法。

2.1 关于反演的不稳定性问题

由于反演的不稳定性，必须引入一些附加条件。常用的办法是引入初始值。初始
值实际上是求解方程时迭代的起始值。显而易见，如果初始值接近真值，则迭代
收敛性、收敛速度及求解精度都比较好，因此选择一个较好的初始值是很重要的，
一般用统计回归法的反演结果作为初始值。除此之外，还有一些提高稳定性的好处。
曾庆存[9]指出，由于温度场具有自相关性，只有有限的几个相互独立的参数才能表示大
气温度结构的变化，水汽也一样。因此，可以根据大气温度廓线和水汽廓线表示成它们前
几个经验正交函数(EOF)的线性组合，这样能使反演的参数大为减少，从而提高了反
演的稳定性。本文在这方面作了研究和试验。

2.2 关于非线性问题

由于$R = R(T_r, T(p), q(p), \cdots)$是一个非线性方程，特别对求解大气而言，非线性更
为突出。传统的方法一般是将辐射传输方程线性化，然后利用“最小信息法”等方法求解
线性方程的方程，例如 Smith[8]的物理法。这实际上是以求解线性化问题的方法来处理
非线性问题。曾庆存[10]提出用“最近下降法”来反演大气温度和水汽廓线，这对处理非线
性问题是有益的，特别是在求解辐射传输方程。本文采用牛顿非线性迭代法来同步求解
表层温度、大气温度廓线和水汽廓线，并在反演精度上和传统方法做了一个对比。

2.3 权重函数计算

不管用线性还是非线性方法来进行反演，其关键在于方程的线性化或权重函数的计
算，特别是水汽权重函数的计算。对于温度来说，其权重函数的计算相对比较简单，因
为温度在辐射传输方程中比较线性。由于水汽在辐射传输方程中的非线性，其权重
函数计算一直没有解决好，例如在国际 TOVS 处理软件包 ITPP 版本 3.0 和 4.0 中[12]
，水汽权重函数的计算都没有处理好。目前常用的方法是采用 Jacobi 法，即在每一气压
层上计算 \((R(q_i + \Delta q) - R(q_i))/\Delta q\)。该方法对每一层的水汽变化都要计算一次大气透过率函数和辐射量，计算起来耗时长，给实际应用带来极大的不便，特别是在高分辨率红外垂直探测资料处理中，这种方法更不能用。曾庆元利用一阶变换原理得到了在 \(\xi\) 坐标下用吸收系数 \(k\) 表示的水汽权重函数的解析形式，这是一个重要的贡献。本文利用同样的方法，在气压 \(P\) 坐标下得到了用大气透过率 \(\tau\) 表示的温度、水汽等权重函数的解析形式。从而基本上解决了大气辐射传输方程的线性化问题。由于权重函数是解析形式，计算起来既快速又准确，为卫星垂直探测资料的适时性处理和应用扫除了障碍。

3 利用牛顿非线性迭代法反演表层温度和大气参数

假定有 \(K\) 个频带（通道）同时观测大气，定义 \(Y = (y_1, y_2, ..., y_K)^T\)，其中 \(y_i\) \((i = 1, 2, ..., K)\) 是第 \(i\) 通道的辐射度或亮度温度，则求解表层温度，大气温度廓线和大气水汽廓线就相当于求解方程

\[
J(X) = \| Y^m - Y(X) \| = \text{极小}.
\]

其中 \(Y^m\) 是卫星观测值向量， \(X = (T_1, T_2, ..., T_L, lnq_1, lnq_2, ..., lnq_L, T_0) = (x_1, x_2, ..., x_{2L + 1})\)。但由于方程的不稳定性，需要引入附加条件才能得到稳定的解，这里引入 Lagrange 乘子，因此定义 \(J(X)\) 如下：

\[
J(X) = \| Y^m - Y(X) \| + \gamma \| X - X^0 \|.
\]

其中 \(X^0\) 是 \(X\) 的初始猜测，\(\gamma\) 是 Lagrange 乘子。

函数 \(\| \cdot \|\) 的定义对求解有影响，不同的函数定义会得到不同的求解结果，这里的函数实际上是一种距离，在卫星资料应用中 Mahalanobis 距离效果较好。因此定义

\[
\| Y^m - Y(X) \| = \| Y^m - Y(X) \|^T E^{-1} [Y^m - Y(X)],
\]

\[
\| X - X^0 \| = (X - X^0)^T B^{-1} (X - X^0).
\]

其中 \(E\) 为观测误差协方差矩阵，\(E\) 是二对角矩阵，它包含仪器噪声，大气透过率模式误差及其他误差；\(B\) 是 \(X^0\) 的误差协方差矩阵，假设 \(X^0\) 是气候平均值，\(B\) 为大气样本的协方差矩阵。

反演的目的就是要从(2)式中求解 \(X\)，使 \(J(X)\) 极小。线性化求解的方法是令 \(J'(X) = 0\)，即

\[
0.5J'(X) = \gamma B^{-1} (X - X^0) - F^T \cdot E^{-1} \cdot [Y^m - Y(X)] = 0.
\]

对于线性处理，我们采用一阶泰勒展开有

\[
Y(X) = Y(X^0) + F \cdot (X - X^0),
\]

其中 \(F\) 是 \(Y\) 对 \(X\) 的一阶导数矩阵。将方程(6)代入方程(5)，我们就能得到如下解的形式：

\[
X = X^0 + (F^T \cdot E^{-1} \cdot F + \gamma B^{-1})^{-1} \cdot F^T \cdot E^{-1} \cdot [Y^m - Y(X^0)].
\]
（7）式是传统的求解迭代形式。

由于反演问题的非线性，特别是水汽反演的非线性，用（7）式的形成进行迭代不管从收敛速度或求解精度等方面都存在不足。由于能反映问题的非线性本质，我们采用牛顿非线性迭代法，即

$$X_{n+1} = X_n - \frac{1}{J''(X_n)} \cdot J'(X_n).$$

对（5）式再次求导数，有

$$0.5 J''(X) = \gamma B^{-1} + F^T \cdot E^{-1} \cdot F - F^T \cdot E^{-1} \cdot [Y^n - Y(X)].$$

在迭代过程中，$Y^n - Y(X_n)$将越来越小，因此为简单起见，忽略（9）式右边最后一项的影响，有

$$0.5 J''(X) = \gamma B^{-1} + F^T \cdot E^{-1} \cdot F.$$

$J''(X)$也叫 Hessian 矩阵，将（5）和（10）式代入（8）式得到牛顿非线性迭代法的求解形式:

$$\delta X_{n+1} = (F^T \cdot E^{-1} \cdot F + \gamma B^{-1})^{-1} \cdot F^T \cdot E^{-1} \cdot (\delta Y_n + F_n \cdot \delta X_n).$$

其中 $\delta X_n = X_n - X^0$, $\delta Y_n = Y^n - Y(X_n)$. 在一定条件下，$X_n$ 会收敛到一个 X^*, X^* 就是求解的解。对于收敛性判断，有各种标准，例如用 $|X_{n+1} - X_n|$ 小于某一值，或 $J(X)$ 小于某值，在实际应用中可根据具体情况而定。由于 $J''(X)$ 是近似值，因此（11）式的迭代形式也叫准牛顿非线性迭代法。

4 辐射传输方程的线性化——连续形式

从方程（11）可以看出，牛顿非线性迭代法的关键步骤是计算 F_n，即 Y 对 X 的导数矩阵。具体到辐射传输方程中，R 对温度的二阶导数即为温度的权重函数，同样 R 对水汽混合比的二阶导数即为水汽的权重函数。

为了方便起见，定义各符号如下；

- P 或 p: 气压；
- R: 光谱辐射率；
- B: 黑体函数；
- τ: 大气透过率函数；
- $\delta(,)$: 实际量与初始量之差；
- P_0: 气面气压；
- τ_c: 由 CO$_2$ 吸收而引起的大气透过率分量；
- τ_w: 由 H$_2$O 吸收造成的大气透过率分量；
- q: 水汽混合比（g/kg）；
- T: 大气温度；
- T_0: 表层温度；
- T_a: 表面温度。
对于单色辐射，省略光谱符号ν，并将辐射量用R表示，则地气系统到达卫星感应器的辐射量为

$$ R = B_0 \tau_s - J_{0}^{P} B d\tau. $$ (12)

一般来说，求温度的权重函数比较简单，因为温度在辐射传输方程中比较线性，例如对(12)式作一阶变分处理，不考虑水汽的影响，有

$$ \delta R = \delta B_0 \tau_s - J_{0}^{P} \delta B d\tau. $$ (13)

采用一阶近似$\delta B = \frac{\partial B}{\partial T} \delta T$，则方程(13)变成

$$ \delta T_B = \beta_s \tau_s \delta T_s - J_{0}^{P} \frac{\partial B}{\partial T} \delta T d\rho. $$ (14)

通常称$\frac{\partial B}{\partial T}$为温度的权重函数，显然$\beta_s \tau_s$为表层温度的权重函数，温度及表层温度的权重函数计算比较简单。

本文根据曾庆宏等$^{[8]}$的方法，采用一阶变分原理，对方程(12)得到

$$ \delta R = \delta B_0 \tau_s + B_s \delta \tau_s - J_{0}^{P} \delta B d\tau - J_{0}^{P} B d\tau. $$ (15)

对方程(15)右边最后一项作分部积分得

$$ \delta R = \delta B_0 \tau_s + \left[B(T_s) - B(T_B) \right] \delta \tau_s - J_{0}^{P} \delta B d\tau + J_{0}^{P} \delta B d\tau. $$ (16)

我们忽略自然加宽对吸收系数的影响，则有

$$ \tau = \tau_e + \tau_w, $$ (17a)

$$ \tau_w = e^{-\int_{0}^{P} e^{-1/k \delta d\rho}.} $$ (17b)

因此

$$ \delta \tau = \tau_e \delta \tau_w = \tau \delta \ln \tau_w. $$ (18)

这里我们认为τ_e为常数，从方程(17b)得

$$ \delta \ln \tau_w = -\int_{0}^{P} g^{-1} k \delta q d\rho = \int_{0}^{P} \frac{\delta \ln \tau_w}{q \delta p} d\rho = \int_{0}^{P} \delta \ln q d\ln \tau_w. $$ (19)

将方程(19)代入方程(18)得

$$ \delta \tau = \tau \int_{0}^{P} \delta \ln q d\ln \tau_w. $$ (20)

将方程(20)代入方程(16)得
\[
\delta R = \delta B, \tau_s - \int_0^{r_p} \delta B d\tau + \int_0^{r_p} [B(T_s) - B(T_a)] \tau_s \delta \ln q d\ln \tau_s
\]
\[
+ \int_0^{r_p} \tau_s \left(\int_0^{r_p} \delta \ln q d\ln \tau_s \right) dB
\]
\[
= \delta B, \tau_s - \int_0^{r_p} \delta B d\tau + \int_0^{r_p} \delta \ln q [B(T_s) - B(T_a)] d\ln \tau_s
\]
\[
+ \int_0^{r_p} \delta \ln q \left(\int_0^{r_p} \tau d\tau \right) d\ln \tau_s.
\]
(21)

同样，利用一阶近似 \(\delta B = \frac{\partial B}{\partial T} \delta T, \delta R = \frac{\partial B}{\partial T} \delta T_a \)，并定义 \(\beta = \frac{\partial B}{\partial T} \frac{\partial T}{\partial T_a} \)，则方程(21)变为

\[
\delta T_a = \beta, \tau_s \delta T_s - \int_0^{r_p} \beta \frac{\partial q}{\partial \rho} \delta T d\rho
\]
\[
+ \int_0^{r_p} \delta \ln q \left[(T_s - T_a) \beta, \tau_s + \int_0^{r_p} \beta \frac{\partial T}{\partial \rho} d\rho \right] \frac{\partial \ln \tau_s}{\partial \rho} d\rho
\]
\[
= W_T, \delta T_s + \int_0^{r_p} W_T \delta T d\rho + \int_0^{r_p} W_q \delta \ln q d\rho.
\]
(22)

其中

\[
W_T = \beta, \tau_s,
\]
(23a)
\[
W_T = - \beta \frac{\partial T}{\partial \rho},
\]
(23b)
\[
W_q = (T_s - T_a) \tau_s \beta, \frac{\partial \ln \tau_s}{\partial \rho} + \left(\int_0^{r_p} \beta \frac{\partial T}{\partial \rho} d\rho \right) \frac{\partial \ln \tau_s}{\partial \rho}
\]
\[
= W_q' + W_q''.
\]
(23c)

\(W_T, W_T \) 及 \(W_q \) 分别称为表层温度、大气温度和大气水汽的权重函数，只要给定某一大气状态，这些权重函数就很容易被计算出来。

显然方程(22)是一个线性形式方程，其中 \(\delta T_s, \delta T_a \) 及 \(\delta \ln q(\rho) \) 是要求解的未知函数，而权重函数是可以从某一给定大气状态(例如初始猜测)计算而得到的已知函数。每一权重函数在某一气压层上有极大值，该气压层称为“最大信息层”。现在让我们分析一下水汽的权重函数及水汽的特点。因为 \(\tau_s \ll 1 \) 且 \(\left| \frac{\partial B}{\partial \rho} \right| \ll \left| \frac{\partial B}{\partial \rho} \right|_{\text{max}} \)，因此有

\[
\lim_{p \to \infty} W_q' = 0.
\]
(24a)

和

\[
\lim_{p \to \infty} W_q'' = 0.
\]
(24b)

显然存在 \(p' \in (0, P) \) 使得 \(W_q(P') = \max W_q(P) \)，\(p' \) 就是水汽的最佳信息层。图1是HIRS 通道的水汽权重函数，其中10，11和12是水汽通道，6和7是温度、水汽联合通道。

大气的水汽主要集中在500hPa以下，从方程(24)可以看到，反演近地面的水汽是很困难的，因为\(|T_n - T_o|\)常常很小，我们可以通过下式是否成立来作进一步的分析

\[
|T_n - T_o| \gg 0.
\]

（25）

对于卫星红外观测来说，背景根据\(T_n\)放出辐射，而近地面水气则根据\(T_o\)来辐射，如果两者差距很小即\(|T_n - T_o|\)很小，则水汽的影响就被背景所掩盖，很难推断其近地面信号；相反如果\(|T_n - T_o| \gg 0\)，则水汽到达卫星感器的信号就大为增强，从而有利于反演近地面的水汽。另外，由于水汽的自相关性，如果水汽廓线用其 EOF 来表示，则对于克服这个困难也有很大的帮助。对于表面比辐射率不为 1 的情况，则近地面水汽遥感会有所不同。

对于其他的吸收气体成分（例如 O₃），可以得到和水汽权重函数相似的权重函数公式[12]，当然其最佳信息层会有不同的特点，基本上来说，其反演方法和水汽的反演类似。

下面我们将方程(22)按气压分层改写成如下形式：

\[
\delta y = \sum_{j=1}^{L_n+1} w_j \delta x_j,
\]

（26）

其中 \(L_n\) 是气压层数（从 0-1050 hPa），

\[
w_i = 0.5W_{T_i} (P_i - P_{i-1}) \quad \text{当} \quad i = 1, L_n \\
w_i = 0.5W_{T_i} (P_i - P_{i-1}) \quad \text{当} \quad i = L_n + 1 \\
w_i = 0.5W_{T_i} (P_i - P_{i-1}) \quad \text{当} \quad L_n < i < 2L_n \\
w_i = 0.5W_{T_i} (P_i - P_{i-1}) \quad \text{当} \quad j = 2L_n \\
w_i = 0.5W_{T_i} (P_i - P_{i-1}) \quad \text{当} \quad j = 2L_n + 1.
\]
当有 K 个通道时，

$$
\delta y_i = \sum_{j=1}^{K-1} w_{ij} \delta x_j, \quad i = 1, 2, \ldots, K
$$

(27)

写成矩阵形式则方程(27)变为

$$
\delta Y = F \cdot \delta X.
$$

(28)

方程(28)就是反演方程的线性化形式。方程(28)还适用于微波遥感反演。由于微波通道观测到的是亮度温度，因此，只要在所有方程中令 $\beta = 1$。

应当指出的是，实际红外通道是非线性的，采用单色近似得到的水汽权重函数会给反演结果造成一定误差，但由单色近似而造成的误差与其他因素特别是大气透过率模式的不准确而引起的误差相比是次要的。

5 结论

（1）利用一阶变分原理得到了表层温度、大气温度和大气水汽权重函数的解析形式，从而基本上解决了权重函数的计算问题。

（2）利用牛顿非线性迭代法得到了同步求解表层温度、大气温度廓线和大气水汽廓线的迭代形式。

（3）从“最佳信息层”的概念出发，指出由于对于某一通道来说，其温度的最佳信息层和水汽的最佳信息层不在同一气压层上，因此，不能用反演温度的办法来反演水汽。同时分析了遥感低层水汽的困难所在。

参考文献

9 Smith, W. L., 1970, Interactive solution of the radiative transfer equation for the temperature and absorbing gas
Infrared Remote Sensing of Clear Atmosphere and Its Inversion Problem. Part I: Theoretical Study

Li Jun and Zeng Qingcun
(Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029)

Abstract This paper firstly studies the retrieval of atmospheric temperature profile, moisture profile and surface skin temperature from infrared sounder radiances under the clear condition. One order variational theorem is applied to the infrared Radiative Transfer Equation (RTE) to obtain a successive form of the temperature component weighting function and water vapor mixing ratio component weighting function. Then the Newtonian nonlinear iteration method is applied to the RTE to retrieve the temperature profile, water vapor profile and surface skin temperature from the satellite observed radiances. The two basic characteristics of water vapor retrieval which are different from temperature retrieval are obtained based on the concept of "optimal information level".

Key words retrieval weighting function Newtonian nonlinear iteration