杨玮, 王盘兴, 何金海, 等. 2014. 西风角动量输送的气候特征及其与急流关系研究 [J]. 大气科学, 38 (2): 363–372, doi:10.3878/j.issn.1006-9895. 2013.13101. Yang Wei, Wang Panxing, He Jinhai, et al. 2014. Climatic characteristics of relative atmospheric angular momentum transport and its relationship with jet streams [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38 (2): 363–372.

西风角动量输送的气候特征及其与急流关系研究

杨玮^{1,2} 王盘兴¹ 何金海¹ 李丽平¹ 成丽萍¹

1 南京信息工程大学气象灾害教育部重点实验室,南京 210044 2 安徽省气候中心,合肥 230031

摘 要利用1958~1997年NCEP/NCAR一日四次的风场再分析资料,系统地分析了季节平均西风角动量(即 *u* 角动量)经向、垂直输送通量及其三个分量(平均经圈环流、定常波、瞬变涡输送通量)的气候特征,特别是讨论了12~2月、6~8月它们与东、西风带、副热带西风急流、极夜急流之间的联系。结果表明:(1)包含纬度因子的角动量通量与动量通量在高纬地区存在显著差别,高纬对流层上部的强动量输送中心在角动量通量中不明显。而 *u* 角动量强经向输送主要在中低纬对流层顶附近和冬半球高纬平流层顶附近,副热带西风急流和极夜西风急流均位于 *u* 角动量强向极输送中心及其高纬一侧的辐合区中。(2)发现三个输送分量对急流维持的作用随纬度、季节不同。北半球冬季(夏季)的副热带西风急流主要由平均经圈环流(强度相当的定常波和瞬变涡)强经向输送及辐合维持;南半球西风急流全年均由平均经圈环流和瞬变涡旋输送及辐合维持;冬半球中平流层极夜急流主要由定常波、瞬变涡旋输送及其辐合共同维持。(3)热带东风区是牵连角动量(即 *Q* 角动量)的高值区,它主要由平均经圈环流向对流层上部输送;冬半球副热带及中纬西风区存在 *u* 角动量垂直输送的切变区,它主要由平均经圈环流和瞬变涡旋完成;热带对流层顶附近有 *u* 角动量的定常波弱向下输送。

关键词 u 角动量通量 经向输送 垂直输送 副热带西风急流 极夜急流
 文章编号 1006-9895(2014)02-0363-10 中图分类号 P434.5 文献识别码 A
 doi:10.3878/j.issn.1006-9895.2013.13101

Climatic Characteristics of Relative Atmospheric Angular Momentum Transport and Its Relationship with Jet Streams

YANG Wei^{1, 2}, WANG Panxing¹, HE Jinhai¹, LI Liping¹, and CHENG Liping¹

1 Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044 2 Anhui Climate Centre, Hefei 230031

Abstract Based on the NCEP/NCAR wind reanalysis data, the climatic seasonal mean relative atmospheric angular momentum transport flux and its three components (mean meridional circulation, stationary eddies, and transient eddies) are computed to investigate their relationships with easterlies, westerlies, the subtropical westerly jet, and the polar night jet in both winter and summer. The results show that: (1) The flux of angular momentum, including latitude factors and the flux of momentum, differs remarkably in high latitudes, where a strong momentum transport center is found in the upper troposphere. The strong meridional transport of u angular momentum mainly occurs in low latitudes around the tropopause and high latitudes near the stratosphere of both northern and southern hemispheres in winter. Both the subtropical westerly jet and polar night jet demonstrate poleward transport of their centers with convergence zones in the

收稿日期 2012-12-28, 2013-06-13 收修定稿

资助项目 国家重点基础研究发展(973)计划 2013CB430202,国家自然科学基金青年科学基金项目 41205063,江苏省普通高校研究生科研创新计划 CXZZ11_0608,江苏高校优势学科建设工程资助项目(PAPD)

作者简介 杨玮,女,1985年出生,博士研究生,主要从事大气环流异常、短期气候预测、低频振荡方面的研究。E-mail: yw85508@sohu.com

high latitudes. (2) The roles of the three aforementioned components on jet maintenance change with latitudes and seasons. In the northern hemisphere winter, the subtropical westerly jet is mainly maintained by strong meridional transport and convergence of mean meridional circulation, owing to equivalent stationary eddies and transient eddies. In the northern hemisphere summer, however, the role of the mean meridional circulation diminishes and the stationary and transient eddies are the most important factors at work. In contrast, fluxes in the southern hemisphere are more easily identified, as they are maintained all year by meridional transports and the convergence of the mean meridional circulation and transient eddies. The polar night jet in winter hemisphere, occurring in the middle stratosphere, is mainly maintained by meridional transports and the convergence of stationary and transient eddies. (3) In the tropical easterlies, Ω angular momentum appears as high values and is transported to the upper troposphere mainly by the mean meridional circulation. In winter hemisphere, there is a shearing zone of vertical transport of u angular momentum in the subtropical and mid-latitude westerlies, which is mainly accomplished by the mean meridional circulation and transient eddies. In addition, stationary eddies demonstrated a weak downward transport of u angular momentum near the tropical tropopause.

Keywords u angular momentum, Meridional transport, Vertical transport, Subtropical westerly jet, Polar night jet

1 引言

绝对角动量平衡是研究大气东、西风带和急流 维持的物理基础。绝对角动量由相对角动量(即 u 角动量)和牵连角动量(即 Ω 角动量)之和构成, 影响大气角动量平衡的三要素分别为山脉力矩、摩擦 力矩以及大气自身对角动量的输送。众所周知,在山 脉力矩和摩擦力矩的作用下,热带东风带地面大气 得到西风角动量,中高纬西风带地面大气失去西风 角动量;为了维持东、西风带和急流,大气中必然 存在角动量的经向输送(Jeffrevs, 1926; Bierknes, 1948)。而经向输送主要在对流层上部至平流层下 部进行, 故必然存在西风角动量的垂直输送 (Priestley, 1951; Gilman, 1964), 研究指出角动 量在热带通过平均经圈环流向上输送到对流层上 部,然后向副热带纬度输送(White, 1950; Palmén, 1954; 叶笃正和杨大升, 1955)。对气候态而言, 等 纬度(ϕ)面上单位质量大气的 Ω 角动量相等,单 位时间内通过等 φ 面上不同高度z(或气压p)处角 动量输送的差异取决于 u 角动量。因此,绝对角动 量输送只需对 u 角动量输送进行研究。

根据 Lorenz 环流分解方案,角动量输送可以分 为平均经圈环流输送、定常波输送和瞬变涡旋输 送,各项分量对总输送所作贡献随纬度、季节不同。 许多学者采用不同资料和方案计算并分析了 *u* 角动 量及其分量的输送。由于资料的限制,早期研究限 于单一年份的季节平均值或年平均值(Starr and White, 1951; Buch, 1954;叶笃正和邓根云, 1956; Obasi, 1963; Gilman, 1964)。随着气象观测资料 的不断积累,研究的时间尺度扩展到多年平均(3~ 10年)(Newell et al., 1972; Mak, 1978; Oort and Peixoto, 1983; Trenberth, 1987; 吴国雄和刘还珠, 1987)。自再分析资料出现以来,周春华(2003) 给出了 u 动量及其三个分量输送的气候值(30 年以 上), 王林等(2007) 和 Egger and Hoinka (2011) 则分别给出了定常波和瞬变涡旋对动量输送的气 候值。综上所述,除叶笃正和邓根云(1956)和 Obasi (1963) 外, 前人研究多数着眼于纬向平均 u 动量通量及其分量的输送,事实上角动量通量和动 量通量在高纬地区存在显著差别,两者之间差了因 子 $a\cos\varphi$, 60°附近存在明显的动量通量大值中心, 而角动量大值中心则不存在;且低纬地区角动量大 值中心位置亦较动量中心略偏赤道。同时,关于 u 角动量通量及其三个分量输送的研究不够全面系 统, 仅研究了总输送或者某分量输送, 且不能认为 是严格的气候分析(30年或以上平均)。吴国雄和 Tibaldi(1988)指出了平均经圈环流在大气角动量 收支中的作用。另外,在研究涡旋通量方面, Mak (1978) 和 Trenberth and Olson (1988) 认为定常 和瞬变涡旋量级相差不大, 而 Kraucunas and Hartmann(2005)认为定常涡旋的贡献较瞬变涡旋 小,前人关于不同涡旋在总输送中的相对重要性存 在不一致的结论,尚待进一步探索。

还有一系列研究表明,500 hPa 以上热带地区 角动量输送是辐散的,最大辐散发生在 20°N 以南, 而中纬度地区有角动量的辐合(Buch,1954;叶笃 正和邓根云,1956; Oort and Peixoto,1983),角动 量输送的辐合中心与西风急流的维持之间存在着 一定的联系。那么,西风角动量输送包含三个分量, 在不同季节和不同半球,究竟是何种输送分量对副 热带西风急流以及极夜急流的维持起了主要作用, 仍需进一步研究。因此,本文选择 NCEP/NCAR 逐 日四次再分析风场资料,分析 40 年(1958~1997) 平均的 12~2 月、6~8 月 *u* 角动量经向、垂直输送 通量及其三个分量的气候特征,据此讨论三个输送 分量对总输送的贡献,进而揭示西风角动量输送与 东、西风带以及副热带西风急流、极夜急流之间的 密切联系,为深入讨论东、西风带及西风急流的维 持机制提供依据。

2 资料和方法

2.1 资料

本文使用 NCEP/NCAR 一日四次 [00、06、12、 18 时(协调世界时,下同)] 第一套再分析 u、v、 ω 资料(Kalnay et al., 1996),覆盖时段为 1958 年 1月1日~1998年2月28日,水平分辨率为 $\Delta\lambda \times \Delta \varphi = 2.5^{\circ} \times 2.5^{\circ}, u$ 、v 垂直分为 17 层等压面 (1000、925、850、700、600、500、400、300、 250、200、150、100、70、50、30、20、10 hPa), ω 垂直分为 12 层,从 1000 hPa 到 100 hPa。

图 1 给出了 40 年(1958~1997) 平均 12~2 月、6~8 月的纬向风([*ū*])分布图。由图 1a 可见, 12~2 月赤道附近的热带区域从对流层到中平流层 均为东风带,副热带西风急流中心位于对流层顶 200 hPa 附近,北半球冬季高纬度平流层存在极夜 急流;东、西风带交界面在对流层内向上向赤道倾 斜,在对流层顶附近东风带经向宽度达到最窄,然 后在平流层内向上偏离赤道,其中南半球中平流层 全为东风带,北半球高空大部分为西风带控制。6~ 8月(图 1b)情况与 12~2 月相反,且冬半球急流 强度明显强于夏半球。这些结论与全球大气环流时间平均统计图集(吴国雄和刘还珠,1987)所示的保持一致。

365

2.2 通量分解方案

按照环流分解方案(Lorenz, 1967; Oort and Rasmusson, 1971; 叶笃正等, 1991), t_y 年、 t_m 月 子午面上(φ , p)点处时空平均物理量的向北、向上 通量分解式为

$$\begin{cases} [\overline{Av}] = [\overline{A}][\overline{v}] + [\overline{A} * \overline{v}^*] + [\overline{A'v'}], \\ [\overline{Aw}] = [\overline{A}][\overline{w}] + [\overline{A} * \overline{w}^*] + [\overline{A'w'}], \end{cases}$$
(1)

式中, A 为某物理量的密度、v 或w 为风的向北、向 上分量,它们是经度 λ 的函数。⁻⁻、[]为月平均(简 称时间平均)、纬圈平均(简称空间平均)算符; '、 *为t 时刻 λ 处A、v、w 对它们时、空平均的偏差, 简称瞬变、纬偏分量。因计算对 t_y 年进行,故式(1) 右端三个分量依次为准平均经圈环流、准定常波、 瞬变涡的向北、向上通量,以下将分别用下标k=1, 2,3标记。[\overline{Av}]及其分量的确切含义,是 t_y 年、 t_m 月单位时间(s)内通过子午面上(φ ,p)点处单位面 积(m^2)等纬度面向北输送的A 物理量时空平均值 及其分量值; [\overline{Aw}]及其分量的确切含义则是通过该 处单位面积球面向上输送的A物理量时空平均值及 其分量值。

引入 u 角动量密度

A = *pau* cos*φ*, (2) 并在 *p* 坐标下求(1)式纬圈积分,得 *u* 角动量的 向北、向上通量 *m*_x、*m*_x,其算式为

图 1 40 年(1958~1997)平均纬向风($[\overline{u}]$)(单位: m s⁻¹): (a) 12~2月; (b) 6~8月。粗实线表示 $[\overline{u}]=0$,等值线间隔为 10 m s⁻¹; (a) 图阴 影区表示 $[\overline{u}] \ge 20 \text{ m s}^{-1}$ 的急流区,(b) 图北(南)半球阴影区表示 $[\overline{u}] \ge 10$ (30) m s⁻¹的急流区

Fig. 1 The 40-year (1958–1997) mean of zonal mean wind ($[\overline{u}]$) for (a) DJF (Dec–Jan–Feb) mean and (b) JJA (Jun–Jul–Aug) mean based on NCEP/NCAR reanalysis data (units: m s⁻¹). The heavy solid lines represent $[\overline{u}] = 0$, isoline interval is 10 m s⁻¹; shaded areas represent jet stream region with $[\overline{u}] \ge 20 \text{ m s}^{-1}$ in (a), $[\overline{u}] \ge 10 \text{ m s}^{-1}$ in the Northern Hemisphere and $[\overline{u}] \ge 30 \text{ m s}^{-1}$ in the Southern Hemisphere in (b), respectively

$$m_{y}(\varphi, p) = \frac{2\pi a^{2} \cos^{2} \varphi}{g} [\overline{uv}],$$

$$m_{z}(\varphi, p) = \frac{-2\pi a^{2} \cos^{2} \varphi}{g} [\overline{u\omega}],$$
(3)

其中, a 为地球半径, φ 为纬度, g 为标准重 力加速度。(3) 式分量 m_{yk} 、 m_{zk} ,k=1, 2, 3 的算式为

$$\begin{cases} (m_{y1}(\varphi, p), m_{y2}(\varphi, p), m_{y3}(\varphi, p)) = \\ \frac{2\pi a^{2} \cos^{2} \varphi}{g} ([\overline{u}][\overline{v}], [\overline{u}^{*}\overline{v}^{*}], [\overline{u'v'}]), \\ (m_{z1}(\varphi, p), m_{z2}(\varphi, p), m_{z3}(\varphi, p)) = \\ \frac{-2\pi a^{2} \cos^{2} \varphi}{g} ([\overline{u}][\overline{\omega}], [\overline{u}^{*}\overline{\omega}^{*}], [\overline{u'\omega'}]), \end{cases}$$
(4)

 m_y (m_z)及其分量的确切含义,是 t_y 年、 t_m 月单 位时间内通过图 2a、2b 上圆台(球台)侧面向北 (向上)输送的 u角动量及其分量。图 2a 上的圆 台侧面,是等纬度面上过(φ ,p)点沿纬圈分布的一 个环形带,带宽 Δz 是该处单位压差(Pa)对应之高 度(随p、T而变),表1给出了标准大气若干等压 面处的 Δz 值。图 2b 上的球带也过(φ ,p)点,带宽 Δy 是经线上长为 1m的弧;因等压面高度 z 远小于 地球半径 a,它对 S_y 、 S_z 的影响可略,则有

表 1 标准大气若干等压面处 1 Pa 压差气柱对应高度 Δz (单位: m)

Table 1Heights Δz (units: m) of air column correspond to1Pa differential pressure at several standard isobaric levels

	1000 hPa	500 hPa	100 hPa	10 hPa
温度 \overline{T}/K	288.15	253.90	216.65	227.65
高度 Δz/m	0.085	0.151	0.637	6.663
注, 据公式 ∧()	$p_{\overline{T}/q} \ln \frac{p_1}{p_1}$	曾 甘山 王之	3与比与休党#	t R = 287.04

注: 描公式 $\Delta z = (\mathbf{K}_d I / g) \prod_{p_2}^{-1} \mu_F, \chi_T, \Gamma_L$ (R. GPD A $\mathbf{M}_d = 2..., P_2$) J kg⁻¹ K⁻¹, 地球标准重力加速度 g = 9.80665 m s⁻², 气柱平均气温 \overline{T} 取标准气温, 气柱底 (z_1)、顶 (z_2) 气压取 p_1 =p+0.5、 p_2 =p-0.5。

$$S_{y}(\varphi) = 2\pi a \Delta z \cos \varphi \tag{5}$$

$$S_z(\varphi) = 2\pi a \cos \varphi$$

 t_y 年、 t_m 月通过整个等 φ 面向北输入极冠区的 u角动量通量及其分量的定义式为

$$\begin{cases} m_{y}(\varphi) = \int_{0}^{p_{0}} m_{y}(\varphi, p) \, \mathrm{d}p, \\ m_{yk}(\varphi) = \int_{0}^{p_{0}} m_{yk}(\varphi, p) \, \mathrm{d}p, k=1, 2, 3, \end{cases}$$
(6)

p0=1013.25 hPa 为标准大气压。

由(3)、(4)、(6) 式可得 t_y 年季节平均的u角动量通量 $m_y(t_y,\varphi,p)$ 、 $m_y(t_y,\varphi)$ 、 $m_z(t_y,\varphi,p)$, $t_y = 1, 2, \dots, 40$ 及其分量 $m_{yk}(t_y,\varphi,p)$ 、 $m_{yk}(t_y,\varphi)$ 、 $m_{zk}(t_y,\varphi,p)$, $t_y = 1, 2, \dots, 40$, k=1, 2, 3; 进而求上式 各项的多年平均,得各季节的气候平均值 $\bar{m}_y(\varphi,p)$ 、 $\bar{m}_y(\varphi)$ 、 $\bar{m}_z(\varphi,p)$, $\bar{m}_{yk}(\varphi,p)$ 、 $\bar{m}_{zk}(\varphi,p)$, k=1, 2, 3 (注:本文为40年平均),式中时间平均包 括月、季、多年三种尺度,是本文的分析依据。

3 u 角动量经向输送的气候特征

*u*角动量经向输送通量分布图*m*_y(图 3a、4a)的强输送带(图上高绝对值区)均位于自由大气中。 赤道对流层顶的强输送带随季节变号,12~2月向 北半球输出东风角动量,6~8月向南半球输出东风 角动量,它们使对流层内东西风交界线([*ū*]=0) 自低空至高空向赤道倾斜;早在 1950年代,叶笃 正和杨大升(1955)即已指出,热带[*ū*]=0线的这 种结构与 Hadley 环流相结合,在西风角动量从低纬 东风带向中高纬西风带输出中的重要意义。中心位 于副热带对流层顶附近的两个强输送带冬强夏弱, 其辐合区与副热带西风急流位置基本重合。冬半球 中纬中平流层顶(10hPa)附近有另一个强输送带, 其辐合区与极夜急流位置重合。这和季劲钧(1979)

图 2 计算 $m_y(\varphi, p)$ 、 $m_z(\varphi, p)$ 使用的几何面示意图: (a) 圆台侧面 $S_y = 2\pi a\Delta z \cos \varphi$; (b) 球台侧面 $S_z = 2\pi a \cos \varphi$ 。 阴影为圆台(球台)侧面 Fig. 2 Diagrams of geometric plane for computing $m_y(\varphi, p)$ and $m_z(\varphi, p)$. Shaded areas represent lateral surface of (a) conical cylinder with $S_y = 2\pi a\Delta z \cos \varphi$ and (b) spherical segment with $S_z = 2\pi a \cos \varphi$

提出的水平方向上西风角动量向急流中心辐合的 观点一致。

应当指出,在图 3、4 的 b 中,对流层平均经 圈环流(Hadley 环流、Ferrel 环流)中的强经向运 动,伴随着 *Q* 角动量与 *u* 角动量之间的相互转换, 对流层上部 Hadley 环流向极(为主)和 Ferrel 环流 向赤道(为副)输送结合是副热带西风急流产生和 维持的主要原因;而对流层下部 Hadley 环流向赤道 和 Ferrel 环流向极输送过程伴随的 *Q* 角动量与 *u* 角 动量的转换,起到抵消山脉力矩和摩擦力矩的作 用。

由 12~2 月(北半球冬季、南半球夏季)经向 输送分量分布图 *m*_{yk}(图 3b~d)知,与北半球冬季 副热带西风急流有关的 *m*_y由三个分量共同构成,对 流层上部到平流层下部的辐合主要由 Hadley 环流 向北、Ferrel 环流向南的西风角动量输送形成;中 平流层与极夜急流有关的输送辐合由定常波、瞬变

涡提供,以瞬变涡为主。南半球副热带西风急流主 要由瞬变涡向南输送辐合引起,Ferrel环流上部的 向赤道输送也有一定作用,因南半球中纬定常波 弱、其输送作用不明显。赤道对流层顶的负输送中 心则主要由该处定常波输送引起;热带摩擦层中的 强输送(北半球一侧)则主要由东风带内的 Hadley 环流完成。

由图 4b-d (北半球夏季、南半球冬季)可见, 在 6~8 月,与北半球夏季副热带西风急流有关的 主要是定常波、瞬变涡输送及其辐合。而与南半球 冬季副热带西风急流有关的主要是平均经圈环流 输送、强辐合及瞬变涡旋强输送;与极夜急流有关 的主要是瞬变涡旋、定常波输送及其辐合。赤道对 流层顶附近的强向北输送与 Hadley 环流上部北风 和定常波将东风角动量向南输送有关;热带摩擦层 的强输送在北、南半球分别由定常波、Hadley 环流 完成。

图 3 12~2月向北角动量通量 $\bar{m}_{y}(\varphi, p)$ 及其分量 $\bar{m}_{ys}(\varphi, p)$ (单位: 10¹³ kg m² s⁻²): (a) \bar{m}_{y} ; (b) \bar{m}_{y1} ; (c) \bar{m}_{y2} ; (d) \bar{m}_{y3} 。粗点虚线表示 [\bar{u}] = 0; 阴影区为急流 ($[\bar{u}] \ge 20 \text{ m s}^{-1}$); 等值线为向北角动量通量

Fig. 3 The DJF mean northward flux of relative angular momentum $\overline{m}_{y}(\varphi, p)$ and its three components $\overline{m}_{yk}(\varphi, p)$ (units: $10^{13} \text{ kg m}^2 \text{ s}^{-2}$): (a) \overline{m}_{y} ; (b) \overline{m}_{y1} ; (c) \overline{m}_{y2} ; (d) \overline{m}_{y3} . The heavy dash-dotted lines represent $[\overline{u}] = 0$; shaded areas represent jet stream region with $[\overline{u}] \ge 20 \text{ m s}^{-1}$; isolines indicate northward flux of relative angular momentum

北纬 60°间,在 30°N (S) 附近 $\bar{m}_{y}(\varphi)$ 达极值。同 一季节经向输送 $\bar{m}_{y}(\varphi)$ 的半球际分量构成差异明

图 5 是据(6)式求得的 *u* 角动量向北通量及 其分量的垂直积分。可见,明显向极输送发生在南

图 4 6~8 月向北角动量通量 $\bar{m}_{y}(\varphi, p)$ 及其分量 $\bar{m}_{y*}(\varphi, p)$ (单位: $10^{13} \text{ kg m}^2 \text{ s}^{-2}$): (a) \bar{m}_{y} ; (b) \bar{m}_{y1} ; (c) \bar{m}_{y2} ; (d) \bar{m}_{y3} 。粗点虚线表示[\bar{u}]=0; 北(南) 半球阴影区为急流([\bar{u}] ≥ 10 (30) m s⁻¹);等值线为向北角动量通量

Fig. 4 Same as Fig. 3, but for JJA mean. The shaded areas represent jet stream region with $[\bar{u}] \ge 10 \text{ m s}^{-1}$ in the Northern Hemisphere and $[\bar{u}] \ge 30 \text{ m s}^{-1}$ in the Southern Hemisphere

图 5 40 年(1958~1997)平均 $\bar{m}_y(\varphi)$ 及其分量 $\bar{m}_{y*}(\varphi)$ 的垂直积分(单位: $10^{18} \text{ kg m}^2 \text{ s}^{-2}$): (a) $12 \sim 2$ 月; (b) $6 \sim 8$ 月 Fig. 5 Meridional profiles of the vertically integrated 40-year (1958–1997) mean flux of relative angular momentum $\bar{m}_y(\varphi)$ and its components $\bar{m}_{y*}(\varphi)$ for (a) DJF mean and (b) JJA mean. (units: $10^{18} \text{ kg m}^2 \text{ s}^{-2}$)

显,瞬变涡绝对输送一般较定常波大;但相对重要性,南半球明显大于北半球。平均经圈环流(Hadley环流)在热带的重要性突出。

综上, 气候经向输送通量及其分量的主要分布 特征与前人对个别或少数年份资料的研究结果类 似,说明它们有年际稳定性。但应当指出,Starr and White (1951) 仅计算了 1949 年 2 月 1 日~7 月 31 日平均的 30°N 附近的平均经圈环流通量和总的涡 旋通量,其涡旋通量没有区分定常和瞬变。Newell et al. (1972), Oort and Peixoto (1983), Trenberth (1987) 选取的时段分别是 1957~1964 年、1963~ 1973 年、1979~1982 年(去除没有资料的 1980 年),采用逐日12时瞬时资料,分别计算了多年平 均的季、年通量,但只对6~8月计算了分量通量。 因此,并不是严格意义上的气候分析。另外, 王林 等(2007)用 ERA-40 资料(1971~2000年)给出 了纬向平均定常波对西风动量输送的气候图,指出 定常波对西风动量输送最强的区域位于中、高纬度 对流层的中上层: 其高纬度强输送在本文图 3、4c 中不存在。另外,上述研究及周春华等(2003)的 研究对象均为纬向平均 u 动量通量, 而本文研究对 象为u角动量通量,两者间存在 $a\cos\varphi$ 倍的差异, 使得前者在中低纬度(高纬度)较后者偏小(大)。 这可能是前人研究结果中 12~2 月 60°N (60°S) 附 近出现定常(瞬变)涡旋输送的负(正)值区,以 及 6~8 月 60°S 以北出现弱瞬变涡旋正值区的原因

(资料不同也可能是原因之一)。

4 u角动量垂直输送的气候特征

由绝对角动量变化原理(Newton, 1971; Madden and Speth, 1995)知,大气西风角动量的 源在热带东风带地面,汇在中高纬西风带地面,而 由*m*,及其分量的子午面图(图 3、4)知,强输送 中心位于高空的对流层顶或中平流层顶;平衡要求 热带东风区内有角动量向上输送,中高纬西风区内 有角动量向下输送,因此需要分析*u*角动量的垂直 输送及其构成。陈秋士和孙洁伦(1987)也指出, 在北半球冬季东、西风带的维持过程中,中纬度不 平衡涡动输送和平均经圈环流所造成的垂直输送 起着十分重要的作用。限于资料,分析仅在对流层 与低平流层进行。

角动量向上通量图 *m*_z(图 6a、7a)表明,赤 道附近有东风角动量向上输送。冬半球强副热带西 风急流的低纬侧 *u* 角动量下传、中纬侧上传,存在 明显垂直输送切变;夏半球弱副热带西风急流则位 于中纬弱 *u* 角动量上传区中。

u角动量向上通量分量图 m_{₂k}(图 6 和图 7b-d) 表明,赤道对流层东风角动量上传,12~2 月主 要由平均经圈环流(对流层下部)和定常波(对 流层上部)共同完成,6~8 月则由平均经圈环流 (为主)和定常波(为副)共同完成。而与副热带 急流有关的西风角动量下传主要由位于西风带

图 6 12~2月向上角动量通量 $\bar{m}_{z}(\varphi, p)$ 及其分量 $\bar{m}_{zk}(\varphi, p)$ (单位: 10¹¹ kg m² s⁻²): (a) \bar{m}_{z} ; (b) \bar{m}_{z1} ; (c) \bar{m}_{z2} ; (d) \bar{m}_{z3} 。粗点虚线表示 [\bar{u}] = 0; 阴影区为急流 ($[\bar{u}] \ge 20 \text{ m s}^{-1}$); 等值线为向上角动量通量

Fig. 6 The DJF mean upward flux of relative angular momentum $\overline{m}_{z}(\varphi, p)$ and its three components $\overline{m}_{zk}(\varphi, p)$ (units: $10^{11} \text{ kg m}^2 \text{ s}^{-2}$): (a) \overline{m}_{z} ; (b) \overline{m}_{z_1} ; (c) \overline{m}_{z_2} ; (d) \overline{m}_{z_3} . The heavy dash-dotted lines represent $[\overline{u}] = 0$; shaded areas represent jet stream region with $[\overline{u}] \ge 20 \text{ m s}^{-1}$; isolines indicate upward flux of relative angular momentum

图 7 6~8月向上角动量通量 $\bar{m}_{z}(\varphi, p)$ 及其分量 $\bar{m}_{zk}(\varphi, p)$ (单位: 10¹¹ kg m² s⁻²): (a) \bar{m}_{z} ; (b) $\bar{m}_{z_{1}}$; (c) $\bar{m}_{z_{2}}$; (d) $\bar{m}_{z_{3}}$ 。粗点虚线表示 [\bar{u}]=0; 北(南)半球阴影区为急流([\bar{u}] ≥ 10 (30) m s⁻¹);等值线为向上角动量通量

中的平均经圈环流(Hadley 环流、Ferrel 环流)下 沉支完成; 瞬变涡旋将西风角动量上传,部分抵消 平均经圈环流的下传作用,这在南半球更明显。 Hantel and Hacker (1978)指出,冬半球中纬度的 斜压涡旋是完成 *u* 角动量向上输送的主要环流系 统;近年来,Egger et al. (2011)又用 ERA-40 资料 计算了 1958~2001 年平均的 12~2 月瞬变涡旋通 量,对 Hantel 的结论加以论证。但 Egger et al. (2011)给出的 60°N 附近的狭窄向下输送中心在 本文计算结果中不存在。

图 8 给出了 500 hPa *u* 角动量向上通量 *m*₂ 及其 分量随纬度的变化。可见,冬半球外热带、副热带 向下输送最强,它主要由平均经圈环流 Hadley 环流 和 Ferrel 环流公共下沉支完成,并被瞬变涡、定常 波向上输送削弱。赤道附近的冬半球侧全年保持次 强的向下输送,它主要由平均经圈环流(东风区内 的 Hadley 环流上升支)完成。半球际非对称性表现 为南半球冬季中纬(40°S 附近)有强向上输送,三 个分量对其均为正贡献,但以瞬变涡旋为主,说明 南半球该纬带强西风急流上斜压瞬变涡旋活跃。

5 结论与讨论

本文利用 1958~1997 年 NCEP/NCAR 一日四 次的风场再分析资料,计算了气候态季节平均 *u* 角

2 期

No. 2 YANG Wei et al. Climatic Characteristics of Relative Atmospheric Angular Momentum Transport and its ...

动量输送通量及其三个分量,并讨论了北半球冬 (12~2 月)、夏(6~8 月)季它们与东、西风带 和副热带西风急流、极夜急流之间的联系。得到以 下结论:

(1)全年均有从热带东风带向中高纬西风带的 西风角动量经向输送,强度冬季强于夏季,北半球 季节差异大于南半球;极地东风带向中高纬西风带 的输送相对很小。赤道对流层顶附近的强向极输送 伴随 Ω 角动量向 u 角动量的转换,它使该处东风带 变窄,导致热带对流层中东西风带交界面随高度向 赤道倾斜。

(2)角动量强经向输送主要在中低纬对流层顶 附近和冬半球高纬平流层顶附近,副热带西风急流 和极夜西风急流均位于角动量强向极输送中心高 纬一侧的输送辐合区中。冬半球强副热带西风急 流主要由平均经圈环流输送及其辐合维持,定常 波、瞬变涡旋输送及辐合对北半球西风急流的维持 作用相近,瞬变涡旋输送及辐合对南半球西风急流 的维持作用明显大于定常波。冬半球中平流层极夜 急流主要由定常波、瞬变涡旋输送及其辐合共同维 持。

(3) 热带东风区是绝对角动量的高值区,它向 对流层上部输送;冬半球副热带及中纬西风区存在 *u*角动量向下(为主)向上输送的切变区,其向下

(上)输送主要由平均经圈环流(瞬变涡旋)完成; 定常波仅在热带对流层上部表现为对 *u* 角动量的弱 向下输送。

西风角动量通量及其三个分量的输送有利于 东、西风带和西风急流的维持,进而影响东亚地区 甚至全球的气候变化,那么它们有何气候效应,有 待进一步的研究。

参考文献(References)

- Bjerknes J. 1948. Practical Applications of H. Jeffreys' Theory of General Circulation[A]//Résumé des Mémoires Réunion d'Oslo, 13–14.
- Buch H S. 1954. Hemispheric Wind Conditions During the Year 1950 [M]. Cambridge: The Massachusetts Institute of Technology, 126pp.
- 陈秋士, 孙洁伦. 1987. 中纬度平均经圈和纬圈环流维持的物理过程 (二)[J]. 大气科学, 11 (3): 237–246. Chen Qiushi, Sun Jielun. 1987. Physical processes for maintenance of the mean meridional and zonal circulation of the atmosphere in the middle latitudes (II) [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 11 (3): 237–246.
- Egger J, Hoinka K P. 2011. Global angular momentum fluxes in height coordinates [J]. Mon. Wea. Rev., 139 (8): 2552–2560.

- Gilman P A. 1964. On the vertical transport of angular momentum in the atmosphere [J]. Pure. Appl. Geophys., 57 (1): 161–166.
- Hantel M, Hacker J. 1978. On the vertical eddy transports in the Northern Atmosphere. 2. Vertical eddy momentum transport for summer and winter [J]. J. Geophys. Res., 83 (C3): 1305–1318.
- 季劲钧. 1979. 斜压球面螺旋行星波和角动量输送 [J]. 气象学报, 37 (2): 93–96. Ji Jinjun. 1979. Spiral planetary waves and the transfer processes of angular momentum in the baroclinic atmosphere [J]. Acta Meteorologica Sinica (in Chinese), 37 (2): 93–96.
- Jeffreys H. 1926. On the dynamics of geostrophic winds [J]. Quart. J. Roy. Meteor. Soc., 52 (217): 85–104.
- Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteor. Soc., 77 (3): 437–471.
- Kraucunas I, Hartmann D L. 2005. Equatorial superrotation and the factors controlling the zonal-mean zonal winds in the tropical upper troposphere [J]. J. Atmos. Sci., 62 (2): 371–389.
- Lorenz E N. 1967. The Nature and Theory of the General Circulation of the Atmosphere [M]. New York: World Meteorological Organization, 161pp.
- Madden R A, Speth P. 1995. Estimates of atmospheric angular momentum, friction, and mountain torques during 1987–1988 [J]. J. Atmos. Sci., 52 (21): 3681–3694.
- Mak M. 1978. On the observed momentum flux by standing eddies [J]. J. Atmos. Sci., 35 (2): 340–346.
- Newell R E, Kidson J W, Vincent D G, et al. 1972. The general circulation of the tropical atmosphere and interactions with extratropical latitudes [M]. Cambridge: The Massachusetts Institute of Technology, 258pp.
- Newton C W. 1971. Mountain torques in the global angular momentum balance [J]. J. Atmos. Sci., 28 (4): 623–628.
- Obasi G O P. 1963. Poleward flux of atmospheric angular momentum in the Southern Hemisphere [J]. J. Atmos. Sci., 20 (6): 516–528.
- Oort A H, Rasmusson E M. 1971. Atmospheric Circulation Statistics[M]. Washington: Government Printing Office, 323pp.
- Oort A H, Peixoto J P. 1983. Global angular momentum and energy balance requirements from observations [J]. Adv. Geophys., 25: 355–490.
- Palmén E. 1954. On the relationship between meridional eddy transfer of angular momentum and meridional circulation in the earth's atmosphere [J]. Meteor. Atmos. Phys., 7 (1): 80–84.
- Priestley C H B. 1951. A survey of the stress between the ocean and the atmosphere [J]. Aust. J. Sci. Res., 4 (3): 315–328.
- Starr V P, White R M. 1951. A hemispherical study of the atmospheric angular-momentum balance [J]. Quart. J. Roy. Meteor. Soc., 77 (332): 215–225.
- Trenberth K E. 1987. The role of eddies in maintaining the westerlies in the Southern Hemisphere winter [J]. J. Atmos. Sci., 44 (11): 1498–1508.
- Trenberth K E, Olson J G. 1988. ECMWF Global Analyses 1979–1986: Circulation Statistics and Data Evaluation [M]. Boulder: Climate and Global Dynamics Division, National Center for Atmospheric Research, 740pp.
- 王林,陈文,黄荣辉,等. 2007. 北半球定常波输送西风动量的气候态及 其年变化 [J]. 大气科学, 31 (3): 377–388. Wang Lin, Chen Wen, Huang Ronghui, et al. 2007. The climatology and annual cycle of meridional transport of westerly momentum by stationary waves in the

Northern Hemisphere [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31 (3): 377–388.

- 吴国雄, 刘还珠. 1987. 全球大气环流时间平均统计图集 [M]. 北京: 气 象出版社, 212pp. Wu Guoxiong, Liu Huanzhu. 1987. Time-Mean Statistical Atlas for Global Atmospheric General Circulations (in Chinese) [M]. Beijing: China Meteorological Press, 212pp.
- 吴国雄, Tibaldi S. 1988. 平均经圈环流在大气角动量和感热收支中的作用 [J]. 大气科学, 12 (1): 8–17. Wu Guoxiong, Tibaldi S. 1988. Roles of the mean meridional circulation on atmospheric budgets of angular momentum and sensible heat [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 12 (1): 8–17.
- White R M. 1950. A mechanism for the vertical transport of angular momentum in the atmosphere [J]. J. Meteor., 7 (5): 349–350.
- 叶笃正,杨大升. 1955. 北半球大气中角动量的年变化和它的输送机构 [J]. 气象学报, 26 (4): 281-292. Ye Duzheng, Yang Dasheng. 1955.

The annual variation of the atmospheric angular momentum of Northern Hemisphere and the mechanism of its transfer [J]. Acta Meteorologica Sinica (in Chinese), 26 (4): 281–292.

- 叶笃正, 邓根云. 1956. 1950 年平均经圈环流与角动量的平衡 [J]. 气象 学报, 27 (4): 307–321. Ye Duzheng, Deng Genyun. 1956. Mean meridional circulation and angular momentum balance in the year of 1950 [J]. Acta Meteorologica Sinica (in Chinese), 27 (4): 307–321.
- 叶笃正,曾庆存,郭裕福. 1991. 当代气候研究 [M]. 北京: 气象出版社, 353pp. Ye Duzheng, Zeng Qingcun, Guo Yufu. 1991. Current Research on Climatology (in Chinese) [M]. Beijing: China Meteorological Press, 353pp.
- 周春华. 2003. 大气角动量平衡的气候及异常分析 [D]. 南京气象学院 硕士论文, 91pp. Zhou Chunhua. 2003. Climatic and anomalous analysis of atmospheric angular momentum balance [D]. M. S. thesis (in Chinese), Nanjing Institute of Meteorology, 91pp.