双月刊

ISSN 1006-9895

CN 11-1768/O4

MJO研究新进展
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家重点基础研究发展计划(973计划)2010CB950401,国家自然科学基金资助项目U0833602


Progress on the MJO Research in Recent Years
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    MJO与ENSO的关系、MJO的数值模拟(预报)以及MJO对天气气候的影响是近些年来国内外大气科学研究的重要前沿问题。本文将综合介绍国内有关MJO对天气气候的影响以及MJO的数值模拟(预报)方面的近期研究进展,因为过去已介绍过MJO与ENSO相互作用的研究结果。利用澳大利亚气象局的RMM-MJO指数研究MJO与西北太平洋台风活动的关系,结果表明大气MJO对西北太平洋台风的生成有比较明显的调制作用,在MJO的活跃期与非活跃期西北太平洋生成台风数的比例为2:1;而在MJO活跃期,对流中心位于赤道东印度洋(即MJO第2、3位相)与对流中心在西太平洋地区(即MJO第5、6位相)时的比例也为2:1。对大气环流的合成分析显示,在MJO的不同位相西太平洋地区的动力因子和热源分布形势有极其明显不同。在第2、3位相,各种因子均呈现出抑制西太平洋地区对流及台风发展的态势;而在第5、6位相则明显有促进对流发生发展,并为台风生成和发展创造了有利的大尺度环流动力场。对多台风年与少台风年850 hPa的30~60 d低频动能距平的合成分析表明,在多台风年最显著的是低频动能正异常位于菲律宾以东15°N以南的西北太平洋地区,表明那里有强MJO的活动;而少台风年的情况与多台风年相反,菲律宾以东的西北太平洋上与季风槽位置对应区域是低频动能的负距平区,那里MJO偏弱。即赤道西北太平洋上MJO活动的强(弱)年对应西北太平洋的台风偏多(偏少)。对应MJO的不同活动位相,无论冬季、春季或夏季,中国东部的降水都将出现特殊的异常形势。在春季,MJO的第2、3位相有利我国东部长江中下游地区多雨、华南地区少雨;MJO的第4、5位相有利我国华南地区多雨而长江中下游地区少雨;在MJO的其它位相,我国东部地区都为降水负异常。在冬季,对应MJO的第1~3位相(特别是第2、3位相)中国华南降水偏多;而对应MJO的第6~8位相(特别是第6、7位相)中国华南降水偏少。在夏季,MJO位于印度洋时,MJO可以通过低层西风急流的波导效应影响到中国东南部地区,造成该地区降水偏多;当MJO位于西太平洋地区时,可以造成经向环流的上升支向北偏移,导致西北太平洋副高的东撤、以及中国东南部地区水汽输送减弱,降水减少。资料分析还表明,在年际变化尺度上,热带中、东印度洋MJO指数的持续异常对云南夏季降水有明显的影响。大气环流和数值模拟都表明,MJO活动不同位相的强对流会在东亚/西北太平洋地区激发产生不同形势的遥响应(Rossby波列),导致在中国不同地区出现有利(或不利)降水的环流形势和条件,是MJO活动影响中国降水的主要机制。用数值模式对MJO进行数值模拟(预报)是尚未很好解决的困难问题,原因也没有完全搞清楚。我们的一系列数值模拟清楚表明,MJO的模拟(预报)效果对模式所用对流参数化方案有很强的依赖关系;模式能否很好描写(再现)热带大气非绝热加热廓线,是极其关键的问题,只有当加热廓线在对流层中低层有最大加热时,模式才能得到同实际观测大体一致的MJO及其活动特征。这些数值模拟结果与我们过去从理论研究得到的结论相吻合,彼此得到应证。

    Abstract:

    Recently, the relationship between the Madden-Julian Oscillation (MJO) and the El Niño-Southern Oscillation (ENSO), the numerical simulation (forecasting) of the MJO, and the influences of the MJO on weather and climate have become some of the major issues at the forefront of atmospheric science. Studies of the interaction between the MJO and ENSO and their results has been reviewed in previous papers; therefore, in this paper we present a comprehensive overview of recent research advances by Chinese scientists on the MJO’s influence on weather and climate, as well as numerical simulation (forecasting) of the MJO. The studies used the Australian Bureau of Meteorology Real-time Multivariate (RMM) MJO index to investigate the relationship between MJO and typhoon activity over the northwest Pacific. The results show that the MJO plays a significant role in modulating the genesis of the typhoon over the northwest Pacific. For the typhoon genesis number over the northwest Pacific, the ratio between the active and inactive periods of the MJO is 2:1. During the MJO active period, the ratio of the northwest Pacific typhoon genesis number between phases 2-3 of the MJO in which the convection center of the MJO is located in the tropical eastern Indian Ocean and MJO phases 5-6 where the convection center of the MJO is located in the western Pacific is also 2:1. Composite atmospheric circulations show that the distribution of the dynamic typhoon-influencing factors and heating sources of the western Pacific in the different MJO phases are very different. In phases 2-3 of the MJO, all the factors tend to suppress the development of convection and typhoons in the western Pacific. In MJO phases 5-6, however, these factors promote convection development and create a favorable large-scale background circulation for the generation and development of typhoons. The composites of the 30-60 day low-frequency kinetic energy at the 850 hPa level for the typhoon-rich years show positive low-frequency kinetic energy anomalies over the northwestern Pacific east of the Philippines and south of 15°N, indicating that the MJO activity is strong in that region. In contrast, on typhoon-poor years, negative low-frequency kinetic energy anomalies are found over the monsoon trough regions of the northwestern Pacific east of the Philippines suggesting that the MJO activity is weaker over that region. Generally speaking, there are more (less) typhoons over the northwestern Pacific in the years when the MJO activity over the northwestern tropical Pacific is strong (weak). Corresponding to the different MJO phases, the precipitation over eastern China is anomalous whether in winter or spring. In spring, during MJO phases 2-3, the middle and lower reaches of the Yangtze River are wetter, while South China is drier. During MJO phases 4-5, South China is wetter while the middle and lower reaches of the Yangtze River are drier. During the other phases of the MJO, the anomalous precipitation of eastern China is negative. In winter, during phases 1-3 (especially phases 2-3), South China is wetter; during phases 6-8 (especially phases 6-7) South China is drier. In summer, the MJO over the Indian Ocean (the western Pacific) can influence southeastern China through the wave-train effect of the westerly jet in the lower troposphere (the meridional circulation and subtropical high over the western Pacific) which results in a wetter (drier) season in southeastern China. Moreover, the continual anomaly of the MJO over the tropical middle-east Indian Ocean has a clear impact on summer rainfall in Yunnan on an interannual time-scale. The atmospheric circulation analysis and numerical simulations all show that strong convection for the different phases of the MJO will generate different teleconnection patterns (Rossby wave train). These will result in favorable (or unfavorable) circulation and conditions for rainfall in different regions of China, which is the primary mechanism responsible for the precipitation anomalies associated with the MJO. The simulation (prediction) of the MJO in the numerical model is far from success and still an open question. Our series of numerical simulations clearly indicates that the simulation of the MJO strongly depends on a convective parameterized scheme in the model; whether the model can reproduce a realistic diabatic heating profile of the tropical atmosphere is the key to a successful simulation of the MJO. The MJO activities in the model match those of the observations to a certain degree only when the maximum of the heating profile is located in the middle and lower troposphere. The results of these simulations are consistent with our previous theoretical studies.

    参考文献
    相似文献
    引证文献
引用本文

李崇银,潘静,宋洁. MJO研究新进展.大气科学,2013,37(2):229~252 LI Chongyin, PAN Jing, SONG Jie. Progress on the MJO Research in Recent Years. Chinese Journal of Atmospheric Sciences (in Chinese),2013,37(2):229~252

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-10-31
  • 最后修改日期:2012-11-13
  • 录用日期:
  • 在线发布日期: 2013-03-08
  • 出版日期: