双月刊

ISSN 1006-9895

CN 11-1768/O4

冷空气强风在大型城市中的精细结构和形成机制
作者:
作者单位:

1.中山大学大气科学学院/季风与环境研究中心/广东省气候变化与自然灾害研究重点实验室,广州510275;2.重庆市气候中心,重庆401147;3.中国气象局广州热带海洋气象研究所,广州510080;4.复旦大学大气科学研究院,上海200438

作者简介:

向杰勋,男,1992年出生,硕士研究生,主要从事城市气象数值模拟。E-mail: xjiex@mail2.sysu.edu.cn

通讯作者:

陈桂兴,E-mail: chenguixing@mail.sysu.edu.cn

基金项目:

国家自然科学基金项目41775094,广东省气象局科技创新团队计划项目201704


Fine-Scale Structures and Formation of Strong Winds over a Megacity during a Cold Surge Process
Author:
Affiliation:

1.Center for Monsoon and Environment Research/School of Atmospheric Science/Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou 510275;2.Chongqing Climate Center, Chongqing Meteorological Bureau, Chongqing 401147;3.Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou 510080;4.Institute of Atmospheric Sciences, Fudan University, Shanghai 200438

Fund Project:

National Natural Science Foundation of China (Grant 41775094), Science and Technology Innovative Research Team Plan of Guangdong Meteorological Bureau Grant 201704National Natural Science Foundation of China (Grant 41775094), Science and Technology Innovative Research Team Plan of Guangdong Meteorological Bureau (Grant 201704)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    地面强风可直接造成人员伤亡和经济损失,严重影响出行安全、工农业生产等社会秩序。强风的发生与天气系统和复杂下垫面的共同作用密切相关,在城市区域尤为明显。受数值模拟技术和计算资源的限制,对实际天气条件下大范围城区的强风现象进行建筑物分辨率的大规模数值模拟研究仍是一个挑战。本研究利用中尺度气象模式嵌套流体计算动力模式的超高分辨率局地气象预报系统,对强冷空气过程造成广州市区的一次强风事件进行数值模拟,深入探讨强风的精细结构和形成机制。结果表明,伴随着强冷空气入侵,广州市区的平均风速和风场高频扰动均明显增强,且在城市冠层顶尤为明显,呈现区域不均匀的三维结构,数值模拟与地面观测相一致。较大范围的强风速和阵风主要出现在建筑物较为低矮的老城区上空,并持续影响下游河道等开阔区域。在高层建筑密集的新城区,虽然整体风速明显减弱,但能在平行风向的街道狭管和下游区域形成局地强风。特别是,超高层建筑群引起显著的垂直环流,导致强风扰动向下传播,造成最大风速达8 m s−1的地面局地强风,阵风指数接近2。上游建筑群引起的风场扰动呈现大尺度湍流结构,能沿着平均气流传播影响数公里之远的下游地区。当风场扰动经过广州塔等单体超高层建筑时,可在其两侧绕流区再次加强,形成局地强风。局地强风和阵风还出现在垂直于风向排列的沿江高层建筑群的侧边,与建筑屏风的阻挡效应和缺口溢出有关。研究结果促进认识城市强风的时空特征和物理机制,有助于提升城市气象的精细化预报水平。

    Abstract:

    Local strong winds could be hazardous to street structures and pedestrians, and they may affect outdoor activities and traffic safety. The formation of local strong winds is associated with both mesoscale weather and underlying surface condition, particularly over urban areas where a large number of tall buildings exist. The building-resolving simulation of strong winds over megacities at given atmospheric conditions is challenging due to the limitations in numerical models and computational resources. Here we investigate a typical event of strong winds induced by a cold surge in Guangzhou using an advanced local weather prediction system, in which a mesoscale model is downscaled to a Computational Fluid Dynamics (CFD) model with Large-Eddy Simulation. Both CFD simulations and observations suggest that during the cold surge, mean wind speed and high-frequency disturbances enhanced significantly in the urban area, particularly at the top of the urban canopy. There are also evident differences between the old and new districts with different buildings characteristics. Strong winds and disturbances occurred over a large area of the old district with dense low-rise buildings and its downstream open areas. Over the new district with tall buildings, although the regional mean wind speed reduced, local strong winds occurred in the main streets parallel to the wind direction. In particular, high-rise buildings induced obvious veridical circulations that could lead to downward movements of wind disturbances and caused strong near-surface winds. Such eddies of building-induced strong winds could propagate up to several kilometers downstream. They were reinforced when passing other high-rise buildings such as the Canton Tower. Local strong winds also occurred at the flanks of tall buildings aligned along the Pearl River that is perpendicular to the ambient wind direction. The blocking effect of those buildings resulted in an along-river air flow, which then flowed out via the gaps between the buildings, leading to local strong winds. These findings have important implications for understanding the fine-scale structures and formation of local winds in megacities, which will be helpful to improve the prediction of urban winds.

    参考文献
    相似文献
    引证文献
引用本文

向杰勋,陈桂兴,姜平,吴乃庚,温之平.冷空气强风在大型城市中的精细结构和形成机制.大气科学,2019,43(3):577~597 XIANG Jiexun, CHEN Guixing, JIANG Ping, WU Naigeng, and WEN Zhiping. Fine-Scale Structures and Formation of Strong Winds over a Megacity during a Cold Surge Process. Chinese Journal of Atmospheric Sciences (in Chinese),2019,43(3):577~597

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-03-21
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-06-04
  • 出版日期: