双月刊

ISSN 1006-9895

CN 11-1768/O4

全球大气能量的时空特征及变化趋势分析
作者:
作者单位:

1.北京师范大学全球变化与地球系统科学研究院北京 100875;2.中国海洋大学物理海洋教育部重点实验室山东 青岛 266100

作者简介:

陈凯奇,男,1994年出生,硕士研究生,主要从事气候变化和数值模拟方面的研究。E-mail: kyle1023@163.com

通讯作者:

李建平,E-mail: ljp@ouc.edu.cn

基金项目:

科技部国家重点研发计划项目 2016YFA0601801 ; 国家自然科学重点基金项目 41530424 ; 海洋局国际合作项目 GSAI-IPOVAI-03 科技部国家重点研发计划项目 2016YFA0601801、国家自然科学重点基金项目 41530424、海洋局国际合作项目 GSAI-IPOVAI-03


Analysis of the Spatiotemporal Characteristics and Trends of Global Atmospheric Energy
Author:
Affiliation:

1.College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875;2.Key Laboratory of Physical Oceangraphy/Institute for Advanced Ocean Studies, Ocean University of China, Qingdao, Shangdong Province 266100

Fund Project:

National Key Research and Development Program of China 2016YFA0601801 ; National Natural Science Foundation of China 41530424 ; International Cooperation Program of State Oceanic Administration GSAI-IPOVAI-03 Funded by National Key Research and Development Program of China (Grant 2016YFA0601801), National Natural Science Foundation of China (Grant 41530424), International Cooperation Program of State Oceanic Administration (Grant GSAI-IPOVAI-03)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    大气能量学是大气科学重要的组成部分,了解大气能量的时空分布和变化特征,能够为大气科学研究,尤其是气候变化研究提供新的思路和手段。本文基于1948~2016年NCEP逐月再分析资料,从大气的总能量及其内能、位能、潜热和动能的分布、变化趋势和主模态变化等方面阐释了全球大气能量变化的整体特征。主要结论如下:(1)除高海拔地区外,总能量呈现从赤道向两极逐渐递减的分布,且全球大部分地区呈增加趋势,内能和位能的分布和变化与总能量较为接近;潜热能的极大值区和显著变化区均位于赤道及低纬地区;动能的极大值区分布在中纬度长波槽和西风急流出口区,其在南半球双西风急流区的变化最为显著。(2)总能量呈现出不连续的阶段性跳跃式增长特征;北半球的总能量多于南半球,而增速却慢于南半球,即两半球间的能量呈趋同趋势;海洋上空的总能量多于陆地,且海陆间差额有增大趋势;火山爆发事件可能对大气能量在年际尺度上的减少有重要作用。(3)大气各能量第一模态的空间特征与其各自变化趋势分布非常相似,并先后在1975年左右发生了年代际突变。就第二模态而言,大气的总能量、内能和位能从整体上反映出南北极与其它地区呈反向变化的特征;部分低纬度地区的潜热能与其它地区呈反向变化;动能主要呈现从热带太平洋向南北两极的经向波列分布;它们的时间系数均有一定的多年代际变化特征,可能与气候系统的内部变率有关。

    Abstract:

    Atmospheric energetics is an important part of atmospheric science. Understanding the spatiotemporal characteristics of atmospheric energy can provide new ideas and methods for atmospheric research, especially research on climate change. This work explains the comprehensive features of global atmospheric energy changes on the basis of the distribution, trends and dominant mode changes shown by total energy, internal energy, potential energy, latent heat energy, and kinetic energy as inferred from NCEP monthly reanalysis data for 1948 to 2016. The main conclusions are as follows: (1) The total energy decreases from the equator to the poles and from high-altitude areas, and energy in most parts of the world increases. The distribution and variation of internal energy and potential energy are closely related to the total energy. The maximum area and significant change zones of latent heat energy are located in the equator and low latitudes. The maximum area of kinetic energy is located in the long-wave trough of the middle latitudes and the outlet zone of westerly jets. In addition, kinetic energy located in double westerly jets in the southern hemisphere presents the most pronounced variations. (2) The total energy shows discontinuous periodic leap growth. The total energy of the Northern Hemisphere is more than that of the Southern Hemisphere. The speed-up of the Northern Hemisphere, however, is slower than that of the Southern Hemisphere. That is, the energy between the Northern Hemisphere and Southern Hemisphere tends to be homoplastic. The total energy above the ocean is more than that above land, and the gap between the total energy above the ocean and that above land has widened. Volcanic eruptions may have an important effect on the interannual reduction in atmospheric energy. (3) The spatial characteristics and distribution trends of the first leading mode of each component of atmospheric energy coincide, and they underwent a decadal catastrophe approximately in 1975. As a whole, the second leading modes of the total energy, internal energy, and potential energy of the atmosphere reflect that the changes in the north and south poles oppose those in other regions. The trend exhibited by the change in latent heat energy in some lower-latitude areas contradicts that exhibited by the change in the rest of the world. Kinetic energy mainly shows a meridional wave train distribution from the tropical Pacific to the north and south poles. The time series of the second leading mode possesses the characteristics of multidecadal variations that may be related to the internal variability of the climate system.

    参考文献
    相似文献
    引证文献
引用本文

陈凯奇,李建平,谢铁军,汪秋云,王兰宁.全球大气能量的时空特征及变化趋势分析.大气科学,2020,44(1):168~182 CHEN Kaiqi, LI Jianping, XIE Tiejun, WANG Qiuyun, WANG Lanning. Analysis of the Spatiotemporal Characteristics and Trends of Global Atmospheric Energy. Chinese Journal of Atmospheric Sciences (in Chinese),2020,44(1):168~182

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-11-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-01-22
  • 出版日期: