doi:  10.3878/j.issn.1006-9895.1912.19127
90年代以后华北初春低温增强和北大西洋海温关系

The Relationship between the Early Spring Low Temperature Enhancement in the North China and Sea Surface Temperature in the North Atlantic since the 1990s
摘要点击 30  全文点击 6  投稿时间:2019-03-13  修订日期:2019-11-05
查看HTML全文  查看全文  查看/发表评论  下载PDF阅读器
基金:  国家重点研发计划项目“中国北方地区极端气候的变化及成因研究(2016YFA0600702)”和国家自然科学基金重点项目“我国典型夏季风影响过渡区陆-气相互作用及其对夏季风响应研究(41630426)”共同资助
中文关键词:  极端低温  北大西洋海温  能量分析  CAM5.1模式
英文关键词:  Extreme low temperature, The North Atlantic sea surface temperature, Energy analysis, Community Atmosphere Model(CAM5.1)
        
作者中文名作者英文名单位
徐玮平xuweiping山东省气候中心
张杰zhangjie南京信息工程大学
刘晨liuchen南京信息工程大学
引用:徐玮平,张杰,刘晨.2020.90年代以后华北初春低温增强和北大西洋海温关系[J].大气科学
Citation:xuweiping,zhangjie,liuchen.2020.The Relationship between the Early Spring Low Temperature Enhancement in the North China and Sea Surface Temperature in the North Atlantic since the 1990s[J].Chinese Journal of Atmospheric Sciences (in Chinese)
中文摘要:
      利用ECMWF再分析资料及Hadley中心提供的海温数据分析了90年代以后华北地区初春低温增强的原因,并通过数值模拟结果予以验证。结果表明,北大西洋“马蹄型”海温模态与影响我国华北地区的欧亚波列存在显著的相关关系。同时该海温模态与1997年以后北大西洋关键区垂直波作用通量(TNZ2)有着较密切的相关关系,并且1997年以后北大西洋地区的500hPa环流模态,整体呈现出东移南撤的趋势。1997年以后格陵兰岛东侧表面温度受异常热力强迫导致正值区增多,同时此处西风急流加大,有利于Rossby波向下游传播,导致其下游欧洲大陆地区形成暖脊。通过局地多尺度能量涡度分析法(Localized Multiscale Energy and Vorticity Analysis,简称MS-EVA )证明格陵兰岛东侧关键区表面温度的异常热力强迫作用与气压梯度力在对流层整层做正功,导致高层动能的增加并向外辐散,使得脊加强向北伸展。通过欧亚波列致使下游华北地区上空气旋式异常加强,促使亚洲极涡加强和稳定维持,华北地区温度下降剧烈,极端低温事件增多。最后通过CAM5.1模式模拟研究了北大西洋“马蹄型”海温模态对大气环流异常及华北地区极端低温的影响。模拟结果很好地验证了观测结果,进一步表明该海温模态可以通过激发出欧亚波列,影响欧亚大陆大气环流异常,进而导致我国华北地区气旋性加强和经向环流加大,极端低温事件增多。
Abstract:
      Based on the reanalyze data from European Centre for Medium-Range Weather Forecasts (ECMWF) and the sea temperature data from Hadley Center(Hadley) ,this paper analyzed the reason for the reason for the extrem low temperature enhancement in spring in the North China since 1990s and verified by numerical simulation results.The results indicated that the North Atlantic “Horse Hoof ”sea surface temperature mode has a significant correlation with the Eurasian Wave Train(EU) affecting North China. At the same time, the North Atlantic “Horse Hoof ”sea surface temperature mode has a close correlation with the vertical wave energy(TNZ2) in the key areas of the North Atlantic after 1997 and the 500hPa North Atlantic Oscillation(NAO) circulation mode in the North Atlantic after 1997 showed a trend of eastward movement and southward withdrawal. After 1997, the surface temperature on the eastern side of Greenland showed an increasing trend in positive region with anomalies thermal forcing. At the same time, the westerly jet stream increased, which could stimulate the Eurasian Wave Train and formed warm ridges on the downstream Eurasian continent. The Localized Multiscale Energy and Vorticity Analysis(MS-EVA) energy analysis method proves that anomalies thermal focing and pressure gradient force of the surfacee temperature of the key area on the eastern side of Greenland do positive work in the whole troposphere, leading to the increase of high-level kinetic energy and divergence to the outside, making the ridge strengthen to the North.Through EU wave train, the cyclonic anomaly in the downstream North China was strengthened, and the Asian polar vortex was strengthened and maintained. The temperature in the North China decreases sharply and the extreme low temperature events increase. Finally, the CAM5.1 model simulation is used to study the effects of the North Atlantic “Horse Hoof ”sea surface temperature mode on atmospheric circulation anomalies and the extreme low temperature in the North China. The simulation results verify the observation results well. It further shows that the North Atlantic “Horse Hoof ”sea surface temperature mode can affect the atmospheric circulation anomalies in the Eurasia by stimulating the Eurasian Wave Train, thus leading to the intensification of cyclone and meridional circulation and the increase of extrem low temperature events in the North China.
主办单位:中国科学院大气物理研究所 单位地址:北京市9804信箱
联系电话: 010-82995051,010-82995052传真:010-82995052 邮编:100029 Email:dqkx@mail.iap.ac.cn
本系统由北京勤云科技发展有限公司设计
京ICP备09060247号