ISSN 1006-9895

CN 11-1768/O4

Interannual variations of the upper tropospheric water vapor and its transport into the stratosphere over the Tibetan Plateau area in summer, Part Ⅱ: adiabatic and diabatic transport into the stratosphere
Author:
Affiliation:

1.State Key Laboratory of Numerical Modeling of Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences;2.Collaborative Innovation Center on Forecast and Evaluation of Metrological Disasters (CIC-FEMD), Nanjing University of Information Science &Technology;3.University of Chinese Academy of Sciences;4.Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/ Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Metrological Disasters (CIC-FEMD), Nanjing University of Infor-mation Science &Technology

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    The interannually geographic pattern of the upper tropospheric water vapor mass anomaly is dominated by the uniform mode and the east-west dipole mode over the Tibetan Plateau (TP) re-gions in July–August. In this paper, the relationship between the two leading modes and the adi-abatic and diabatic water vapor mass transport from the troposphere to the stratosphere are ana-lyzed based on the European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) datasets and the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) trajectory model. Results show when the water vapor mass is dominated by the posi-tive (negative) phase of the uniform mode, namely more (less) water vapor mass over the entire TP area, the intensity of the South Asian High (SAH) and the upward diabatic water vapor mass transport are enhanced (weakened), thus both adiabatic and diabatic water vapor mass transport from the troposphere to the stratosphere are stronger (weaker). The regions and layers of the oc-currence of the adiabatic and diabatic water vapor mass transport from the troposphere to the stratosphere change little from positive to negative phase of the uniform mode, though the layers where diabatic water vapor mass transport from the troposphere to the stratosphere is slightly higher for the positive phase. When the water vapor mass is dominated by the positive (negative) phase of the west-east dipole mode, namely more (less) water vapor mass in the west (east) of the TP, the SAH center shifts westward, enhancing the adiabatic water vapor mass transport from the troposphere to the mid-latitude stratosphere in the northwest and northeast flank of the TP, and the meridional adiabatic water vapor mass transport from the troposphere to the tropical strato-sphere at upper layers in the south flank of the TP, but weakening the meridional adiabatic water vapor mass transport from the troposphere to the mid-latitude stratosphere in the north flank of the TP. Meanwhile, the diabatic water vapor mass transport from the troposphere to the stratosphere is enhanced over the TP, though weakened at upper layers in the south flank of the TP and at lower layers in the north flank of TP. Vice versa, when less (more) water vapor mass in the west (east) of the TP. The trajectory model simulation experiments for the positive phase of the uni-form mode confirms that higher frequency of the trajectory enters the stratosphere adiabatically over the TP regions. And trajectory model simulation experiments for the positive phase of the west-east dipole mode is also in agreement with the analyzed results, showing higher (lower) frequency of trajectory entering the stratosphere adiabatically in the northwest, south and north-east flank (north flank) of the TP.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 12,2018
  • Revised:March 19,2019
  • Adopted:May 07,2019
  • Online:
  • Published: