ISSN 1006-9895

CN 11-1768/O4

Contribution of Tropical and Subtropical Circulation Anomalies to the Intensity of East Asian Winter Monsoon over Lower-latitude Region
Author:
Affiliation:

State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Science, Beijing 100081, China

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    The East Asian winter monsoon (EAWM) has two dominant modes: the in-phase and out-of-phase variations of wind anomalies over northern and southern China. Different from the first mode reflecting a uniform strong/weak situation of the EAWM throughout eastern China, the second mode indicates a situation that the intensity of low-latitude EAWM over southern China is independent from and even opposite to that of mid-high-latitude EAWM over northern China. The present study focuses on the characteristics of tropical and subtropical circulation anomalies associated with the variability of low-latitude EAWM under the background of the second mode. The results reveal that the inter-tropical convergence zone (ITCZ) can be considered as an important circulation system that contributes to the variation of low-latitude EAWM. Corresponding to a stronger and northward-extended ITCZ, convective ascending over the tropical western Pacific and South China Sea is strengthened. This anomalous ascending may induce low-level anomalous northerly wind, thus resulting in a stronger low-latitude EAWM. In addition, the subtropical upper-level jet can be regarded as another important circulation system affecting the low-latitude EAWM. An increase in wind speed along the axis of the jet may cause anomalous quasi-geostrophic northerly near the entrance of the jet. Associated with the forced positive secondary circulation anomaly with anomalous descending (ascending) to the north (south) of the jet, the low-level anomalous northerly appears under the jet, in turn, facilitates a stronger low-latitude EAWM. Finally, both the individual and joint effects of tropical convective activities and upper-level subtropical jet on the low-latitude EAWM are further investigated. Relatively, the influence of ITCZ seems more important. When the two circulation anomalies simultaneously enhance (i.e., more active convective of ITCZ and stronger wind speed along the subtropical upper-level jet), their joint effect can significantly reinforce northerly winds to the south of 35°N, over southern China, and vice versa. The above-mentioned results imply that, the variability of low-latitude EAWM is not only affected by cold air surges from northern China, but also modulated by the joint effects of tropical and subtropical circulation anomalies.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 11,2019
  • Revised:August 19,2019
  • Adopted:December 05,2019
  • Online:
  • Published: