ISSN 1006-9895

CN 11-1768/O4

Correction for the cloud top height of cirrus with MODIS and CALIPSO dataset in Beijing-Tianjin-Hebei region
Author:
Affiliation:

National Satellite Meteorological Center

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    Cirrus plays an important role in atmospheric radiation. It affects weather system and climate change. Satellite remote sensing has great advantage in cirrus detection, relative to traditional observation. As a passive remote sensing instrument, large deviations are found at thin cirrus cloud top height from MODIS (Moderate Resolution Imaging Spectroradiometer). Comparatively, CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) aboard CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation) which is an active remote sensing instrument, can acquire more accurate characteristics of thin cirrus cloud. In this study, MODIS cloud products in Beijing-Tianjin-Hebei region from 2013 to 2017 are selected. Using CALIPSO cirrus cloud top height data, a linear fitting method is obtained based on cross-validation method, and MODIS cirrus cloud top height is corrected. The difference between MODIS and CALIPSO changes from -3~2 km to -2.0~2.5 km, and the maximum difference changes from about -0.8 km to about 0.2 km. In the context of different vertical levels and cloud optical depth, MODIS cirrus cloud top height is improved after correcting, which is more obvious at lower cloud top height and optical thinner cirrus.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 27,2019
  • Revised:October 17,2019
  • Adopted:December 19,2019
  • Online:
  • Published: