ISSN 1006-9895

CN 11-1768/O4

Establishment and Application of Physical Inspection Method for Artificial Precipitation Enhancement Effect
Author:
Affiliation:

1.CMAHe’nan Key Laboratory of Agrometeorological Support and Applied Technique;2.Meteorological Service Center of Anhui Province

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    For physical inspection of artificial precipitation enhancement effect based on multi-source detection data,we establish the similarity measurement coefficient APC of contrast area selection,and the dimensionless PIDI index method for physical inspection of artificial precipitation enhancement effect.Results show that:(1)The PIDI index method of physical inspection for artificial precipitation enhancement effect can be used to minimize variability influence of seeding cloud body and precipitation with the similarity coefficient APC,and synthesize a variety of dimensionless cloud physical detection parameters with dimensionless method.Finally,a percentage change rate is used to comprehensively measure the overall variation trend and degree of various cloud physical parameters.(2)The PIDI index method was applied to inspect the precipitation enhancement effect of 24 aircraft from 2014 to 2019.The average change rate of 7 indexes (cloud top temperature,effective particle radius,optical thickness,liquid water path,combined reflectivity,≥30dBZ echo area,vertical cumulative liquid water content) caused by artificial precipitation enhancement was 3.4%~19.6%.The precipitation change rate of 18 operations was 0~58.3%,the precipitation change rate of 6 operations was -37.5%~0.The changes of cloud physical parameters caused by most precipitation-increasing operations are obviously smaller than the changes of precipitation.(3)For the 18 operations with positive effect of precipitation enhancement,cloud top temperature,combined reflectivity and vertical cumulative liquid water content for most operations were increased due to artificial catalysis,effective particle radius,optical thickness and liquid water path for most operations were decreased due to artificial catalysis.(4)The difference and similarity between the PIDI index method and the K-value method were compared by using an aircraft precipitation enhancement operation.For the test of precipitation variation trend,the two are consistent.The difference between the two is that the PIDI index method can reflect the average change rate of all inspection indexes caused by artificial catalysis.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 30,2020
  • Revised:May 26,2021
  • Adopted:August 30,2021
  • Online:
  • Published: