ISSN 1006-9895

CN 11-1768/O4

Diurnal variation of cloud macro parameters in three important weather systems over the Tibetan Plateau using Ka-band Cloud Radar
Author:
Affiliation:

Institute of Atmospheric Physics, Chinese Academy of Sciences

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    The diurnal variation of cloud macro parameters over the Tibetan Plateau is affected by the combined effects of large-scale circulation, local solar radiation and surface processes, and has an important influence on the radiation budget, transmission of radiation and the distribution of sensible and latent heat. Due to the lack of continuous quantitative observation means, the understanding of the diurnal variation characteristics of cloud macro parameters in various weather systems is still very insufficient. Ka-band cloud radar of APSOS (Atmospheric Profiling Synthetic Observation System) is the first radar to realize long-term cloud observation in the Tibetan Plateau. In this paper, data of APSOS Ka-band cloud radar in 2019 are used to study the time-domain and frequency-domain diurnal variation characteristics of cloud frequency, single-layer cloud top height, cloud bottom height and cloud thickness under the influence of westerly trough, shear line and vortex system. Main conclusions are as follows: (1) The daily mean cloud frequency is 56.9% for the westerly trough system, 50.8% for the shear line system and 73% for the vortex system; (2) Although the genesis of westerly trough and shear line system is different, the diurnal variation trend and main harmonic period of cloud macro parameters of the two systems are similar: the diurnal variation trend is sinusoidal, the minimum value appears before sunrise and the maximum value appears before sunset. The main harmonics of cloud frequency are diurnal (24 hours) and semidiurnal (12 hours) harmonics, and the diurnal harmonics have the largest amplitude among the main harmonics of cloud top height, cloud bottom height and cloud thickness; (3) The diurnal variation characteristics of cloud macro parameters in vortex system is different from that in the first two systems. The diurnal variation of cloud parameters in the vortex system is multi-peak type. Although the harmonic amplitude of diurnal period is the largest among the main harmonics of cloud frequency, single layer cloud top height and cloud bottom height, the spectrum distribution is discrete, and the maximum harmonic period of cloud thickness amplitude is 4.8 hours; (4) The statistical regression equations of diurnal variation of cloud frequency, single layer cloud top height, cloud bottom height and cloud thickness are given.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 12,2021
  • Revised:June 07,2021
  • Adopted:June 11,2021
  • Online:
  • Published: