多尺度空气质量模式系统及其验证 II. 东亚地区对流层臭氧及其前体物模拟

张美根

中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室,北京 100029

摘 要利用一个多尺度空气质量模式系统对东亚地区 2001 年春季对流层臭氧及其前体物的输送与演变过程进行了模拟。为了检验模式系统模拟臭氧演变过程的能力,将模拟的臭氧浓度及其与之紧密相关的化学物种浓度,如 OH 自由基、HO₂ 自由基、一氧化氮、二氧化氮、一氧化碳、乙烷和乙烯,与 TRACE-P 期间两架飞机在西北太平洋上空获取的大量观测资料进行了比较。比较结果表明,模拟值的平均值与相应的观测值具有相当好的一致性,且绝大多数模拟值在相应观测值的 2 倍范围之内;模拟的化学物种浓度的时空分布与观测结果基本相符;模式系统对于非甲烷烃中不同化学物种的输送与转化过程的处理是基本合理的,反映了光化学生成和平流层输送等过程对对流层臭氧浓度分布的影响。

关键词 光化学 臭氧 OH 自由基 非甲烷烃文章编号 1006 - 9895(2005)06 - 0926 - 11中图分类号 X16文献标识码 A

A Multi-Scale Air Quality Modeling System and Its Evaluation II. Simulation of Tropospheric Ozone and Its Precursors in East Asia

ZHANG Mei-Gen

State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract The transport and transformation processes of tropospheric ozone and its precursors in East Asia during the period of 22 February to 5 May 2001 are investigated by use of the Models-3 Community Multi-scale Air Quality (CMAQ) modeling system with meteorological fields produced by the Regional Atmospheric Modeling System (RAMS). In order to evaluate the model performance, simulated concentrations of ozone (O_3) and its closely related precursors such as hydroxyl radical (OH), hydroperoxy radical (HO₂), nitric oxide (NO), nitrogen dioxide (NO₂), ethene ($C_2 H_4$), ethane ($C_2 H_6$), and carbon monoxide (CO) are compared with a set of observations measured on board two aircrafts DC-8 and P3-B during the Transport and Chemical Evolution over the Pacific (TRACE-P) field campaign. The DC-8 flights have an altitude variation from 150 m to 12 km, and the P-3B flight altitudes range from 150 m to 7 km. Two aircrafts made extensive observations in the western Pacific with bases near Hong Kong, Okinawa and Tokyo during the period from 7 March to 2 April 2001, successively. In comparing the model results with the aircraft observations, the observed data are averaged over 5 minutes, and based on the averaged sampling latitude, longitude, height and time, simulated values are extracted from the model outputs.

Comparison of the observed mixing ratios of OH, HO₂, NO, NO₂, $C_2 H_4$, $C_2 H_6$, CO, and O₃ with observa-

收稿日期 2004-04-28, 2005-03-25 收修定稿

作者简介 张美根, 男, 1964年出生, 博士, 研究员, 主要从事大气环境方面的研究。E-mail: mgzhang@mail. iap. ac. cn

资助项目 中国科学院创新项目 KJCX2-SW-H08、中国科学院院长重点基金和中国科学院"引进国外杰出人才"计划"沙尘输送及其气候 环境影响的数值模拟"

tions during the period from 7 March to 2 April 2001 on board DC-8 and P-3B shows that averaged simulation values of these chemical species are generally in good agreement with their observed ones, and more than 50% of the simulated OH, HO₂, C₂H₆, CO and O₃ values are within a factor of 2 of their observations, while the model overpredicts OH and O₃ and underpredicts CO. For example, simulated OH values are higher than the observed ones by factors of 1, 56 and 1, 36 on board DC-8 and P3B, and their correlation coefficients are 0, 88 and 0, 83, respectively. The overestimation of O₃ are in factors of 1, 27 and 1, 19 for DC-8 and P3B, respectively, and the O3 overprediction is especially evident at high altitudes for DC-8 in association with a too strong stratospheric input in the model and related downward transport. Statistics of the comparison also shows that the Normalized Mean Errors (NMEs) for NO, NO₂ and C₂ H₄ are all larger than 60%. The observed mixing ratios of these chemical species vertically exhibit large variations, and the simulated vertical distribution patterns are generally similar to the observed ones. This implies that the model system captures the spatial-temporal distributions reasonably well, as two aircraft flights covered a wide area over the western Pacific and lasted over one month during the field campaign. The model system also treats transport and transformation processes of different non-methane hydrocarbon species properly, and reasonably depicts the processes influencing the tropospheric ozone distributions such as photochemical production, stratospheric ozone influx into troposphere, etc.

The evaluation results indicate that CMAQ is able to simulate the distributions of ozone and its closely related species in the troposphere over East Asia reasonably well. This provides us with much confidence for further use of CMAQ to investigate the chemical evolution of the Asian outflow over the western Pacific and the ensemble of the processes that control this evolution.

Key words photochemistry, ozone, hydroxyl radical, non-methane hydrocarbon

1 引言

近 20 多年来,人口众多的东亚地区随着工业 生产的发展和人民生活水平的提高,化石燃料的大 量使用和人们对能源的需求日益增加,使排向大气 的工业废弃物如二氧化硫(SO₂)、氮氧化物(NO_x) 和颗粒物等急剧增加。与此同时,交通运输业的发 展、机动车大量增加,也使机动车尾气的排放物如 NO_x和碳氢化合物(HC)等急剧增加^[1,2]。此外, 东亚地区的森林大火和燃烧秸秆等也会产生大量 NO_x和颗粒物等。SO₂、NO_x、碳氢化合物和颗粒 物排放的大量增加,使得该地区大气污染、酸雨等 一系列环境问题极为突出。有研究表明,在近几十 年内东亚地区低层大气臭氧浓度增加快于其他北半 球中纬度地区^[3,4]。与欧洲相反,20世纪 90 年代 以后东亚地区大气边界层内的臭氧继续增加。臭氧 浓度增加可能与其前体物的排放增加有关^[4]。

东亚地区的污染排放对大气环境变化和气候变 化的影响已经引起了世界范围的广泛关注。在东亚 和西北太平洋地区先后进行的多次大规模的观测实 验,如 PEM-West B (Pacific Exploratory Mission-West phase B)^[5]、TRACE-P (TRAnsport and Chemical Evolution over the Pacific)^[6]和 ACE-Asia (Aerosol Characterization Experiment-Asia)^[7],以探讨大气污 染物的长距离输送和化学过程对于区域和全球大气 组分的影响。在这些观测试验和相关理论研究中, 对流层臭氧是一个研究焦点。因为臭氧作为一种强 氧化剂,在对流层大气化学过程中起着重要作用,且 臭氧在 9.6 µm 附近的大气红外窗区有一个很强的吸 收带,使对流层臭氧成为一个非常重要的温室气体。 另外,近地层臭氧是一种重要的污染大气成分,其浓 度增加将直接危害生态环境,高臭氧浓度对人和动 物的呼吸系统有严重的破坏作用。最近几年的研究 表明,近地层臭氧体积分数达到 0.1×10⁻⁶时就会引 起人的呼吸道发炎,浓度达到 5×10⁻⁶时就会危及人 的生命;同时近地层臭氧浓度增加是造成一些地区 森林大片死亡的重要原因之一。

927

在过去 30 年内,随着对臭氧研究的深入,大气 光化学模式有了长足的发展。同时,大气光化学模 式在大气污染物的演变过程研究和空气质量控制的 决策方面也发挥了很重要的作用。目前,大气光化 学模式有多种,Russell和 Dennis^[8]对世界上主要的 几个模式的性能和特点进行了评述。我国科学家在 对流层臭氧研究和模式发展方面做了很多工作^[9~12]。 本文将利用一个多尺度空气质量模式系统^[13]对 2001 年春季东亚地区对流层臭氧空间分布及其变化过程 进行模拟,并利用 TRACE-P 观测期间获取的大量与 O。相关的观测资料以检验模式系统对对流层臭氧输 送及其转化过程的模拟能力。

2 模式系统介绍

本研究所采用的模式系统主要由两部分组成: 气象模式和化学输送模式。关于模式系统特点和构 成方面的更多内容参阅文献[13,14]。本研究中, CMAQ主要关心的气态和固态的污染物物种列于 表1,关于模式参数的选取及其输入资料的来源参 阅文献[13,15]。

化学输送模式模拟区域的中心点为(25°N, 115°E),在水平方向有78×68个网格点,网格距为 80 km (模拟区域见文献[13]之图1)。在垂直方向 有14 层,各层厚度不同(从150 m到3600 m不 等,模式顶高度约为23 km),其中约一半位于2 km 以下。在对流层内O₃及其部分前体物,如CO 与乙烷(C_2H_6)的寿命还是相当长的,它们的初始 和边界条件对于 O_3 的浓度分布可以有很大的影 响,因此,在确定初始和边界条件时尽量使用这些 物种的观测值,并选取同类观测值中的低值(以充 分反映模拟区域内的污染物排放对污染物浓度分布 及其化学过程的影响),如 O_3 和 CO 的初始值为 30 ×10⁻⁹和 120 ×10⁻⁹。另外,平流层臭氧向对流层 的输送是对流层臭氧的一个重要来源。为了反映对 流层与平流层之间的交换过程对对流层臭氧的影 响,本研究采用 Ebel 等^[16]的研究结果,按照垂直位 涡(单位: PVU,1 PVU=10⁻⁶ K·m²·kg⁻¹·s⁻¹) 大小来设定模式上边界的臭氧浓度。垂直位涡与臭 氧体积分数的关系为1 PVU= 50×10⁻⁹。

3 模拟结果

利用上述模式系统,对东亚地区 2001 年 2 月 22日至5月5日之间气象场、O₈及其前体物的浓

表1 模式系统中主要气态	\$和固态物种清单
--------------	-----------

Table 1	Major	gases	and	aerosols	treated	in	the	model	system
---------	-------	-------	-----	----------	---------	----	-----	-------	--------

序号	化学物种	序号	化学物种
No.	Chemical species	No.	Chemical species
1	一氧化氮 Nitrogen monoxide (NO)	22	过氧酰基硝酸盐 Peroxyacetyl nitrate (PAN)
2	二氧化氮 Nitrogen dioxide (NO2)	23	埃根模态硫酸盐 Aitken mode sulfate mass (ASO4I)
3	一氧化碳 Carbon monoxide (CO)	24	积聚模态原生有机碳
4	二氧化硫 Sulfur dioxide (SO2)		Accumulation mode primary organic mass (AORGPAJ)
5	甲醛 Formaldehyde (HCHO)	25	积聚模态铵盐
6	乙醛和高阶醛 Acetaldehyde and higher aldehydes (ALD)		Accumulation mode ammonium mass (ANH4J)
7	乙烷 Ethane (C2H6)	26	埃根模态原生有机碳
8	乙烯 Ethene (C ₂ H ₄)		Aithen mode primary organic mass (AORGPAI)
9	丙烷 Propane (C ₃ H ₈)	27	埃根模态铵盐 Aitken mode ammonium mass (ANH4I)
10	异戊二烯 Isoprene (ISOP)	28	源于人为源的积聚模态次生有机碳 Accumulation mode an-
11	单萜 Monoterpenes (TERP)		thropogenic secondary organic mass (AORGAJ)
12	甲苯和化学活性较弱的芳香烃	29	积聚模态硝酸盐 Accumulation mode nitrate mass (ANO3J)
	Toluene and less reactive aromatics (TOL)	30	源于人为源的埃根模态次生有机碳 Aithen mode anthropogen-
13	烯烃 Alkene (OLT+OLI)		ic secondary organic mass (AORGAI)
14	二甲苯和化学活性较强的芳香烃	31	埃根模态硝酸盐 Aithen mode nitrate mass (ANO3I)
	Xylene and more reactive aromatics (XYL)	32	源于生物源的积聚模态次生有机碳 Accumulation mode bio-
15	氢氧自由基 Hydroxyl radical (OH)		genic secondary biogenic organic mass (AORGBJ)
16	过氧氢氧自由基 Hydroperoxy radical (HO ₂)	33	积聚模态黑碳
17	过氧化氢 Hydrogen peroxide (H2O2)		Accumulation mode elemental carbon mass (AECJ)
18	臭氧 Ozone (O ₃)	34	源于生物源的埃根模态次生有机碳 Aithen mode biogenic sec-
19	硫酸 Sulfuric Acid (H2SO4)		ondary biogenic organic mass (AORGBI)
20	硝酸 Nitric acid(HNO3)	35	埃根模态黑碳 Aithen mode elemental carbon mass (AECI)
21	积聚模态硫酸盐 Accumulation mode sulfate mass (ASO4J)	36	粗模态海盐 Coarse mode marine mass (ASEAS)

注: 埃根态指直径为 0.01~0.1 μ m 的大气气溶胶; 积聚态指直径为 0.1~2 μ m 的大气气溶胶; 粗态指直径大于 2 μ m 的大气气溶胶 Note: Aithen mode represents atmospheric particles with diameters in the range of 0.01-0.1 μ m, accumulation mode refers to the particles with diameters of 0.1-2 μ m, and coarse mode stands for the particles larger than 2 μ m. 度分布进行了模拟。文献[13]中的研究结果表明, 模式系统模拟的风向、风速、温度和湿度与 TRACE-P和ACE-Asia观测期间三架飞机上获取 的观测资料具有非常好的一致性,模式系统很好地 再现了许多观测到的重要分布特征,能够为研究大 气污染物的输送与演变过程提供可靠的气象参数。 与部分TRACE-P观测期间获取的CO与O₃观测 浓度相比,模拟值与观测值基本一致,说明模拟的 CO和O₃的浓度分布基本是合理的^[17]。模拟的其 他一些化学物种(如黑碳^[18]和有机碳气溶胶^[19])浓 度及其空间分布也与观测结果进行了比较,从不同 角度检验了模式系统的模拟能力。

为了较全面地检验模式系统对臭氧及其紧密相 关的化学物种如 OH 基(OH)、HO₂、NO、NO₂、 CO、C₂H₆和乙烯(C₂H₄)的浓度分布与时空变化 的能力,我们将 TRACE-P 期间两架飞机(DC-8 和 P-3B)在西北太平洋上空获取的观测值与模拟值进 行了比较。TRACE-P 观测期间(2001 年 2 月底到 4 月初), DC-8 和 P-3B 以香港、冲绳和东京为基地 对南海、东海、黄海和西太平洋地区的广大海域进 行了 40 余次的强化观测,每次观测时间都在 8 个 小时以上,其中 DC-8 的飞行高度可达 12 km。由 于飞机的观测频率较高(超过1分钟1个值)、飞行 速度很快,所以在比较模拟值与飞机观测值时,我 们取飞行过程中每5分钟的平均值为基值(如经度、 纬度、飞行高度、飞行时间、风速、温度、污染物浓 度等),然后根据这些平均经度、纬度、高度和时间 在模式输出结果中找出相应的计算值。

929

表 2 和表 3 展示的是模拟值与观测值比较时的 一些统计结果。表中 N 是样本数, C_m 与 C。为模拟 值与观测值的平均值, R。为模拟值与观测值比值 的平均值, $P_{1.5}$ 与 P_2 为模拟值在观测值的 1.5 倍与 2 倍范围内的百分比, MB(the Mean Bias)和 NMB (the Normalized Mean Bias)表示平均偏差和平均 偏差百分比, RMSE(the Root Mean Square Error) 和 NME(the Normalized Mean Error)为误差均方 根和平均误差百分比。

需要说明的是,表 2、3 中关于 NO 和 NO₂ 的统 计仅限于其观测值(体积分数)小于 800×10^{-12} 和 1200×10^{-12} 及其相应的模拟值。被剔除的观测资料 虽然很少,但观测值很大,如 DC-8 观测资料中被剔 除的 NO 和 NO₂ 仅为 1 个和 6 个,但其最大值分别 为 1371×10^{-12} 和 43200×10^{-12} ,且模式系统不能产 生这些高值。由表 2 与表 3 可以看到,平均模拟值

表 2	模拟值与 D	C-8 观测值	(体积分数))比较时的	·些统计结果
-----	--------	---------	--------	-------	--------

Table 2	Statistical	summaries of	the compared the c	arisons of the	e model resul	lts with o	bservations on	board DC-	8
N	C.	. C.	R.	P1 5 / %	$P_{2,0}/\sqrt{2}$	MB	NMB/ %	RMSF	NM

	Ν	$C_{\rm m}$	Co	R _c	$P_{1.5} / \%$	$P_{2.0} / \%$	MB	NMB/ $\%$	RMSE	NME/%
OH (10^{-12})	1000	0.20	0.13	1.60	42.3	68.7	0.07	55.9	0.12	67.3
$HO_2(10^{-12})$	1000	12.8	10.3	1.28	68.8	90.2	2.47	24.0	4.81	33.2
NO (10^{-12})	858	31.0	46.9	3.96	26.3	43.7	-15.9	-33.9	71.01	73.5
$NO_2(10^{-12})$	665	77.3	79.5	7.68	26.3	45.9	-2.20	-2.7	135.57	84.6
$C_2 H_6 (10^{-9})$	1018	1.14	1.27	1.02	64.5	93.0	-0.12	-9.7	0.54	31.7
$C_2 H_4 (10^{-9})$	648	0.09	0.09	2.72	29.8	48.3	-0.01	-6.5	0.20	69.4
$CO(10^{-9})$	1072	135.0	155.3	0.95	78.4	94.4	-20.29	-13.1	60.51	27.0
$O_3(10^{-9})$	1081	74.9	58.8	1.46	63.7	81.5	16.05	27.3	41.01	45.8

表3 模	拟值与 P-3B	观测值	(体积分数))比较时的	-些统计结果
------	----------	-----	--------	-------	--------

Table 3	Same	as	Table	1	but	for	P-3B	
---------	------	----	-------	---	-----	-----	------	--

	Ν	C_{m}	Co	R _c	$P_{1.5}/\%$	$P_{2.0}/\%$	MB	NMB/%	RMSE	NME/%
OH (10^{-12})	909	0.25	0.19	1.85	46.5	69.3	0.07	35.6	0.13	50.9
$HO_2(10^{-12})$	129	16.12	18.85	1.03	61.2	83.7	-2.73	-14.5	9.68	35.6
NO (10^{-12})	974	41.17	34.69	1.72	30.1	61.8	6.47	18.7	60.63	72.7
$NO_2(10^{-12})$	730	137.12	108.95	2.01	36.7	57.4	28.17	25.9	147.60	76.5
$C_2 H_6 (10^{-9})$	1041	1.40	1.56	0.97	66.7	93.6	-0.16	-10.6	0.58	29.4
$C_2 H_4 (10^{-9})$	773	0.13	0.09	3.29	31.8	49.9	0.04	38.5	0.20	90.0
$CO(10^{-9})$	1050	154.8	183.9	0.94	73.2	94.2	-29.18	-15.9	76.32	28.4
$O_3(10^{-9})$	1084	64.3	54.1	1.28	78.9	92.9	10.13	18.7	21.61	29.2

与观测值大致相当,除 NO、NO₂ 和 C₂H₄ 外,模拟 值与观测值比值的平均值都在 2 倍范围内,模拟值 在观测值 2 倍范围内的概率都大于 68%,并且 CO 和 C₂H₆ 的概率均大于 90%,O₃ 也都好于 81%。此 外,模式低估了 CO 浓度,而高估了 OH 和 O₈ 浓度。

值得注意的是,OH与HO₂的模拟值与观测值 比值的平均近乎于1.5倍范围内,OH模拟值在观测 值2倍范围内的概率为68.7%和69.3%,而HO₂达 到了90.2%和83.7%。这说明三维化学输送模式模 拟自由基的能力与一维化学模式相当,因为在观测 资料约束下,许多一维化学模式所模拟的OH与 HO₂浓度与观测值的平均比值也就在这个范围 内^[20,21],而三维化学输送模式的一个明显特点则是 能够提供三维空间分布,且不需要提供观测资料。

NO、NO₂ 和 C₂H₄ 的模拟值与观测值存在较 大差异,一方面可能与源的不确定性有关,如 NO 和 NO₂ 的闪电产生量以及平流层向对流层输送等 都未能在模式中予以考虑,而这些对于对流层中上 层 NO 和 NO₂ 的分布具有很重要的影响。由图 3a 可以看到,在 8 km 以上观测到许多 NO 浓度高值。 另一方面是它们的化学活性很强,而模式80 km的 网格很难正确反映它们的精细空间结构。

表 2 和表 3 中的观测值是在广阔的西北太平洋 上空获取的,前后观测时间相差一月有余。由于污 染源排放的不均匀性和气象条件的差异以及输送与 转化过程的复杂性,这些观测值显示了很强的时空 变化。为了检验模式系统模拟时空变化的能力,我 们在图 1~8 中对 OH、HO₂、NO、NO₂、CO、 C_2H_6 、 C_2H_4 和 O₃浓度值与相应模拟值随高度的 变化进行了比较。

OH的产生不仅与太阳辐射有关,而且还与大 气中水汽含量和一些化学物种浓度有关。从图1可 以看到,模拟的OH浓度值与观测值的分布基本上 是相似的,但总的结果是模拟值大于观测值。模拟 值与观测值线性回归时的相关系数为0.80和0.83, 模拟值是观测值的1.56和1.36倍。模式高估OH 浓度值在许多一维光化学模式模拟中也常常存 在^[20,21]。OH浓度观测采用的是ATHOS观测系 统^[22],这个观测系统的综合误差(2σ)为50%。所 以模拟结果还是相当合理的。

图 1 TRACE-P 观测期间 DC-8(第7次至第17次飞行)和 P-3B(第8次至第19次飞行)观测到的 OH 浓度(深色圆点)及其相应的模拟值 (浅色三角)随高度的分布

Fig. 1 Observed (dots) and modeled (triangles) vertical variations in OH concentrations during the DC-8 flights 07 to 17 and the P-3B flights 08 to 19

OH 与 HO₂ 在大气中的转换是非常迅速的。 OH 与 CO、NMHC 等反应生成 HO₂,而后 HO₂ 会很快与 NO 等反应,重新转化为 OH,因而 HO_x (=OH+HO₂)通常具有很好的守恒性。从图 2 可 以看到,HO₂ 模拟值与观测值的分布非常相似,其 相关系数分别为 0.91 和 0.80,模拟值是观测值的 1.24 和 0.86 倍。

NO_x在对流层臭氧的生成过程中起着关键性 的作用,其来源有很多(如化石燃料的燃烧、土壤 自然排放和闪电),在大气中的变化非常复杂(牵涉 到气相、液相和非均相化学过程)。与OH和HO2 不同,NO和NO2很大一部分是直接排放到大气中 的,而且排放源绝大部分位于边界层内,除了 NO 以外,它们的高浓度值几乎集中在边界层内(图3、 4)。图 3、4 仅给出 NO 和 NO₂ 观测值(体积分数) 分别小于 800×10⁻¹² 和 1200×10⁻¹² 及其相应的模 拟值,因为这些被剔除的观测值非常大,而模式系 统不能产生这些高值。为了更合理地显示浓度值随 高度的变化,在绘图时没有考虑这些异常值。由图 3、4 可以看到, 大气中 NO 和 NO₂ 的体积分数绝 大部分小于100×10⁻¹²和300×10⁻¹²,浓度高值集 中在3 km 以下的对流层下层,模拟的浓度分布与 观测结果基本相似。二者之间的线性相关分析表 明,模拟值约为观测值的 0.60 倍,相关系数仅为 0.34。相对于 NO, NO₂ 的观测值与模拟值吻合得 好些,其模拟值为观测值的 0.76 倍,相关系数可 达 0.49。

CO 是大气中一种重要的化学活性含碳化合物,与 OH 和 HO₂ 自由基有着密切的关系,在对 流层 O₃ 形成过程中起着非常重要的作用。大气中 CO 来源比较复杂,矿物质不完全燃烧、森林大火 和其他生物质燃烧是 CO 的重要来源。海洋排放也 是大气 CO 的一个源。此外,大气中一些碳氢化合 物也可以被氧化为 CO。由于 CO 的来源比较复杂, 加上它的寿命比较长(自由大气中可超过二个月), 因而长距离输送很重要(在区域模式中侧边界的正 确选取对浓度分布的影响显得十分重要)。

由图 5 可以看到, CO 在大气中分布非常不均 匀,同一高度浓度值差异很大,这主要受污染源排 放和输送有关; CO 高浓度值出现在 2 km 以下的边 界层内,这主要与其主要排放源在地面有关;在高 度 6 km 左右监测到 CO 的体积分数可以超过 300×10⁻⁹,这可能与东南地区的生物质燃烧和热 对流抬升或长距离输送有关^[17]。模拟的 CO 浓度 分布与观测结果非常相似,但模拟值不能很好反映 观测到的 CO 浓度极大值。一方面是模式不能很好

Fig. 2 Same as in Fig. 1 but for HO₂

图 3 同图 1, 但为 NO Fig. 3 Same as in Fig. 1 but for NO

图 4 同图 1, 但为 NO₂ Fig. 4 Same as in Fig. 1 but for NO₂

图 5 同图 1, 但为 CO Fig. 5 Same as in Fig. 1 but for CO

图 6 同图 1, 但为 C_2H_4 Fig. 6 Same as in Fig. 1 but for C_2H_4

图 7 同图 1, 但为 C_2H_6 Fig. 7 Same as in Fig. 1 but for C_2H_6

图 8 同图 1 但为 O₃ Fig. 8 Same as in Fig. 1 but for O₃

反映污染源(如森林大火和农作物秸秆焚烧等排放的 CO)的排放强度及其时间变化,另一方面是模式的水平格距(80 km)比较大,不能分辨诸如城市烟羽等污染物浓度分布。

与 CO 相似, C₂H₄ 和 C₂H₆ 的排放源主要在近 低层内, 但与 C₂H₆ 相比, C₂H₄ 浓度随高度递减得 比较快(见图 6、7),这是因为烯烃与 OH 反应速率 比烷烃快。比较模拟值与观测值的垂直分布可以发 现, 二者之间具有相当好的一致性。这说明模式系 统对于 NMHC 的源排放及其输送与转化过程的处 理是相当合理的。

对流层 O₃ 的重要来源是平流层注入和对流层 大气中发生的光化学过程。对流层大气中产生 O₃ 的光化学过程与 NO_x、HC 以及 CO 的光化学反应 有关。对流层中 O3 浓度分布不仅取决于输送过 程,而且取决于产生与消耗过程。通常情况下,受 对流层顶稳定层结的影响, 平流层 O₃ 很难进入对 流层,同时对流层上层 O₃前体物的浓度通常很低, O₃ 的光化学生成量很小,所以对流层上层 O₃ 浓度 一般比较低。由图 8 可以看到,在 8 km 以上的大 气层中 O₃ 浓度有时很高,其体积分数超过了250× 10⁻⁹, 这说明平流层下层 O₃ 浓度很高, 有时因对 流层顶的折叠或裂缝使得富含 O3 的平流层大气注 入对流层,从而引起对流层上层 O₃浓度高值。在 对流层的中、下层, O3 主要来源于光化学过程, 其 浓度一般在15×10⁻⁹~100×10⁻⁹之间。图8中O₃ 浓度分布表明,模式系统合理地描述了 O₃ 浓度的 时空分布,基本反映了平流层臭氧对对流层的贡献 和对流层光化学过程在对流层臭氧形成过程中的作 用,再现了许多观测到的重要特征。从图 8 也可以 看到,在6km以上的对流层大气中O₃浓度被高估 了,这说明模式系统过高地估算了平流层 O₃ 向对 流层的输送。

4 小结

本文利用一个多尺度空气质量模式系统模拟东 亚地区 2001 年春季 O₃ 及其前体物浓度的时空分 布。为了检验模拟结果的合理性,将模拟的 OH、 HO₂、NO、NO₂、CO、C₂H₄、C₂H₆和 O₃浓度值 与 TRACE-P 观测期间两架飞机上获取的观测值进 行比较。比较结果表明:平均模拟值与观测值大致 相当,除 NO、NO₂和 C₂H₄外,模拟值与观测值比 值的平均值都在2倍范围内,模拟值在观测值2倍 范围内的概率都大于68%,并且CO和C₂H₆的概 率均大于90%,O₃也都好于81%;模拟的O₃及其 前体物的浓度分布与观测结果具有相当好的一致 性,模式系统很好地反映了东亚地区臭氧的输送与 形成过程,再现了许多观测到的重要特征,但模拟 的NO和NO₂的浓度值与观测值相差较大(这个问 题在其他模式系统中同样存在)。

参考文献 (References)

- [1] Kato N, Akimoto H. Anthropogenic emissions of SO₂ and NO_x in Asia: Emission inventories. *Atmos. Environ.*, 1992, 26: 2997~3017
- [2] Van Aardenne J A, Carmichael G R, Levy H, et al. Anthropogenic NO_x emissions in Asia in the period 1990 – 2020. Atmos. Environ., 1999, 33: 633~646
- [3] Oltmans S J, Lefohn A S, Scheel H E, et al. Trends of o-zone in the troposphere. *Geophys. Res. Lett.*, 1998, 25: 139~142
- Lee S, Akimoto H, Nakane H, et al. Increase of tropospheric ozone at Okinawa, Japan. *Geophys. Res. Lett.*, 1998, 25 (10): 1637~1640
- [5] Hoell J M, Davis D D, Liu S C, et al. The Pacific exploratory mission-West phase B: February-March 1994. J. Geophys. Res., 1997, 102(D23): 28223~28239
- [6] Jacob D J, Crawford J H, Kleb M M, et al. Transport and chemical evolution over the Pacific (TRACE-P) aircraft mission: Design, execution, and first results. J. Geophys. Res., 2003, 108(D20), 8781, doi: 10.1029/2002JD003276
- Huebert B J, Bates T, Russell P B, et al. An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts. J. Geophys. Res., 2003, 108(D23), 8633, doi: 10.1029/2003JD003550
- [8] Russell A, Dennis R. NARSTO critical review of photochemical models and modeling. Atmos. Environ., 2000, 34: 2283 ~2324
- [9] 周秀骥,中国地区大气臭氧变化及其对气候环境的影响 (一).北京:气象出版社,1995.273 pp Zou Xiuji (Ed.). The Atmospheric Ozone Variation and Its Effect on the Climate and Environment in China (in Chinese). Beijing: China Meteorological Press, 1995.273pp
- [10] Luo C, John J C, Xiuji Z, et al. A nonurban ozone air pollution episode over eastern China: Observations and model simulations. J. Geophys. Res., 2000, 105(D12): 1889~1908
- [11] 韩志伟,张美根,胡非. 生态 NMHC 对臭氧和 PAN 影响的数值模拟研究.环境科学学报,2002,22(3):273~278
 Han Zhiwei, Zhang Meigen, Hu Fei. Numerical model study of the effect of biogenic NMHC on ozone and PAN. Acta Sci-

entiae Circumstantiae (in Chinese), 2002, 22(3): 273~278

- [12] Zhang Meigen, Xu Y, Uno I, et al. Numerical study of tropospheric ozone in the springtime in East Asia. Adv. Atmos. Sci., 2004, 21(2): 163~170
- [13] 张美根. 多尺度空气质量模式系统极其验证 I. 模式系统介绍与气象要素模拟. 大气科学, 2005, 29(5): 805~813
 Zhang Meigen. A multi-scale air quality modeling system and its evaluation I. Introduction to the model system and simulation of meteorological parameters. *Chinese J. Atmos. Sci.* (in Chinese), 2005, 29(5): 805~813
- [14] Byun D W, Ching J K S (Eds.). Science algorithms of the EPA Models-3 community multi-scale air quality (CMAQ) modeling system. NERL, Research Triangle Park, NC., 1999
- [15] 张美根, 徐永福, Uno I, 等. 东亚地区春季二氧化硫的输送 与转化过程研究 I. 模式及其验证. 大气科学, 2004, 28 (3): 321~329
 Zhang Meigen, Xu Yongfu, Uno I, et al. A study of sulfur transport and transformation over East Asia during the springtime I. Model system and its verification. *Chinese J. Atmos. Sci.* (in Chinese), 2004, 28 (3): 321~329
- [16] Ebel A, Hass H, Jacobs H, et al. Simulation of ozone intrusion caused by tropopause fold and cut-off low. Atmos. Environ., 1991, 25(A): 2131~2144

- [17] Zhang Meigen, Uno I, Carmichael G R, et al. Large-scale structure of trace gas and aerosol distributions over the western Pacific Ocean during TRACE-P. J. Geophys. Res., 2003, 108 (D21), 8820, doi: 10.1029/2002JD002946
- [18] Zhang Meigen. Modeling of organic carbon aerosol distributions over East Asia in the springtime. *China Particuology*, 2004, 2(5): 192~195
- [19] 张美根, 徐永福, 张仁健, 等. 东亚地区春季黑碳气溶胶源 排放及其浓度分布. 地球物理学报, 2005, 48(1): 46~51 Zhang Meigen, Xu Yongfu, Zhang Renjian, et al. Emission and concentration distribution of black carbon aerosol in East Asia during springtime. *Chinese J. Geophys.* (in Chinese), 2005, 48(1): 46~51
- [20] Tan D, Faloona I, Simpas J B, et al. OH and HO₂ in the tropical Pacific: Results from PEM-Tropic B. J. Geophys. Res., 2001. 106(D23): 32667~32681
- [21] Carslaw N, Creasey D J, Heard D E, et al. Eastern Atlantic Spring Experiment 1997 (EASE97), 2, Comparisons of model concentrations of OH, HO₂, and RO₂ with measurements. J. Geophys. Res., 2002, **107**(D14), doi: 10.1029/2001JD001568
- [22] Davis D, Grodzinsky G, Chen G, et al. Marine latitude/altitude OH distributions: Comparison of Pacific Ocean observations with models. J. Geophys. Res., 2001, 106 (D23): 32691~32707