毕永恒,刘锦丽,段树,等. 2012. X 波段双线偏振气象雷达反射率的衰减订正 [J]. 大气科学, 36 (3): 495-506, doi:10.3878/j.issn.1006-9895.2011.11075. Bi Yongheng, Liu Jinli, Duan Shu, et al. 2012. Attenuation correction of reflectivity for X-band dual-polarization radar [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36 (3): 495-506.

X 波段双线偏振气象雷达反射率的衰减订正

毕永恒1 刘锦丽1 段树1 吕达仁1 苏德斌1,2 陈羿辰1,2,3

1 中国科学院大气物理研究所,北京 100029
 2 北京市气象局,北京 100089
 3 成都信息工程学院,成都 610225

摘 要 X 波段天气雷达的强衰减是影响其探测精度与应用推广的主要问题。本文旨在寻求适用于降水过程中 对 X 波段双偏振雷达进行衰减订正的一种方法。在订正前先对雷达数据进行了质量控制和预处理;在分析了国 内外已有订正方法的基础上,选择并改进了自适应约束算法作为雷达反射率进行衰减订正的方法;最后进行方法 的效果验证。既对衰减订正前后反射率与同时段 S 波段雷达反射率作对比,又对偏振参数 K_{DP}~Z_H、A_H~Z_H之 间关系的变化进行分析,不仅如此,还直接与地面降水实况作比较等。分析表明,对 X 波段双线偏振雷达进行反 射率衰减订正后的效果显著优于订正前,特别是,当存在较大范围(含对流型)降雨时,采用此种订正方法可以 明显提高降水的估测精度。

关键词 X 波段双线偏振雷达 衰减订正 自适应约束算法
 文章编号 1006 - 9895 (2012) 03 - 0495 - 12
 中图分类号 P406
 文献标识码 A
 doi: 10.3878/j.issn. 1006 - 9895. 2011. 11075

Attenuation Correction of Reflectivity for X-Band Dual-Polarization Radar

BI Yongheng¹, LIU Jinli¹, DUAN Shu¹, LÜ Daren¹, SU Debin^{1, 2}, and CHEN Yichen^{1, 2, 3}

Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
 Beijing Meteorological Bureaus, Beijing 100089
 Chengdu University of Information Technology, Chengdu 610225

Abstract Strong attenuation in rain affects the detection accuracy and application of the X-band radar. This paper aims to seek a method of attenuation correction for X-band dual-polarization radar in precipitation. Before correction, the radar data are pre-processed with quality control; after analyzing all the methods from the past works, an attenuation correction algorithm is developed which is based on the self-consistent method with constraints; finally some validation methods are studied. Some comparisons are made between the corrected composite reflectivity of the X-band radar and a nearby S-band radar observed at the same time; moreover, the corrected relationships between $K_{\rm DP}$ vs. $Z_{\rm H}$ and $A_{\rm H}$ vs. $Z_{\rm H}$ are also similar to the theoretical values predicted by scattering simulation. In addition, the authors also compare the corrected reflectivity with the surface rain-gauge observations. The analysis results indicate that the corrected reflectivity is more significant than the uncorrected one; specially for the larger area of rainfall (including convective rainfall) using the above attenuation correction algorithm for X-band radar, rainfall amounts can be estimated with higher accuracy.

收稿日期 2011-04-15, 2011-11-18 收修定稿

资助项目 国家自然科学基金资助项目 40930949、40227001,中国科学院知识创新工程重要方向项目 KZCX2-YW-206

作者简介 毕永恒,男,1985年出生,硕士,助理工程师,主要从事气象雷达的定量化研究。E-mail. byh@mail. iap. ac. cn

Key words X-band dual-polarization radar, rain attenuation correction, self-consistent method

1 引言

X波段信号在降水估测中的衰减问题比起S波 段和C波段较为严重, 散射模拟计算指出: X波段 电磁波的单程衰减率(A_H)分别是C、S波段的7~8 倍和 10 倍以上 (Park et al., 2005a)。但是, X 波段 双偏振天气雷达具有价格低廉、天线体积小、易于 移动、空间分辨率较高等优点,并在定量估测降水 和粒子的相态识别中,有着非常明显的优势。自从 协同自适应大气探测研究中心(Collaborative Adaptive Sensing of the Atmosphere, CASA) 利用 多部 X 波段双偏振雷达组建低价位、高分辨率、高 密度的雷达网络,用于克服传统天气雷达的分辨率 和覆盖范围的限制,X波段双偏振气象雷达的研究 与应用又再次成为气象雷达研究的热点。X 波段双 偏振雷达进行定量降雨探测时,仍能继续发挥其独 特的重要作用, 而衰减引起的误差又不容忽视。因 此,必须寻求对反射率(Z_H)和差分反射率(Z_{DR}) 进行衰减订正的有效方法。

早期反射率的衰减订正研究是从C波段气象 雷达开始的,根据衰减和降水的经验公式,利用实 际降水量的大小来调整反射率值,再反推衰减率大 小, 但是 Z-R 关系本身的不确定性导致了这种方法 的不稳定性 (Hitschfeld and Bordan, 1954; Smyth and Illingworth, 1998)。20世纪 90 年代初, Bringi et al. (1990) 通过散射模拟发现衰减率 (A_H) 和差 分衰减率 $(A_{DP} = A_H - A_V)$ 与单位差分传播相移 (K_{DP})呈线性关系,提出双偏振雷达可能通过雷达 测量的 K_{DP} 实现 Z_{H} 和 Z_{DR} 的衰减订正。此后,许多 学者 (Ryzhkov and Zrnić, 1995; Smyth and Illingworth, 1998)对此进行了大量的研究, 他们提出 了基于差分传播相移的订正方法,因 Kpp具有独立 于雷达系统定标、受自然状态下的雨滴谱分布 (DSD) 变化影响较小、没有雨区衰减效应和波束 传播阻碍效应等优势 (Zrnić and Ryzhkov, 1996), 短波长双偏振气象雷达的衰减问题可以得到较好的 解决。此外,一个相对优势的条件是:通过散射模 拟实验发现, X 波段雷达的 K_{DP} 分别是 C 波段、S 波段雷达的 1.5、3.0 倍。但此法的局限性是,对 于 X 波段雷达, 如果电磁波在大雨滴区或者冰水混

合区传播,水平和垂直方向的电磁波之间会形成差 分散射相移(δ),这时雷达测量到的差相移是由差 分传播相移($Φ_{DP}$)和差分散射相移(δ)组成,而单 位差分传播相移(K_{DP})就是利用差分传播相移估 计获得的。因此,δ的出现与变化将会影响到 $Φ_{DP}$, 进而影响到 K_{DP} 的精确估计。不过,可以采用特定 的滤波器消除δ的影响,如 Hubbert et al. (1993) 通过设计低通滤波器对回波的 $Φ_{DP}$ 进行滤波, 1995 年他们又在此基础上,利用多次迭代的方法,基本 上消除了δ的影响(Hubbert and Bringi, 1995)。

在衰减订正方法研究中,由于雨滴谱(尤其是 当存在直径大于 2.5 mm 的大粒子时)、温度、形状 等因素的影响, $A_{\rm H} \sim K_{\rm DP}$ 和 $A_{\rm DP} \sim K_{\rm DP}$ 关系的经验 公式中系数变化比较大。许多学者 (Jameson, 1992; Ryzhkov and Zrnić, 1995; Smyth and Illingworth, 1998; Carey et al., 2000; Tesud et al., 2000; Le Bouar et al., 2001) 对此进行了广泛而深 入的研究,他们探讨了粒子大小、温度、形状等因 素对 A_H~K_{DP}和 A_{DP}~K_{DP}关系的经验公式中系数 的影响,将订正方法从固定系数法发展为变系数 法。虽然这种方法能够提供比较稳定的衰减订正, 但是采用由数值模拟或者几次观测拟合所得到的系 数,仍然存在着较大的误差。21世纪初,Bringi et al. (2001) 提出自适应约束算法,并用C波段雷达 资料对此进行了验证分析,结果表明这是一种相对 较好的方法。此后, Park et al. (2005a, 2005b) 和 Gorgucci et al. (2005, 2006) 改进了自适应约束算 法,对X波段双线偏振雷达的衰减订正问题进行了 探讨。何宇翔等(2009)引入卡尔曼滤波到差分传 播相移滤波中,对车载 X 波段偏振雷达观测层状云 降水进行衰减订正,并给出了订正方法的适用范围 为: 主要是稳定的降水云, 且近地面降水粒子的主 轴是水平取向。胡志群等(2008)比较了 K_{DP}订正 法、Z_H 订正法,指出K_{DP}订正法要优于Z_H 订正法, 但是当 K_{IP}较小时, 订正存在的误差较大, 最后通 过设置 Kpp 的阈值,提出综合利用两种订正方法。 但该方法仍采用固定的系数对不同的降雨类型进行 衰减订正, 且只用 M-P 分布验证了订正效果。在 国内采用自适应约束算法进行衰减订正的研究还未 见报道。

中国科学院大气物理研究所中层大气与全球环 境探测重点实验室在双波长雷达基础上进行 X 波 段雷达的双偏振升级改造以来,结合研究项目进行 了多年的观测。为了更充分地利用该雷达的偏振特 性,更深入进行云、降水等研究,本文在综合分析 了多种订正方法优缺点前提下,选择了以自适应约 束算法为基础,并做些改进,结合中层大气与全球 环境探测重点实验室 X 波段雷达的特点,提出该雷 达反射率的衰减订正方法。为了能推广使用这个订 正方法,我们采用比较严格的比对方法进行验证。 下面将介绍所采用的订正方法及验证对比分析结 果。

2 订正方法

自适应约束算法 (Self-consistent method with constraints) 是 Bringi et al. (2001) 扩展了 Testud et al. (2000) 降雨廓线 (ZPHI) 算法与 Smyth and Illingworth (1998) 方法得出的:这是一种利用雷 达参数本身,通过不断调整,得到 $A_{\rm H} \sim K_{\rm DP}$ 关系中 的最佳系数,该衰减订正方法综合考虑了雨滴谱、粒子形状、温度等因素的影响。Park et al. (2005a, 2005b) 利用散射模式计算出 X 波段双偏振雷达 $A_{\rm H} \sim K_{\rm DP}$ 、 $A_{\rm H} \sim Z_{\rm H}$ 参数中的系数关系,发展自适 应约束算法对 X 波段双偏振雷达进行衰减订正,并 通过比较双偏振参数之间关系验证了该方法的优越 性。本文基于 Park et al. (2005a) 的研究结果,结 合本实验室雷达的特点给出一种较适用的订正方法。

雷达反射率衰减订正的本质是如何准确地估计 雨区衰减率 A_H,如公式(1)所示:

$$10 \lg [Z_{h}(r)] = 10 \lg [Z'_{h}(r)] + 2 \int_{0}^{r} A_{H}(s) ds,$$
(1)
$$Z_{H} = 10 \lg Z_{h}$$
(2)

式中 $Z'_{h}(r)$ 、 $Z_{h}(r)$ 分别为订正前后的反射率值(单位: mm⁶/m³), A_{H} 为单程衰减率(单位: dB/km), Z_{H} 的单位为 dBZ。

在自适应约束算法中,假如一个雨区径向范围 是从 r_0 到 $r_1(r_0 < r < r_1)$,根据衰减积分一定与路径 上该雨区的差分传播相移变化总量相一致的约束条 件,衰减率 $A_{\rm H}$ 可由下式获得(Bringi et al., 2001): $A_{\rm H}(r) = \frac{[Z'_{\rm h}(r)]^b \times [10^{0.1 \times b \times a \times \Delta \Phi_{\rm DP}^{-1}]}{I(r_0, r_1) + [10^{0.1 \times b \times a \times \Delta \Phi_{\rm DP}^{-1}] \times I(r, r_1)},$ (3) 其中,

$$I(r_0, r_1) = 0.46b \int_{r_0}^{r_1} [Z'_{\rm h}(s)] ds, \quad (4-1)$$

$$I(r,r_1) = 0.46b \int_{r}^{r_1} [Z'_{\rm h}(s)] ds, \quad (4-2)$$

式中, $\Delta \Phi_{DP}(\Delta \Phi_{DP} = \Phi_{DP}(r_1) - \Phi_{DP}(r_0))$ 为雨区范 围内的差分传播相移的变化总量,系数 b 通过以下 散射模式的经验公式获得,即:

$$A_{\rm H}(r) = a \left[Z_{\rm h}(r) \right]^b, \qquad (5)$$

式中, $A_{\rm H}$ 和 $Z_{\rm h}$ 的关系是在假定雨滴谱为 gamma 分布的前提下,经散射模式得到的(Testud et al., 2000)。计算表明,指数b在给定的频率下,变化较 小,比起双极化参数($K_{\rm DP}$ 和 $Z_{\rm DR}$)对粒子的形状和 温度敏感性弱一些。Delrieu et al.(2000)曾给出 X 波段,指数b的变化范围为 0.76 到 0.84,据此本 文设定b的值为 0.8。此外,(3)式中的 α 也可通 过散射模式的经验公式(6)获得:

$$A_{\rm H}(r) = \alpha [K_{\rm DP}(r)]^{\rm c}, \qquad (6)$$

式中 K_{DP} 的单位是(°)/km。该式需满足的前提条 件是: A_{H} 和 $K_{DP}(\Phi_{DP})$ 成线性关系。实际上,通过 散射模拟得到在 2.8~9.3GHz 频率范围内, A_{H} 和 K_{DP} 存在良好的线性关系(Bringi et al., 1990)。

研究发现, α 随着温度和粒子形状的变化范围 非常大。Carey et al. (2000)指出,在X波段, α 的 变化范围是 0. 139 dB·(°)⁻¹到 0. 335 dB·(°)⁻¹。若 以单一的固定系数 α 来计算 $A_{\rm H}$,势必带来较大误 差,从而影响 $Z_{\rm H}$ 的订正结果。

为了减小系数 α 的影响,自适应约束算法的一般做法是,预先从散射模式计算出的系数范围内找 到最佳 α 值。综合考虑 Park et al. (2005a)和何宇 翔 (2009)的散射模式模拟结果后,本文设定 α 的 取值范围为 0.13~0.35,除在中心区 0.24~0.26 区间内,步长选为 0.005,其它区域步长为 0.01。 最佳 α 的选取步骤如下:

第一步: 对每一个 α 值, 通过 (3) 式计算出 A_H(r,α), 根据衰减总量一定要与该雨区的差分传 播相移变化总量相一致的约束条件, 可以利用 A_H 通过下式重构出 Φ⁽³⁾_α(r,α):

$$\Phi_{\rm DP}^{\rm cal}(r,\alpha) = 2 \int_{r_0}^r \frac{A_{\rm H}(s,\alpha)}{\alpha} {\rm d}s. \tag{7}$$

第二步:用下式比较 $\Phi_{DP}^{ch}(r; \alpha)$ 和雷达实际测量的 $\Phi_{DP}(r)$,以 Φ_{DP}^{ch} 值最小作为约束条件获得最佳的 α 值。

$$\Phi_{\rm DP}^{\rm err}(\alpha) = \sum_{i=1}^{N} | \Phi_{\rm DP}^{\rm cal}(r_i, \alpha) - \Phi_{\rm DP}(r_i) |, \quad (8)$$

其中,*i*为从雨区开始*r*。到雨区结束*r*₁的距离库数。

订正时只要将得到的最佳系数 α 代入 (3) 式计 算出 $A_{\rm H}$, 再将 $A_{\rm H}$ 代入 (1) 式,即可实现该帧 $Z_{\rm H}$ 订正。通过比较路径衰减积分和雷达实际测量的 $Φ_{\rm DP}(r)$ 得到最佳系数 α 是自适应约束算法的最大 特点。

3 X 波段双线偏振雷达

本文使用的是中国科学院大气物理研究所中层 大气与全球环境探测重点实验室 X 波段双线偏振 雷达 (IAP-Radar) 2009 年的观测资料。该雷达采 用双线偏振体制,单路交替发射/接收水平或垂直 电磁波。该体制是在原单偏振雷达的基础上升级而 成(段树等,2002)。系统主要参数见表1。

表1 IAP-Radar 主要参数

Table 1 System characteristics of the IAP-Radar

雷达特征量	详细说明							
偏振模式	双线偏振,交替发射体制,单发单收模式							
发射系统	频率 9.375 GHz, 脉冲宽度 0.5 µs, 峰值功率							
	75 kW							
接收系统	中心频率 60.5 MHz, 带宽 1.1 MHz, 噪声系数<							
	3.5 dB,动态范围>70 dB							
天线系统	天线口径2m, 主瓣宽度1.1°, 天线增益≥40 dB,							
	偏振增益误差<0.3 dB							
馈线系统	馈源正交隔离: -35 dB, 开关隔离: -38 dB, 系统							
	正交隔离:-35 dB,开关速度 5 μs							
伺服系统	PPI、RHI、VOL及扇形扫描,天线转速 3~12°/s							
雷达产品	水平反射率、多普勒速度、谱宽、差分反射率(线							
	性退偏振比)、差分传播相移、零相关系数							

4 衰减订正分析

2009 年 7 月 31 日北京地区经历了一次强降雨 过程。观测资料显示,北京时间 03:00~03:06 时 段的雨区位于 X 波段雷达和 S 波段雷达作对比的 最佳观测范围内,故选取该时段的雷达反射率体扫 数据进行衰减订正。

订正之前,本文先用 Hubbert et al. (1993)和 Hubbert and Bringi (1995)的方法对雷达测量的差 相移Ψc进行预处理和质量控制,滤除了后向差分 散射相移 δ ,如公式(9)所示。并对反射率 $Z_{\rm H}$ 进行了质量控制。

$$\Psi_{\rm C} = \Phi_{\rm DP} + \delta \tag{9}$$

再利用自适应约束算法对该过程进行衰减订 正。根据雷达数据的特点,先分析了一帧数据(仰 角3°,方位角115°)的衰减订正情况,该数据刚好 位于强对流区域的中心,在此径向方向上对应的雨 区范围是从25~85 km。

图 1 所示, 虚线为 25~85 km 距离内测量的差 相移 (Ψ_c), 实线是利用 FIR 低通滤波器滤波过后 的效果。在 25~60 km 距离内, Ψ_c 变化增长比较 缓慢, 起伏较小, 滤波效果很好; 在 60~75 km 距 离内, Ψ_c 变化增长比较快, 起伏较小, 滤波后完全 与测量趋势符合, Φ_{DP} 从 46°增加到 100°; 在 75~ 85 km 距离内, 由于前面经历了强回波区, 电磁信 号衰减严重, 雷达实际 Ψ_c 起伏较大, 经过滤波后 Φ_{DP} 依然有一定的起伏, 但就整体而言, 影响不大。

图 2 给出订正前后反射率的变化曲线, 虚线为 订正前的反射率值, 实线为订正后的反射率值, 可 以看出, 在 25~45 km 范围内, 因降雨强度小, 衰 减量较小, 订正前和订正后基本上没有差别; 40~ 65 km 范围内, 电磁波经 20 km 以上雨区的衰减, 订正后的反射率曲线比订正前高出 2~5 dB; 60~ 85 km 范围内, 电磁波经历了强对流雨区过程, 且 电磁波已经传播了将近 40 km 的距离, 订正后比订 正前高出 10~20 dB, 其中 65~75 km 范围内, 订 正后的反射率值达到 50 dBZ 以上。这与 $\Phi_{\rm DP}$ 的变

图 1 差相移 $\Psi_{C}(虚线)$ 和滤波后差分传播相移 $\Phi_{DP}(实线)$ Fig. 1 The differential phase shift (Ψ_{C}) (dashed line) and differential propagation phase shift (Φ_{DP}) after filtering (solid line)

图 2 订正前后雷达反射率值的比较(方位角 115°) Fig. 2 Comparison of radar reflectivity before and after correction (azimuth angle 115°)

化趋势是一样的。

图 3 (见文后彩图) 是订正前 X 波段雷达组合 反射率的 PPI (Plane Position Indicator) 图,在离 IAP-Radar 站较近的范围内,雨区衰减较少,反射 率多为 20~40 dBZ,例如顺义东北 20~30 km 范 围内,反射率分布比较均匀,约为 20~40 dBZ;在 60 km 以外,订正前雷达图上基本未发现有对流性 回波,反射率值均在 35 dBZ 以下,密云—平谷— 蓟县—带都在 20~30 dBZ 的范围内,蓟县—香河 —廊坊—带,反射率值为 20~35 dBZ,在较远的区 域反射率值更低。

对比订正前后的反射率分布 [图 3 与图 4 (见 文后彩图)]后,可以看出,在雷达站 30 km 范围以 内,订正前后基本上没有差别;随着雨区距离的增 加,在 30~60 km 范围内,电磁波信号的衰减,订 正后略微有一些差别,在怀柔—顺义—大厂—带, 订正后的反射率值比订正前高一些,出现零星的对 流;在 60 km 以外较远的区域,在密云—平谷— 带,订正后反射率值比订正前高出 5~10 dB 左右, 出现零星的对流区。特别是,在蓟县—香河—廊坊 一带出现了明显的强对流区,订正后的比订正前反 射率要高出 10~15 dB;在更远的区域,订正后反 射率整体上得到加强。总之,订正前后的组合反射 率变化很大,而且符合 Φ_{DP}的变化趋势,订正效果 非常明显。

5 结果验证

为了验证本订正方法的效果,我们将订正后的

结果与北京市气象局 S 波段雷达观测值进行详细的对比,其次,还综合分析了 $A_{\rm H} \sim Z_{\rm H}$ 和 $A_{\rm H} \sim K_{\rm DP}$ 之间的关系,并根据弱对流性与强对流性两种不同的降雨类型,拟合了不同的系数,再与 Park et al. (2005a)通过散射模拟得到的结果进行对比,以达到进一步验证订正方法的目的,最后引入地面实测降雨资料,粗略地与订正前后的 X 波段雷达反射率进行了比较。

5.1 与S波段雷达对比

Chandrasekar et al. (2006) 认为S波段雷达基 本上不存在雨区衰减,除非在一些湿雹区。他们还 分析了S波段和X波段对比的可能性,指出在瑞利 散射下,反射率值不会因频率的变化而变化,但随 着滴谱直径的增加,因电磁波频率的不同,米散射 的反射率数值也会不同,当反射率值达到 30 dBZ 以上,X波段雷达测量的反射率值略微比S波段雷 达高一些。Matrosov et al. (2006) 解释了当反射率 高于 40 dBZ 的时候, X 波段雷达测量值要比 S 波 段雷达高 2~3 dBZ 左右。Anagnostou et al. (2006) 在 KAMP 项目中, 将一部车载 X 波段双偏 振雷达与 WSR-88D 雷达进行了粗略的比较,分析 了 X 波段雷达订正效果, 但未指出 X 波段和 S 波 段雷达测量的不同之处。我们在此进行了详细的对 比验证,所用S波段资料是北京市气象局的CIN-RAD/SA 雷达数据,该雷达系统具备完善的机内定 时自动在线标定、标校的能力。

S 波段雷达位于 X 波段雷达的东偏南方向,方 位角为 157°,两部雷达间的直线距离为 20.3 km, 因为两部雷达之间是北京市城区,高楼较多,X 波 段雷达遮挡比较严重,综合考虑到两部雷达的位置 和周围地物的情况,观测的最佳区域为:以 X 波段 雷达为中心,方位角 30°~150°的范围。

本次对比过程选择在 2009 年 7 月 31 日, X 波段 雷达观测时间为 02:59:44~03:06:12 (北京时,下 同), S 波段雷达观测时间为 03:00:00~03:06:00, 两者起始时间相差 16 秒,结束时间相差 12 秒,两 部雷达观测时间在最佳对比区域范围内,适宜进行 对比研究。

图 5 (见文后彩图) 是去除仰角 0.5°和 1.4°两 层之后的 S 波段雷达组合反射率 PPI 图,对比图 4 和图 5,可以看出,在降雨的范围和趋势上存在较 高的一致性:在较近的区域内,如顺义的东北方 向,X波段雷达订正后出现零星的对流区,略微比 S波段雷达高一些;较远的区域,如密云一平谷一 带,订正后的值和S波段雷达基本一致,反射率值 分布在 30~40 dBZ 范围内,在具体的区域,因X 波段雷达分辨率高,探测的精细一些;在蓟县一香 河一廊坊一带,订正后X波段出现强对流区,强对 流区 Z_H分布在 45~55 dBZ,区域范围和位置大小 均与S波段雷达一致,X波段的 Z_H 要比S波段雷 达大一些,这一差别可能的原因前面已有讨论,不 再重复。需要注意的是,图4 和图5 两幅图是以各 自雷达站所在地为中心的 PPI 图,故不能简单用相 对雷达站的方位、距离进行对比,而要用其所在地 理位置进行比对。

为了更加全面地比较订正的效果,本文特选择 几个区域(如图 3、4、5上显示的红色的方框区域, 每个区域大小均为 12 km×12 km),分析 X 波段雷 达订正前后和 S 波段雷达的反射率分布概率和平 均值,以验证订正后的效果。通州位于北京市东 部,距离 X 波段雷达 21.76 km,距离 S 波段雷达 17.2 km,本文选择通州东北的区域,刚好位于雨 区的开始,衰减较小,适合初始对比。统计该区域 范围内所有高度层的反射率值,分析其概率分布, 如图 6 所示,从三者的反射率概率分布趋势上来 看,三者的趋势和分布值都相同,都分布在 25~ 35 dBZ 左右,均在 30 dBZ 出现概率最大值,说明 X 波段雷达在没有衰减的情况下,和 S 波段雷达观 测是相同的,后面的衰减区域订正后也是可以和 S 波段雷达进行对比研究的。

密云位于北京的西北方向,距离 X 波段雷达 60.55 km,距离 S 波段雷达 71.48 km,对于 X 波 段雷达信号,经过 50 km 左右的雨区后,电磁波信 号存在较大的衰减,本次选择密云西北 12 km× 12 km,高度 2~4 km的区域作为统计区域。如图 7 所示,X 波段雷达订正前的反射率值分布在 25 dBZ~ 35 dBZ 范围内,该区域内的平均值为 27.092 dBZ, 经过订正后,反射率值分布在 27~42 dBZ,平均值 为 33.8718 dBZ,比订正前平均增加了 6.86 dB。 与 S 波段雷达对比,S 波段雷达测量值分布在 28~ 40 dBZ,在该区域的平均值为 34.248 dBZ。在反 射率值的概率分布上,订正后的 X 波段雷达反射率 更加接近 S 波段雷达,而平均值方面 X 波段雷达订 正后与 S 波段雷达相差 0.3762 dB。

图 6 通州东北 12 km×12 km 区域雷达反射率的概率分布: (a) X波段雷达订正前反射率;(b) X波段雷达订正后反射率; (c) 同时段的 S波段雷达反射率

Fig. 6 Comparison results of probability of radar reflectivity in the northeast of Tongzhou, Beijing (12 km×12 km): (a) Uncorrected $Z_{\rm H}$ of X-band radar; (b) Corrected $Z_{\rm H}$ of X-band radar; (c) $Z_{\rm H}$ of S-band radar observed at the same time

图 7 同图 6,但为密云西北 12 km×12 km 区域、2 km~4 km 高度层

Fig. 7 Same as Fig. 6, but for the northwest of Miyun, Beijing $(12 \text{ km} \times 12 \text{ km})$ in the 2 km-4 km height layer

除上述两个区域外,另外选了六个区域。各区 域所选高度以其距雷达站远近而异,表2给出八个 区域与两部雷达(X波段雷达及S波段雷达)的平 均距离及所选高度。

上述八个区域中,就雨区类型而言,香河、蓟 县区域内为强对流性降雨,反射率在40 dBZ 以上, 为强对流区;其他区域反射率值在40 dBZ 以下, 称之弱对流区。图8(见文后彩图)给出八个区域

表 2	八个区域距 X 波段和 S 波段雷达站点的距离及统计高度
Table 2	2 The distances of the eight areas from X and S radars and the selected height

站名	通州	顺义	怀柔	大厂	香河	密云	平谷	蓟县
距 X 波段雷达站的距离/km	21.76	25.35	47.19	52	56.41	60.55	66.79	86.94
距S波段雷达站的距离/km	17.2	36.35	62.4	44.78	43.91	71.48	68	82.93
所选高度/km	0.5~5	$1 \sim 2$	$2\sim\!4$	2.5~3.5	3.5~4.5	$2\sim\!4$	$3\sim\!4$	$4 \sim 5$

X 波段订正前后及 S 波段测得的反射率平均值,由 图看出,对平均值在 40 dBZ 以下的弱对流区域,X 波段雷达反射率值订正后有明显提高,且与 S 波段 雷达只相差 1 dBZ 左右;强对流区域,X 波段订正 后反射率值改善更为突出。如香河的反射率平均值 订正前为 35.39 dBZ,订正后为 46.92 dBZ (比订 正前高出 11.52 dBZ),与 S 波段雷达的平均值 42.44 dBZ 更接近,甚至还高出 4.48 dB。又如蓟 县区域,X 波段雷达订正前为 20.80 dBZ,订正后 达到 45.98 dBZ (高出 25.18dBZ),更接近 S 波段 雷达反射率值,也高出 3.43 dB。

5.2 偏振参数特性分析

为了进一步分析衰减订正的效果,本文比较了 X 波段订正前后的 K_{DP}~Z_H和 A_H~Z_H之间的散 点图特性。考虑到个例的特殊性,在 30°~90°范围 内对流性降雨较少,只有零星的对流区;在 90°~ 140°范围内,在蓟县—香河—廊坊—带出现一个强 对流带,反射率高于 40 dBZ,因此本文将这次降水 过程分为两个区域,对比分析一下强对流性与弱对 流性降雨状况下的衰减订正情况。

在弱对流性降雨区域,本文选择方位角 30°~ 90°,仰角为3°、4°两层数据,距离X波段雷达为30~ 75 km范围内的数据。图 9a、b分别为X波段雷达 测得订正前后的 $K_{DP} \sim Z_H$ 的散点图,图中实线为 Park et al. (2005a)通过散射模拟建立的关系式 ($K_{DP} = \alpha Z_h^c$)作出的,由图 9a 看出,订正前散点图 很分散,反射率值分布在 20~50 dBZ 左右, K_{DP} 分 布在 0~4°/km,很难与 Park 的模拟曲线相比较; 订正后,散点图的分布出现了较大变化,图 9b 中 虚线是由订正后的散点图拟合得到的。可以明显看 出,订正后 $K_{DP} \sim Z_H$ 的拟合曲线与 Park 曲线基本 重合,即订正后的分布与 Park 散射模拟的结果相 当一致。图 9c、d分别为订正前后 $A_H \sim Z_H$ 的散点 图,其中实线是 Park 通过散射模拟公式 $A_H = a Z_h^c$ 得到的,虚线是由订正后的散点图拟合出来的曲 线。同样地,订正后拟合的曲线与 Park 的模拟曲 线相近,而订正前的误差较大。看来,弱对流性降 雨的情况下,订正后与 Park 的散射模拟结果基本 一致这点,从另一角度反映了我们的订正方法的有 效性。

图 10 给出蓟县—香河—廊坊—带强对流性降 雨区 (方位角 90°~140°,仰角: 3°、4°,距 X 波段雷 达距离 30~75 km) 双偏振参数 K_{DP}~Z_H和 A_H~Z_H 之间的散点图,和弱对流区—样,目的是与 Park et al. (2005a) 通过散射模拟得到的结果做对比,同样 可以看出,订正后较订正前明显得到改善。必须指 出的是,在强对流性降雨的情况下,订正效果较弱 对流性情况差一些,这可能是在强对流性区域,云 内变化比较快,又因粒子直径较大,后向散射相移 δ没有完全达到滤除的效果,会对订正效果造成一 些影响。

5.3 地面降雨资料

为了进一步验证 X 波段雷达的订正效果,本文 粗略地比较了雷达订正前后的反射率与地面实测的 降雨资料。主要选择 X 波段雷达方位 30°~150°范 围内的地区。

此次个例的雷达扫描时间为 2009 年 6 月 8 日 08:00:01~08:11:46,天线扫描速度为 6°/s,用时 为 11 分 45 秒。本次降雨过程自西南往东北移动, 属于系统性层状云降雨。订正前后雷达组合反射率 分别如图 11 所示,在雷达最佳观测区域 30°~ 150°,10~30 km 内,出现环状强反射率区,分析 其单层 PPI 图,系零度层亮带。在 30~100 km 内, 反射率均得到了不同的加强。图 12 给出相对应的 12 分钟内(08:00:00~08:12:00)的降雨资料。在 订正前,在顺义东部、平谷区和密云区域反射率值 均较小,经过订正后,反射率得到了加强,达到了 30~40 dBZ,而本区域内的降雨资料显示,这些区 域的 12 分钟降雨量分布在 1~5 mm 左右,在通州 东南部,反射率也加强到 35~45 dBZ,该区域的降

图 9 弱对流性降雨情况偏振参数散点图分析 Fig. 9 Scatter plots of K_{DP} vs. Z_H and A_H vs. Z_H in the weak convective rain area

图 10 强对流性区域双偏振参数散点图分析 Fig. 10 Scatter plots of K_{DP} vs. Z_H and A_H vs. Z_H in the strong convective rain area

雨量达到1.5~5 mm。总之,经过订正后的X波段 雷达组合反射率分布与地面降雨分布相似性更高。 为了定量地了解订正前后反射率值与地面降雨 量的关系,根据降雨量分布选取几个地面雨量站,

图 11 订正前后雷达组合反射率图 (2009 年 6 月 8 日 08:00~08:12 BJT)

Fig. 11 Composite reflectivity of X-band radar before correction (left) and after correction (right) during 0800-0812 BJT 8 Jun 2009

图 12 地面测量降雨量图 (2009 年 6 月 8 日 08:00~08:12 BJT) Fig. 12 Rainfall distribution from surface rain-gauge observation during 0800 - 0812 BJT 8 Jun 2009

分析该站点上空订正前后雷达反射率的变化。选择 站点位置如图 12 所示,订正前后反射率值如图 13 所示,X 轴代表各个站点信息,其排列顺序据雷达 的远近而定。图 13 采用双坐标系,左面的纵坐标 代表反射率值大小,实线和虚线分别代表订正前后 反射率值,右边的纵坐标代表雨强值,点虚线代表 这些站点的实测雨强值。我们可以看到,距离雷达 的越远,反射率越大,衰减越严重,反射率订正前 后的差别越大,订正后反射率值与地面雨强分布存 在较高的一致性。为了更具体地了解订正的效果, 我们用订正前后的雷达资料反演了几个地面站的雨 强,用于与实测降水强度作对比,如图 14 所示,点 虚线 (*R*)为地面实测雨强,虚线和实线分别为订 正前后雷达反射率值反演的雨强,反演公式为:*R* =0.02462×10^{0.07305Z_H}(其中*R*的单位是 mm/h,*Z*_H 单位为 dBZ),此公式是我们利用本雷达数据和北 京地区地面实测降雨资料,拟合得出的适合北京地 区降雨估计的经验公式。可以看出,在这些站点 上,用订正后雷达反射率反演的雨强比订正前更接 近实测的地面雨强,进一步验证了这一订正方法的

图 13 选择站点上订正前后雷达反射率与雨强值 (2009 年 6 月 8 日 08:00~08:12)

Fig. 13 Corrected and uncorrected radar reflectivity (Z_c , Z_{uc}) and observed rainfall rate at selected rain gauge stations (0800-0812 BJT 8 Jun 2009)

图 14 选择站点上订正前后雷达反演雨强与实测雨强对比 (2009 年 6 月 8 日 08:00~08:12)

Fig. 14 Comparison of rain gauge-observed (R) and retrieved ($R(Z_c)$, $R(Z_{uc})$) rainfall rates at selected rain-gauge stations (0800-0812 BJT 8 Jun 2009)

效果。

6 小结

本文主要给出 X 波段双偏振雷达反射率衰减 订正的一种方法,方法要点及验证分析归纳如下:

(1) 订正前资料的预处理:本文数据质量控制 和预处理工作中,运用低通 FIR 滤波器,消除了高 频噪声,减弱后向散射相移δ的影响,达到了差分 传播相移 Φ_{DP}(r) 平滑处理。 (2) 订正方法:本文使用自适应约束算法对反 射率进行衰减订正,这种方法利用雷达资料本身, 综合考虑了雨滴谱、粒子形状、温度等因素的影 响,对于每一个不同α值,计算该雨区A_H并重构 Φ^{CP}(*r*,*α*),将Φ^{CP}(*r*,*α*)与雷达测量的Φ_{DP}(*r*)相比, 以其差值最小作为约束条件,不断调整得到每一帧 雷达数据订正的最佳系数,进行 Z_H 的衰减订正。 该方法能有效准确计算出衰减率,达到反射率的订 正。

(3) 衰减订正方法的效果验证:

① 将 X 波段双偏振雷达订正前后与同时段 S 波段雷达反射率进行对比,看出订正后的反射率值 与 S 波段雷达有较高的一致性;详细对比了一些特 定区域中反射率的概率分布和均值发现,订正后的 X 波段雷达反射率在分布趋势和均值均与 S 波段雷达有较好的一致性;反射率在 40 dBZ 以下, X 波 段雷达和 S 波段雷达基本一致,误差在 1 dB 左右, 但在 40 dBZ 以上,订正值比 S 波段雷达高 2~4 dB。

② 分析订正前后 X 波段双偏振雷达参数 K_{DP}~ Z_H和 A_H~Z_H之间的散点图,并拟合订正后的 K_{DP}~Z_H和 A_H~Z_H经验公式的系数表明,订正后 的散点图较订正前与偏振参数间的经验公式的一致 性更好,并且本文拟合的结果通过散射模拟得到的 结果基本上是一致的。根据分析不同类型的降雨区 域发现,弱对流性降雨的订正效果比对流性降雨 好。

③ 与地面实测降雨资料进行对比,分析对比 X 波段雷达订正前后反射率分布与地面实测降雨分布 后,发现订正后较订正前,无论在降雨的范围、分 布和强度上,两者的一致性好得多,也说明了该订 正方法的有效性。

总体上看,通过本文所述的预处理和订正方法,X波段偏振雷达在估测降水中的强衰减问题可以得到明显的改善。

参考文献 (References)

- Anagnostou E N, Grecu M, Anagnostou M N. 2006. X-band polarimetric radar rainfall measurements in keys area microphysics project [J]. J. Atmos. Sci., 63 (1): 187 – 203.
- Bringi V N, Chandrasekar V, Balakrishnan N, et al. 1990. An examination of propagation effects in rainfall on radar measurements at microwave frequencies [J]. J. Atmos. Oceanic Technol., 7

(6): 829-840.

- Bringi V N, Keenan T D, Chandrasekar V. 2001. Correcting Cband radar reflectivity and differential reflectivity data for rain attenuation: a self-consistent method with constraints [J]. IEEE Transactions on Geoscience and Remote Sensing, 39 (9): 1906 – 1915.
- Carey L D, Rutledge S A, Ahijevych D A, et al. 2000. Correcting propagation effects in C-band polarimetric radar observations of tropical convection using differential propagation phase [J]. J. Appl. Meteor., 39 (9): 1405-1433.
- Chandrasekar V, Lim S, Gorgucci E. 2006. Simulation of X-band rainfall observations from S-band radar data [J]. J. Atmos. Oceanic Technol., 23 (9): 1195-1205.
- Delrieu G, Andrieu H, Creutin J D. 2000. Quantification of pathintegrated attenuation for X- and C-band weather radar systems operating in Mediterranean heavy rainfall [J]. J. Appl. Meteor., 39 (6): 840-850.
- 段树,张凌,刘锦丽,等. 2002. 双线偏振双波段(X/Ka)主被动微 波遥感系统的研制与初步试验[J]. 遥感学报,6(4):289-293. Duan Shu, Zhang Ling, Liu Jinli, et al. 2009. Development of an active and passive dual-wavelength (X/Ka) dual-polarization remote sensing system and its preliminary test [J]. Journal of Remote Sensing (in Chinese), 6 (4): 289-293.
- Gorgucci E, Chandrasekar V. 2005. Evaluation of attenuation correction methodology for dual-polarization radars: application to Xband systems [J]. J. Atmos. Oceanic Technol., 22 (8): 1195 – 1206.
- Gorgucci E, Chandrasekar V, Baldini L. 2006. Correction of Xband radar observation for propagation effects based on the selfconsistency principle [J]. J. Atmos. Oceanic Technol., 23 (12): 1668-1681.
- 何字翔. 2009. 水凝物粒子双线极化雷达后向散射和衰减特性分析 与应用研究 [D]. 中国科学院大气物理研究所博士士学位论文, 80pp. He Yuxiang. 2003. Dual-polarization Radar Backscattering and Attenuation Characteristic of Hydrometeor Analysis and Application Research [D]. Ph. D. dissertation (in Chinese), Institute of Atmospheric Physics, Chinese Academy of Sciences, 80PP.
- 何字翔, 吕达仁, 肖辉, 等. 2009. X 波段双线极化雷达反射率的衰 减订正 [J]. 大气科学, 33 (5): 1027 - 1037. He Yuxiang, Lü Daren, Xiao Hui, et al. 2009. Attenuation correction of reflectivity for X-band dual polarization radar [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33 (5): 1027 - 1037.
- Hitschfeld W, Bordan J. 1954. Errors inherent in the radar measurement of rainfall at attenuating wavelengths [J]. J. Atmos. Sci., 11 (1): 58-67.

- 胡志群,刘黎平,楚荣忠. 2008. X 波段双线偏振雷达不同衰减订 正方法对比及其对降水估测影响研究 [J]. 气象学报,66 (2): 251 - 261. Hu Zhiqun, Liu Liping, Chu Rongzhong. 2008. Comparison of different attenuation correction methods and their effects on estimated rainfall using X-band dual linear polarimetric radar [J]. Acta Meteorologica Sinica (in Chinese),66 (2): 251 -261.
- Hubbert J, Bringi V N. 1995. An iterative filtering technique for the analysis of copolar differential phase and dual-frequency radar measurements [J]. J. Atmos. Oceanic Technol., 12 (3): 643 – 648.
- Hubbert J, Chandrasekar V, Bringi V N, et al. 1993. Processing and interpretation of coherent dual-polarized radar measurements [J]. J. Atmos. Oceanic Technol., 10 (2): 155-164.
- Jameson A R. 1992. The effect of temperature on attenuation-correction schemes in rain using polarization propagation differential phase shift [J]. J. Appl. Meteor., 31 (9): 1106-1118.
- Le Bouar E, Testud J, Keenan T D, et al. 2001. Validation of the rain profiling algorithm "ZPHI" from the C-band polarimetric weather radar in Darwin [J]. J. Atmos. Oceanic Technol., 18 (11): 1819-1837.
- Matrosov S Y, Cifelli R, Kennedy P C, et al. 2006. A comparative study of rainfall retrievals based on specific differential phase shifts at X- and S-band radar frequencies [J]. J. Atmos. Oceanic Technol., 23 (7): 952–963.
- Park S G, Bringi V N, Chandrasekar V, et al. 2005a. Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part I: Theoretical and empirical basis [J]. J. Atmos. Oceanic Technol., 22 (11): 1621-1632.
- Park S G, Maki M, Iwanami K, et al. 2005b. Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part II: Evaluation and application [J]. J. Atmos. Oceanic Technol., 22 (11): 1633-1655.
- Ryzhkov A, Zrnić D S. 1995. Precipitation and attenuation measurements at a 10-cm wavelength [J]. J. Appl. Meteor., 34 (10): 2121-2134.
- Smyth T J, Illingworth A J. 1998. Correction for attenuation of radar reflectivity using polarization data [J]. Quart. J. Roy. Meteor. Soc., 124 (551): 2393 – 2415.
- Testud J, Le Bouar E, Obligis E, et al. 2000. The rain profiling algorithm applied to polarimetric weather radar [J]. J. Atmos. Oceanic Technol., 17 (3): 332-356.
- Zrnić D S, Ryzhkov A. 1996. Advantages of rain measurements using specific differential phase [J]. J. Atmos. Oceanic Technol., 13 (2): 454-464.

图 3 订正前 X 波段雷达组合反射率 (2009 年 7 月 31 日 02:59:44 BJT)

Fig. 3 PPI of X-band radar composite reflectivity before correction at 02:59:44 BJT (Beijing time) 31 Jul 2009

图 4 同图 3,但为订正后 Fig. 4 Same as Fig. 3, but after correction

图 5 S波段雷达组合反射率图 (2009 年 7 月 31 日 03:02:12 BJT)

Fig. 5 PPI of S-band radar composite reflectivity at 03:02:12 BJT 31 Jul 2009

图 8 八个具体区域的 Z_H平均值比较 Fig. 8 Comparison results of Z_H averaged for the eight areas