```
修改日期: 2021-06-17
修改日期: 2021-08-11
修改日期: 2021-08-31
```

碳卫星高光谱二氧化碳探测仪基于太阳夫琅禾费吸收线的

在轨波长定标

毕研盟1 王倩 1,2,3 杨忠东1 刘成保1 蔺超4 田龙飞5 张乃强6

王雅澄7

1.国家卫星气象中心,北京 100081
 2.中国科学院合肥物质科学研究院安徽光学精密机械研究所,合肥 230031
 3.中国科学技术大学,合肥 230026
 4.中国科学院长春光学精密机械与物理研究所,长春 130033
 5.中国科学院微小卫星创新研究院,上海 201203
 6.华云星地通科技有限公司,北京 100081
 7.航天恒星科技有限公司,北京 100086

摘要 大气二氧化碳(CO₂)探测仪(Atmospheric Carbon dioxide Grating Spectrometer-ACGS) 搭载于中国全球二氧化碳观测科学试验卫星(TanSat),通过探测 0.76µm, 1.61µm, 2.06µm 波 段的反射太阳光谱,采用最优估计算法反演大气 CO₂浓度。满足高光谱分辨率和高精度 CO₂ 浓度反演需求,精确探测光谱波长的变化非常重要。本文以高分辨率太阳参考光谱的夫朗禾 费吸收线作为参考基准,利用 ACGS 对太阳的观测光谱计算了 ACGS 三个谱段通道中心波 长位置在一年内的变化情况。结果显示,三个谱段的波长变化在光谱分辨率 10%的以内,满 足光谱定标精度需求。这种变化可能是由于在轨仪器状态变化引起,特别是在轨运行温度变 化引起的。ACGS 波长的微小变化需要在产品反演中进行修正。基于独立太阳夫琅禾费吸收 线的在轨光谱定标方法不仅可以有效监测 ACGS 的光谱稳定性,还可以为 L2 产品的处理的 提供参考信息¹。

关键词 高光谱 二氧化碳 光谱定标 太阳光谱 文章编号 中图分类号 P407.4 文献标识码 A doi: 10.3878/j.issn.1006-9895.2108.21069

TanSat ACGS on-orbit wavelength calibration by use of

收稿日期 2021 年 4 月 21 日; 网络出版日期 **作者简介** 毕研盟,男,1979 年出生,博士,研究员,主要从事高光谱遥感、微波遥感以及 GNSS 掩星研 究。E-mail:biym@cma.gov.cn **通讯作者** 王倩,E-mai:qwang@cma.gov.cn **资助项目** 国家 863 计划资助(2011AA12A104)

BI Yanmeng¹, WANG Qian^{1,2,3}, YANG Zhongdong¹, LIU Chengbao¹, LIN Chao⁴, TIAN Longfei⁵, ZHANG Naiqiang⁶, and WANG Yacheng⁷

- 1. National Satellite Meteorological Center, CMA, Beijing 100081
- 2. Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science, Hefei 230031
- 3. University of Science and Technology of China, Hefei 230026
- 4. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, Changchun 130033
- 5. Innovation Academy for Microsatellites, Chinese Academy of Science, Shanghai 201203
- 6. HuaYun ShineTek, Beijing 100081
- 7. Space Star Technology co., LTD, Beijing 100086

Abstract The spectra measured by the Atmospheric Carbon dioxide Grating Spectrometer (Atmospheric Carbon dioxide Grating Spectrometer - ACGS) carried by the Chinese global carbon dioxide monitoring scientific experimental satellite (TanSat) in the band of 0.76μ m, 1.61μ m and 2.06µm can be used for the retrieval of carbon dioxide (CO₂) concentrations by fitting the observations and simulations using the optimal estimation algorithm. Accurately detecting the change of the center wavelength is highly important because of its very high spectral resolution and accuracy requirement for product retrieval. The variations of center wavelength for all three bands of ACGS have been calculated on the locations of the Fraunhofer lines by comparing the solarviewing measurements and the high-resolution for each band have been detected. The changes are probably caused by vibration and the instrument status difference between the ground and space, especially temperature variation on orbit. The scheme described here can be used not only for monitoring spectral stability but also to gain spectral knowledge prior to the level-2 product retrieval.

Keywords High-resolution, Carbon dioxide, Spectral calibration, Solar spectra

1 引言

探测全球大气 CO₂浓度的分布对了解碳源汇,改进对气候变化的认识都非常重要(Miller et al., 2007; Chatterjee et al., 2017; Schwandner et al., 2017)。中国全球二氧化碳观测科学试验 卫星(TanSat)在 2016年11月21日成功发射,运行在 700km 的太阳同步轨道上,过境时 间约为 13:30。碳卫星探测的主要目标是区域到大陆尺度的大气 CO₂浓度分布,探测精度是 1%(1-4ppm)。碳卫星搭载的大气二氧化碳光栅光谱仪(Atmospheric Carbon dioxide Grating Spectrometer - ACGS)是一个三谱段光栅光谱仪,探测波段为中心波长在 0.76µm 的 O₂ 吸收 带(O₂A), 1.61µm 的弱 CO₂ 吸收带(WCO₂)和 2.06µm 的强 CO₂ 吸收带(SCO₂)。ACGS 仪器的一次观测可以获取 9个空间象元的数据,数据采样率为 3.3Hz,观测视场的空间分辨 率为 2km(沿轨)× 3km(跨轨),星下探测幅宽是 20km (Yang et al., 2020)。

ACGS 可以获取大气 CO₂浓度、气溶胶和云的信息。云会阻挡太阳辐射到达地面,遮挡 云下大气 CO₂柱含量的探测,因此 CO₂的反演首先要进行云检测。O₂A 带的观测光谱包含 云量和地表气压信息。XCO₂是 CO₂柱浓度和干空气柱浓度之比,称为气柱平均干空气质量 混合比,通过 WCO₂和 SCO₂波段的观测光谱和模拟光谱的迭代拟合得到(O'Dell et al., 2012; Crisp et al., 2012)。在迭代过程中,若仪器效应和多普勒效应导致的观测和模拟光谱偏差较 大,可能导致 XCO₂反演失败。因此,评估仪器效应引起的光谱变化对 XCO₂反演至关重要。 在轨光谱定标涉及到仪器线型(Instrument Line Shape - ILS)定标和波长定标两个方面。 ILS 代表单个象元探测器对单色光的响应。Sun et al. (2017)针对 OCO-2 仪器利用不同的分 析函数拟合 ILS,分析了仪器在轨的 ILS 变化。对 TanSat,由于 ACGS 的 ILS 的顶端和翼区 存在一些不规则的结构特征,上述分析函数不能够完全表征 ACGS 的 ILS 特征(如图 1 所 示)。因此,本文假设 ILS 在轨状态保持不变,仅研究仪器在轨运行期间相对于发射前的波 长变化。不同于 OCO-2 卫星的对日观测采用的漫透射板,碳卫星 ACGS 的对日观测采用了 漫反射板,因此对碳卫星 ACGS,以上线型不变的假设是合理的。另外,碳卫星没有会引起 翼区加宽的在轨去污染事件 (Crisp et al., 2017),因此,本文假设在轨 ILS 不变,重点在于波 长定标。

在轨光谱定标通常是利用观测的太阳辐射光谱和参考太阳光谱拟合计算实现的(Chance, 1998; Liu et al., 2005; Liu et al., 2010; Munro et al., 2016; Sun et al., 2017)。相对于以往拟合全 谱段太阳吸收线的方法,本研究利用独立的太阳夫琅禾费吸收线作为参考基准。这种方法的 特点在于,利用 ACGS 在北极附近通过漫反射板观测的太阳夫琅禾费吸收线的真实位置直 接计算波长偏移量,避免了复杂的拟合匹配过程。但它的缺点是由于吸收线的位置可能受到 辐射定标不确定性的影响,分析结果也轻微依赖于所选的基准吸收线。

本文的分析采用的是 ACGS 最新版本的 L1 级辐射数据。Yang et al. (2020) 给出了 TanSat 早期在轨测试结果,在前期工作基础上,我们对仪器暗背景定标、光谱定标偏差进行了订正, 形成了新版本的一级辐射光谱数据;并进一步优化我们光谱定标算法,给出了从卫星发射入 轨后一年的光谱定标结果。这一结果明显揭示了 ACGS 波长对在轨状态的依赖,表现为在 轨太阳定标观测模式次数变化后对光谱定标产生影响,随后仪器状态稳定后,O₂A带波长偏 差出现减小的趋势,两个 CO₂带保持稳定。

2 基于独立太阳吸收线的光谱定标方法

碳卫星 ACGS 通过漫反射板进行对日观测,如果直接观测太阳,仪器会饱和。漫反射板的作用是减弱辐射强度,不会改变 ILS 线型特征。 在 2017 年 2 月-7 月的在轨测试阶段, ACGS 在北极附近会进行每两轨一次的对日观测,每天可以获取 6~7 轨的对日观测数据。在 轨测试后, ACGS 对日观测的频率降低为每天 1 次。对日观测是在完成科学观测后,进入阴 影区之前进行的,共 10 分钟的时间,包括 3 分钟的指向准备,5 分钟的对日观测和 2 分钟 的太阳掩星观测。中间 5 分钟的对日观测可以得到一千多帧的太阳光谱数据。太阳光谱经过 多普勒效应修正后,合并成一个过采样光谱,用于进行光谱定标精度的评估。

ACGS 采用二维探测器对每个谱段的辐射数据采样, 探测器的一维是空间维, 一维是光 谱维。O₂A 带有 1242 个光谱象元, 两个 CO₂ 谱段的光谱象元数均为 500。为保证光谱采样 率大于 2,同时保持较高的信噪比水平, WCO₂和 SCO₂ 谱段的光谱分辨率分别设置为 0.14nm 和 0.18nm, 这一光谱分辨率均低于美国 OCO-2 的光谱参数设置, O₂A 带保持与 OCO-2 相 等的水平 (Frankenberg et al., 2014; Crisp et al., 2017)。表 1 给出了碳卫星 ACGS 的详细光谱 参数。

Table 1. Spectral parameters of the TanSat ACGS instrument				
参数	O ₂ A	WCO ₂	SCO ₂	
谱段范围(nm)	758-778	1594-1624	2042-2082	
光谱分辨率(nm)	0.033-0.047	0.12-0.14	0.16-0.18	
光谱象元数	1242	500	500	
光谱采样率	>2	>2	>2	

表 1 TanSat ACGS 主要光谱参数

空间象元数	9	9	9

ACGS 每个象元的 ILS 和波长都是发射前由可调谐激光器测定的(Yang et al., 2018)。 图 1 是星下象元每个谱段三个中间象元的 ILS 线型。每个象元的波长 λ_p由 5 次多项式表示:

$$\lambda_p = \sum_{i=0}^5 c_i \times p^i$$

p 表示象元序号,对应探测器的第一个象元到最后一个象元。每个探测器的象元总数如表 1 所示。c 是色散系数,是实验室光谱定标测得的,每个空间象元和波长均有各自对应的系数。 图 2 给出了三个谱段,第五个空间象元,波长与光谱象元的函数关系。5 次多项式拟合的精 度足够满足 ACGS 的 1/10 光谱分辨率的光谱定标精度需求。

函工 实验呈测定的 02A 带, WCO2 带种 SCO2 带至 下家几时干心区域的 ILS Fig. 1 The preflight ILS functions at three adjacent pixels located in the central section of the FPA for three bands

(1)

图 2 星下象元 O₂A 带, WCO₂ 带和 SCO₂ 带波长和象元序号的对应关系 Fig. 2 An example of wavelength as a function of pixel index in the focal plane at FOV 5 for three bands

本研究采用高分辨率的 Kurucz 太阳光谱作为参考光谱 (Fontenla et al., 1999; Chance and Kurucz, 2010),最早为日本 GOSAT 卫星研发,它可以满足 TanSat 高光谱 CO₂ 探测仪光谱定标 的需求。Kurucz 太阳光谱的采样分辨率为 0.001nm,数据可以从网站获取 (http://Kurucz.harvard.edu/sun [2020-02-10])。 ACGS 的太阳观测光谱可以清晰分辨出太阳外层大气元素吸收形成的太阳夫琅禾费吸收线。Kurucz 太阳光谱的光谱分辨率比 ACGS 高一个量级,因此,Kurucz 太阳光谱可以作为 ACGS 在轨光谱定标的参考光谱。

图 3 Kurucz 太阳光谱和选择的参考吸收线位置

Fig. 3 Kurucz solar spectra and the locations of Fraunhofer lines selected as reference in three bands

图 3 给出了对应于 ACGS 三个谱段的 Kurucz 太阳光谱和用于 ACGS 光谱定标的参考吸 收线位置。基于理论太阳光谱的光谱定标方法,首先需要选择合适的吸收线中心位置作为参 考标准。为了能够清晰从光谱中分辨出来,基准吸收线需要独立可分辨,并且具有一定的吸 收强度。仪器在轨运行后的波长漂移是由仪器在轨运行时的仪器效应和多普勒效应造成的。 多普勒效应可以通过卫星和太阳的相对速度计算得到,多普勒效应的订正满足以下公式:

$$f_d = f\left(1 + \frac{V_{rel}}{c}\right)$$

(2)

其中, c 是光速, f 是原始太阳辐照度的频率。V_{rel} 是卫星和太阳的相对速度, 当 V_{rel} 为正时, 表示两者相互靠近。图 4-6 为 O₂A 带、WCO₂ 带和 SCO₂ 带在对日观测时多普勒频移量的长时间变化序列图。太阳定标时的 V_{rel} 大约为 7km/s, 对 O₂A 带而言, 多普勒效应引起的波长 漂移约为 1/2 光谱分辨率。图中的多普勒频移量的个别离群值是由于星上计时误差造成相对 速度计算异常导致的。完成多普勒效应订正后, 观测光谱合并成一个过采样的太阳光谱, 通过选定的吸收线位置, 对仪器效应引起的波长偏移进行订正。

图 7 给出了光谱定标的具体流程。ACGS 对日观测时间约 5 分钟,共可获得 1457 帧数据,选择其中观测稳定的 100 帧辐射光谱数据,进行多普勒频移订正,将这些订正好的光谱 合并成一个过采样的太阳观测光谱,根据选择的参考光谱位置,提取对应的太阳夫琅禾费吸 收线的观测值,进一步采用高斯拟合寻峰确定出中心位置,与 Kurucz 参考光谱进行比较, 得到观测光谱的波长偏移量。

3 定标结果

基于上述吸收线选择标准,对 O₂A,WCO₂和 SCO₂ 谱段分别选择了 10、8 和 8 条参考 吸收线。图 3 给出了 ACGS 三个谱段中,高光谱分辨率参考光谱和对应的参考吸收线位置。 这些吸收线比较均匀的分布在整个谱段。碳卫星 ACGS 在轨测试阶段,基于选择的基准吸 收线作为参考,完成了 ACGS 的光谱定标。这个方法也成功应用于 ACGS 的在轨监测和原 始数据到 L1 辐射数据产品的处理中。

波长偏移是基于多普勒订正后的观测光谱与参考夫琅禾费吸收线计算完成的。图 8-10 给出了 2017 年基于太阳观测光谱计算的波长偏移量的时间变化序列图,图中红色虚线表示 光谱定标精度指标范围。对每个空间象元,O₂A、WCO₂和 SCO₂的平均波长偏移量分别为-0.002nm,-0.007nm 和-0.008nm。三个谱段的波长偏移量存在一定的变化特征,不同空间象元 的变化趋势具有较好的一致性,波长变化范围满足光谱分辨率十分之一的精度需求。图中显 示的每个空间象元间波长偏移的系统偏差是由于光学系统和探测器阵列(FPAs)之间存在微 小的热梯度,这种热变化引起主要光学元件几何特征可能发生轻微变化造成的。2017 年 5 月 24 日(DOY 144)的明显变化是由于太阳定标观测频次从在轨测试期间的每天 6~7 次变为 每天 1 次造成的。这种对日观测次数的转换对整个系统热平衡有显著影响。

Fig. 8 The time series of wavelength change for 9 spatial FOVs in O₂ A-band

图 10 SCO₂带 9 个空间象元波长偏移的时间序列图 Fig. 10 The time series of wavelength change for 9 spatial FOVs in SCO₂ band

根据上述方法,针对选定的基准吸收线,统计分析了各波段和各空间象元的波长偏移量。 图 11-13 给出了 2017 年观测的太阳光谱和参考夫琅禾费吸收线波长偏移量的统计结果。由 图可见, SCO2 谱段的统计偏差最大,其次是 WCO2 带,O2A 带的偏差最小。SCO2 的偏差最 大是因为这个波段的噪声高于其他两个波段,同时,温度变化对 SCO2 波段的影响也显著大 于 O2A 带和 WCO2 带。O2A 带采用的是硅探测器,两个 CO2 谱段用的是碲镉汞探测器,碲 镉汞探测器对微小的温度变化敏感性更高。综上所述,尽管 O2A 带、WCO2 带和 SCO2 带的 太阳光谱能量比紫外、可见光波段的弱很多,采用独立太阳夫琅禾费吸收线的方法仍然可以 评估 ACGS 的波长偏移量。

图 11 O₂A 带基准吸收线位置波长偏移量统计结果

Fig. 12 The statistics of wavelength change on the locations of selected Fraunhofer lines in O₂ Aband

band

Fig. 13 The statistics of wavelength change on the locations of selected Fraunhofer lines in SCO₂ band

4 结论

本研究采用独立太阳夫琅禾费吸收线的方法评估了 TanSat ACGS 的在轨波长变化。该 方法不仅可以监测波长稳定性,还可以获取数据处理中必须的光谱定标精度先验信息。本文 基于 ACGS 通过漫反射板对日观测获得的太阳光谱和选定的独立夫琅禾费吸收线,分析得 到了 ACGS 在轨波长偏移。高分辨率的太阳光谱可以为选择的吸收线提供准确的位置,作 为参考标准。这种方法计算的偏移量表现出很好的一致性,波长偏移量小于光谱分辨率的 10%,满足 ACGS 的在轨光谱定标需求。

参考文献(References)

Chance K. 1998. Analysis of BrO measurements from the Global Ozone Monitoring Experiment[J]. Geophysical Research Letters, 25: 3335–3338. doi:10.1029/98GL52359

Chance, K and Kurucz R L. 2010. An improved high-resolution solar reference spectrum for earth's atmosphere measurements in the ultraviolet, visible, and near infrared[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 111: 1289–1295. doi: 10.1016/j.jqsrt.2010.01.036

Chatterjee A, Gierach M M, Sutton A, et al. 2017. Influence of El Niño on atmospheric CO2 over the tropical Pacific Ocean: Findings from NASA's OCO-2 mission[J]. Science, 358. doi:10.1126/science.aam5776

Crisp D, Fisher B, O'dell C W, et al. 2012. The ACOS CO₂ retrieval algorithm – Part II: Global XCO2 data characterization[J]. Atmospheric Measurement Techniques, 5: 687–707. doi: 10.5194/amt-5-687-2012

Crisp D, Pollock H R, Rosenberg R, et al. 2017. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products[J]. Atmospheric Measurement Techniques, 10: 59–81.doi:10.5194/amt-10-59-2017

Fontenla J, White O R, Fox P, et al. 1999. Calculation of Solar Irradiances. I. Synthesis of the Solar Spectrum[J]. The Astrophysical Journal, 518: 480–499. doi: 10.1086/307258

Frankenberg C, Pollock R, Lee R A M, et al. 2014. The Orbiting Carbon Observatory (OCO-2): spectrometer performance evaluation using pre-launch direct sun measurements[J]. Atmospheric Measurement Techniques, 8: 301–313. doi: 10.5194/amt-8-301-2015

Liu X, Chance K, Sioris C E, et al. 2005. Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: Algorithm description and validation[J]. Journal of Geophysical Research (Atmospheres), 110: D20307. doi:10.1029/2005JD006240

Liu X, Bhartia P K, Chance K, et al. 2010. Ozone profile retrievals from the Ozone Monitoring Instrument[J]. Atmospheric Chemistry and Physics, 10: 2521–2537.doi:10.1029/2005JD006240

Miller C, Crisp D, DeCola P, et al. 2007. Precision requirements for space-based XCO₂ data[J]. Journal of Geophysical Research, 29(2):143-145. doi: 10.1029/2006JD007659

Munro R, Lang R, Klaes D, et al. 2016. The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing - an overview[J]. Atmospheric Measurement Techniques, 9: 1279–1301. doi: 10.5194/amt-9-1279-2016

O'Dell C, Connor B, Boesch H, et al. 2012. The ACOS CO₂ retrieval algorithm - Part 1: Description and validation against synthetic observations[J]. Atmospheric Measurement Techniques, 5(1): 99-21.doi: 10.5194/amt-5-99-2012

Schwandner F M, Gunson M R, Miller C E, et al. 2017. Spaceborne detection of localized

carbon dioxide sources[J]. Science, 358. doi: 10.1126/science.aam5782

Sun K, Liu X, Nowlan C R, et al. 2017. Characterization of the OCO-2 instrument line shape functions using on-orbit solar measurements[J]. Atmospheric Measurement Techniques, 10: 939–953. doi:10.5194/amt-10-939-2017

Yang Z D, Zhen Y Q, Yin Z S, et al. 2018. Laboratory spectral calibration of the TanSat atmospheric carbon dioxide grating spectrometer, Geoscientific Instrumentation[J]. Methods and Data Systems, 7: 245–252. doi:10.5194/gi-7-245-2018

Yang Z D, Bi Y M, and Wang Q, et al. 2020. Inflight Performance of the TanSat Atmospheric Carbon Dioxide Grating Spectrometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 99:1-13. doi:10.1109/TGRS.2020.2966113

