ISSN 1006-9895

CN 11-1768/O4

Application Research of the NASA/Goddard Longwave Radiative Scheme in the GRAPES_Meso Model
Author:
Affiliation:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    The National Aeronautics and Space Administration (NASA)/Goddard long-wave radiative scheme is integrated into the Global/Regional Assimilation and Prediction System Mesoscale (GRAPES_Meso) model in this study. One month of simulation experiments conducted in China and its nearby areas are compared with the corresponding National Centers for Environmental Prediction (NCEP) reanalysis data recorded in April 2006. The results show that the distribution of the clear-sky outgoing longwave radiation flux (OLRC) at the top of atmosphere and downward long wave radiation flux at ground (GLWC) of 24-and 48-hour forecasts by using the GRAPES_Meso model are in good agreement with the NCEP reanalysis data. The monthly average percentage error of the OLRC of these forecasts is within -10% and 10%. Although the monthly average percentage error of the GLWC is slightly larger than that of the OLRC, both are within a reasonable and acceptable range. The comparison study of the daily averaged anomaly correlation coefficient and standard error of these fluxes of the both forecasts show that the monthly averaged anomaly correlation coefficients of the OLRC and the GLWC of the 24-hour forecast are 0.96 and 0.98, respectively, and that the monthly averaged standard errors are 24.54 W m-2 and 27.23 W m-2, respectively. Those of the OLRC and the GLWC of the 48-hour forecast are 0.95 and 0.98 and 22.43 W m-2 and 27.64 W m-2, respectively. Overall, the daily averaged anomaly correlation coefficient of the OLRC and the GLWC of both 24-hour and 48-hour forecasts are above 0.93, and the daily standard error is within 31 W m-2. Moreover, the correlation of the GLWC and the NCEP reanalysis data is stronger than that of the OLRC, whereas the standard error of the OLRC and the NCEP reanalysis data is smaller than that of the GLWC. A comparison of the longwave radiative schemes of the rapid radiative transfer (RRTM) and the NASA/Goddard models reveal that the forecasting of the two schemes is essentially identical. The results of OLRC and the GLWC show that NASA/Goddard longwave radiative scheme may be appropriate for application to the GRAPES_Meso model.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 02,2013
  • Revised:September 08,2013
  • Adopted:
  • Online: May 06,2014
  • Published: