ISSN 1006-9895

CN 11-1768/O4

Multi-spatial Modes of East Asian Summer Monsoon Activity: Comparative Analysis of Various Reanalysis Data
Author:
Affiliation:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
    Abstract:

    Based on ERA-40, ERA interim, JRA-25, and NCEP-DOE AMIP-Ⅱ (NCEP-2) reanalysis data (1979-2002), we compare the basic features of the multi-spatial modes, which reflect the anomalous activity of the East Asian Summer Monsoon (EASM). The relevant atmospheric general circulation anomalies, as well as their association with the summer rainfall in China, are further explored by using statistical methods including correlation and extended empirical orthogonal function (EEOF) analysis. Results suggest that: (1) the EASM exhibits three typical spatial modes with significant differences, which are independent of the dataset sources, with the exception of NCEP-2 in which slightly different features are shown. (2) The first mode represents an out-of-phase variation of the summer wind between southern and northern China. The associated principal component has significant interannual variability with 3-6 and 8 year periods. Correspondingly, the positive (negative) time coefficients, 850 hPa wind, 500 hPa geopotential height, and sea level pressure (SLP) anomalies exhibit the “-+-” (“+-+”) meridional tripole pattern in East China, from the western North Pacific (WNP), across Japan to the Okhotsk Sea. The summer precipitation tends to decrease (increase) in the middle and lower reaches of the Yangtze River, while it increases (decreases) over the east of northeast China, the southeast coast of China, and western Yunnan. (3) The second mode represents a consistency variation in the dominant mode of the EASM, which shows an interdecadal shift around 1993 and presents an alternating distribution with a quasi-12-year cycle. For a case with a positive (negative) time coefficient caused by the distribution of summer 850-hPa wind fields, there is an intensified anomalous anticyclonic circulation around Lake Baikal. There are also corresponding anomalous 500-hPa geopotential height fields exhibiting a “+-+” (“-+-”) anomalous zonal wave pattern over the midhigh latitudes, originating from western Europe, across the West Siberia plain, and extending to northeast Asia. The relationship between the second mode and the summer mean SLP is characterized by an almost positive (negative) correlation, which causes the weakening (strengthening) of the EASM. Meanwhile, the summer precipitation mode of “flooding in the south and drought in the north” (“drought in the south and flooding in the north”) appears. (4) The third mode reflects the westward and eastward movement of the EASM, which exhibits a 12-16-year periodic variation. When the time coefficient is in its positive (negative) phase, southerly (northerly) anomalies cover the areas east of 115o E, and northerly (southerly) anomalies appear in the region west of 115o E. The SLP and the 500-hPa geopotential height show very similar correlation patterns, i.e., a “-+” (“+-”) wave-train-like pattern from Okhotsk to the ocean east to Japan and an anomalous quasi-zonal teleconnection pattern in northern Eurasia. Nevertheless, the distribution of summer precipitation anomalies in most areas of China is negative (positive), with significant anomalies found only near the Huang-Huai basin.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 08,2013
  • Revised:May 26,2014
  • Adopted:
  • Online: January 07,2015
  • Published: