Chengdu University of Information Technology, Chengdu 610225
2.
Key Laboratory of Middle Atmosphere and Global Environment Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
3.
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044
4.
University of Science and Technology of China, Hefei 230026
Funded by:the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDA17010101), National Natural Science Foundation of China (Grant 41574141)
综上可以看出,与产生红色精灵的夏季雷暴相比,全世界对冬季雷暴产生红色精灵的研究较少,而且研究仅集中在日本、阿根廷和地中海地区。此外,由于综合同步观测资料的缺乏,前人的研究绝大多数是对产生红色精灵冬季母体雷暴的研究,对与其相关的闪电活动规律尤其是产生红色精灵的母体闪电特性研究较少。本文利用中国台湾省福卫二号卫星(FORMOSAT-2)搭载的高空大气闪电成像仪(Imager of Sprites and Upper Atmospheric Lightning,简称ISUAL)获取的光学观测数据,地基多普勒天气雷达资料(NEXRAD)、美国国家闪电定位资料(National Lightning Detection Network,简称NLDN)、杜克大学获取的超低频(Ultra low frequency,简称ULF)磁场数据、美国国家环境中心/气候预测中心(National Centers for Environmental Prediction/Climate Prediction Center,简称NECP/CPC)提供的云顶亮温和美国怀俄明大学的探空资料等综合观测数据,对2008年12月28日在北美地区发生的一次冬季中尺度对流系统上空捕捉到的两例红色精灵及其母体雷暴和闪电进行了详细研究,这也是首次对北美地区冬季雷暴产生的红色精灵开展研究,研究结果丰富了对冬季红色精灵的认识。
2 数据和方法
红色精灵的图像来自于高空大气闪电成像仪ISUAL。ISUAL是世界上第一个专门从卫星上观测TLEs的科学仪器。从卫星上对TLEs进行观测研究有着非常独特的优势,可以很好的避免光在大气中的衰减,从而更加准确的测量TLEs的特性。此外,也有助于对TLEs进行全球观测。ISUAL在夏季的覆盖范围是45°S~25°N,而冬季则是25°S~45°N(Chen et al., 2008)。ISUAL系统主要包括一个增强型CCD成像仪(用于拍摄TLEs的图像并记录它的动态发展过程),一个六通道分光光度计和两个阵列光度计(分析TLEs的垂直空间分布随时间的变化情况);CCD成像仪以每秒100帧的速度连续拍摄图像,分光度计以10 kHz的速率连续采样,阵列光度计以2 kHz或20 kHz的频率连续采样,所有的数据都被写入一系列循环存储器中(Chern et al., 2003)。ISUAL是中国台湾省一颗具有高分辨率的遥感卫星“福卫二号”卫星(FORMOSAT-2)上的有效荷载,FORMOSAT-2沿着距地890 km的太阳同步轨道运行,每天绕地球14圈,即轨道周期为103 min(Chern et al., 2008)。当进入夜间时,卫星从南向北飞行,此时ISUAL以向东的视角进行观测。ISUAL对红色精灵的定位工作是根据其携带的成像仪获取的图像得到的,更详细的信息可参见Chern et al(2008)。ISUAL的定位精度与其距事件发生的距离有关,平均而言精度优于每单位像素50 km。自2004年5月21日发射升空到2015年FORMOSAT-2终止服役,在其11年的寿命中,成功的记录到了将近40000例瞬态发光事件,其中包括约2600例红色精灵。
在杜克大学附近的Duke Forest(35.971°N,79.094°W),两个传感器记录了产生红色精灵母体闪电的磁场信号,两个传感器的工作频段分别为超低频(Ultra-low frequency,ULF,<1~40 Hz)和极低频(Very low frequency,VLF,50 Hz~30 kHz),采样率分别为2.5 kHz和100 kHz。我们的分析主要利用ULF磁场信号并根据Cummer and Inan(1997)发展的方法估计产生红色精灵母体闪电的脉冲电荷矩变化(impulse charge moment change,简称iCMC;定义为回击发生之后前2 ms的总电荷矩改变量)。利用NLDN提供的闪电定位资料分析与红色精灵和母体雷暴相关的闪电活动。自1989年来,NLDN一直在探测闪电产生的电磁辐射,并且为整个美国大陆提供详细的闪电数据(Cummins et al., 1998)。NLDN可以同时探测云闪和地闪,数据信息包括闪电放电发生的时间、位置(经纬度)、极性和峰值电流。NLDN对于地闪回击的探测效率为90%~95%,定位精度优于0.5 km,而对云闪的探测效率约为25%~30%(Cummins and Murphy, 2009)。通过对比NLDN闪电定位数据的时间和红色精灵发生的时间可以寻找红色精灵的母体闪电(Lyons et al., 2008)。
图 2 2008年12月27日12:00小石城站(LZK)探空图。黑色表示状态曲线,绿色表示环境温度曲线(层结曲线),黄色表示环境露点温度曲线 Figure 2 SkewT–logp diagram for LZK at 1200 UTC on December 27, 2008. The black, green, and yellow solid lines represent parcel adiabatic lapse rate, temperature, and dew point, respectively
图3为由NCEP/CPC提供的不同时刻云顶亮温,可以从宏观上揭示产生红色精灵雷暴的特征,图中还显示了以图中所示时间为中心半小时内(图中时刻前后15 min)闪电的位置。由图3可以清楚的看出雷暴是自西向东发展。在雷暴发展过程中,地闪都主要集中在云顶亮温低值区并且分布在对流线附近。雷暴大约在27日15:00开始出现,之后快速发展并在00:00达到云顶亮温的最低值,大约为−63°C,表明此时云内有较强的上升气流。在01:00,云顶亮温较上一时刻逐渐升高(−62°C),云区变大,雷暴开始逐渐减弱,闪电活动也随之减弱。在01:00之后,云顶亮温大幅度的升高,表明雷暴变得更弱。本文中红色精灵发生在04:46和04:47时刻,由图3f可知,在05:00(距离红色精灵发生最近的时刻),与前几个时刻相比闪电活动大幅度降低,云顶亮温较高,表明雷暴处于消散阶段。红色精灵位于云顶亮温大致在−40°C~−50°C的区域内,这与São Sabbas et al.(2010)的研究结果一致,他们发现阿根廷冬季雷暴上空的红色精灵发生在云顶亮温−45°C~−53°C的层状区。Lyons(2006)研究发现美国中部产生红色精灵的夏季雷暴,最低云顶亮温在−70°C~−75°C范围内,大多数红色精灵发生在亮温低于−65°C的区域。Soula et al.(2009)对欧洲两个产生了27例红色精灵夏季MCS的研究发现红色精灵发生在云顶亮温−50°C~−55°C的区域。结合本文的研究结果发现,与有些夏季雷暴相比(Lyons, 2006),冬季红色精灵可能更容易出现在云顶亮温相对较高的区域。
图 3
图 3 2008年12月28日(a‒f)00:00~05:00不同时刻云顶亮温与闪电(图中所示时刻前后15 min)的叠加(白色“×”表示负地闪,玫红色“+”表示正地闪,红色大“×”表示红色精灵) Figure 3 Cloud-top brightness temperature from (a‒f) 0000 UTC to 0500 UTC on December 28, 2008, with flashes within 15 min centered at the time shown in the figure (the white “×,” rose red “+” and red plus “×” denote −CG flash, +CG flashes, and red sprites, respectively).
图 6 2008年12月红色精灵母体雷暴的不同雷达反射率面积演变(图中虚线为红色精灵发生时间) Figure 6 Areal evolution of different radar reflectivities during the sprite-producing thunderstorm on December, 2008 (the dotted line in the picture shows the occurrence time of the red sprites).
为了进一步探讨产生红色精灵的雷暴特征,图7给出了04:45(距离红色精灵发生最近时刻)雷达组合反射率与前后15 min内地闪的叠加及雷达反射率的垂直剖面,其中黑色和红色“×”分别代表负地闪和正地闪,两个母体闪电分别被标为CG1和CG2,蓝色大“+”表示红色精灵。如图7a所示,两个红色精灵的母体闪电位于雷达反射率大约为25~35 dBZ的层状云降水区,与Adachi et al.(2005)的结果相反,其发现日本冬季红色精灵的母体闪电发生在强对流区,而不是传统的层状云区,但与之前对发生在北美地区的夏季红色精灵的研究结果一致(Lyons, 1996, 2006; Lyons et al., 2003)。红色精灵和其母体闪电的水平偏移距离分别为62 km和25 km。Lyons(1996)分析了发生在北美的7例夏季红色精灵事件,发现其中5例红色精灵与其母体闪电之间的偏移距离在50 km内。São Sabbas et al.(2003)对34个夏季红色精灵进行分析得出大约有三分之二的红色精灵与其母体闪电的偏移距离在50 km内,最大的偏移距离为82 km。我们分析的两个冬季红色精灵与其母体闪电的水平偏移距离最大为62 km。应该注意的是,本文中对红色精灵的观测采用的是卫星(ISUAL)观测方式。Lu et al.(2017)利用ISUAL观测得到的113例红色精灵位置与其母体闪电的位置做比较发现红色精灵和其母体闪电的偏移距离在100 km内。
图 7
图 7 (a)2008年12月28日04:45雷达组合反射率图与该时刻前后15 min内地闪的叠加(黑色大“+”表示母体闪电,蓝色大“+”表示红色精灵,黑色“×”表示正地闪,红色“×”表示负地闪,CG1和CG2分别表示两个母体闪电,SP1和SP2分别表示两个红色精灵)。(b)和(c)分别为沿(a)中AB线(穿过母体闪电)和CD线所做的垂直剖面
Figure 7 (a) Overlap of composite radar reflectivity at 0445 UTC December 28, 2008 with CG flashes within 15 min centered at the time shown on the figure (the black plus “+”, blue plus “+”, black “×”, and red “×” represent the parent strokes, sprites, +CG, and −CG flashes, respectively; CG1 and CG2 represent parent strokes; and SP1 and SP2 represent red sprites). (b) and (c) show the vertical cross section along line AB (passing through the parent strokes) and line CD, respectively
两个母体闪电的位置相对较分散,同一雷暴中,其他地闪大多也都发生在层状云降水区,而对流区产生的地闪数量较少。垂直截面可以更清楚的显示母体雷暴的结构,图7b为沿图7a中AB线(穿过母体闪电)做的垂直剖面。如图所示,CG1和CG2分别位于回波顶高大约为2.5 km和5 km的雷暴区域,对流区中有相对较强的上升气流(如>35 dBZ的雷达反射率显示那样),雷暴的最大回波顶高低于10 km。沿图7a中CD线的垂直剖面显示了相似的雷暴结构(图7c)。应该注意的是,由于缺少VHF资料,这里并不能知道CG传输的源电荷位置。Lu et al.(2013)利用VHF技术对正极性红色精灵进行了详细的分析,得出红色精灵的母体闪电通常起始于对流区,之后沿着一条倾斜的路径传播到层状区并将大量电荷转移到地面从而产生红色精灵。
5 超低频磁场揭示红色精灵母体闪电特征
闪电的iCMC被认为是红色精灵产生与否的关键因素(Hu et al., 2002; Cummer et al., 2013),虽然它不一定能代表红色发精灵的母体闪电电荷转移的确切程度,因为产生红色精灵的母体闪电的强度阈值会因夜间电离层状态的不同而有所差别(Qin et al., 2013)。例如,Cummer and Lyons(2005)发现在两个不同的夜晚,产生红色精灵正地闪iCMC的阈值分别为+350 C km和+600 C km。图8为2008年12月28日ISUAL捕捉到的两例红色精灵事件和由Duke Forest记录到的相关ULF磁场信号。结果表明,ISUAL未观测到伴随的“光晕(halo)”现象,产生两例红色精灵的母体闪电均为单回击正地闪。图8a显示了由NLDN记录到的峰值电流为+183 kA的正回击产生的红色精灵,该红色精灵是一个“圆柱状”红色精灵,主体发光区在垂直方向上比较均匀,两侧没有明显的分支。据估计,产生红色精灵正地闪的iCMC约为+394 C km。如图8a所示,红色精灵足够明亮,可以产生所谓的“精灵电流”(sprite current)信号(图8c)。图8b为由峰值电流为+45 kA的正回击产生的红色精灵,由于红色精灵发光相对较暗,无法判断它的具体形态。其母体闪电有一个较小的iCMC(+117 C km),母体闪电的发展相对简单,ULF磁场上没有看到可分辨的精灵电流信号(图8d)。一般来说,母体闪电的iCMC与红色精灵的光学亮度有着很好的对应关系,iCMC越小,红色精灵的亮度越暗,反之,iCMC越大,红色精灵的亮度越亮。本文的结果较好的验证了前人的结论。
图 8
图 8 2008年12月28日ISUAL探测器捕捉到的(a、b)两例红色精灵事件和(c、d)由Duke Forest记录到的相关超低频ULF磁场信号 Figure 8 (a, b) Two red sprites observed by ISUAL (Imager of Sprites and Upper Atmospheric Lightning) on December 28, 2008, and (c, d) the associated ULF (Ultra Low Frequency) signals in Duke Forest
闪电活动特征是雷暴发生发展过程中的一个重要信息,我们利用由美国国家闪电定位网提供的闪电定位数据分析产生红色精灵冬季MCS的电活动特征。图9为12月27日22:00至次日06:00期间美国国家闪电探测网获得的闪电频数和地闪峰值电流的变化。图9a中给出了正负地闪频数的变化,可见,雷暴发展过程中负地闪占主导地位,而相比于负地闪,正地闪数量少得多;负地闪频数较大时,正地闪则减少。23:00~00:00之间地闪活动明显增加,表明MCS处于成熟阶段,这一时期主要以负地闪为主,而正地闪频数较低。00:00之后负闪活动逐渐减少,负地闪进入消散期,而正地闪大幅度的增加。我们定义POP(Percentage Of Positive CG to total CG)为正地闪与总闪的比率,在图9a中也给出了相应的变化曲线。王志超等(2015)认为POP的增加可能对雷暴系统产生红色精灵起到了很好的指示作用。由图9a可知,POP整体呈上升趋势并在01:30~02:30这一时段出现峰值,之后负地闪频数略有增加POP减少;在04:00~05:00负地闪减少,正地闪频数略有回升,POP再一次出现峰值,这一时段MCS处于消散阶段,ISUAL记录到了两例红色精灵。从图9b中可以看到,在红色精灵发生时,正负地闪频数均处于一个较低的水平,大约为1、2 flashes min−1。红色精灵发生后,正地闪频数略有回升,负地闪频数减少。
图 9
图 9 2008年12月(a)母体雷暴中每6 min地闪频数、(b)红色精灵发生前后约两小时内每6 min地闪频数和(c)地闪峰值电流随时间的演变。(a)和(b)中的黑色虚线表示红色精灵发生的时间,(c)中蓝色“+”为红色精灵的母体闪电,峰值电流分别为+183 kA和+45 kA Figure 9 (a) Evolution of CG flashes per six minutes in the parent thunderstorm; (b) CG flashes per six minutes about two hours before and after the sprite; and (c) peak current of CG flashes in the parent thunderstorm on December, 2008. The black dotted line in (a) and (b) represents the sprite occurrence time, and the blue “+” in (c) represents the parent flashes of the red sprites and the peak currents are +183 kA and +45 kA, respectively
Adachi T, Fukunishi H, Takahashi Y, et al. 2005. Characteristics of thunderstorm systems producing winter sprites in Japan[J]. J. Geophys. Res., 110(D11): D11203. DOI:10.1029/2004JD005012
Barrington-Leigh C P, Inan U S. 1999. Elves triggered by positive and negative lightning discharges[J]. Geophy. Res. Lett., 26(6): 683-686. DOI:10.1029/1999GL900059
Barrington-Leigh C P, Inan U S, Stanley M. 2001. Identification of sprites and elves with intensified video and broadband array photometry[J]. J.Geophys. Res, 106(A2): 1741-1750. DOI:10.1029/2000JA000073
Boccippio D J, Williams E R, Heckman S J, et al. 1995. Sprites, ELF transients, and positive ground strokes[J]. Science, 269(5227): 1088-1091. DOI:10.1126/science.269.5227.1088
Chern A B, Kuo C L, Lee Y J, et al. 2008. Global distributions and occurrence rates of transient luminous events[J]. J. Geophys. Res., 113(A8): A08306. DOI:10.1029/2008JA013101
Chern J L, Hsu R R, Su H T, et al. 2003. Global survey of upper atmospheric transient luminous events on the ROCSAT-2 satellite[J]. J. Atmos. Solar-Terr. Phys., 65(5): 647-659. DOI:10.1016/S1364-6826(02)00317-6
Chou J K, Tsai L Y, Kuo C L, et al. 2011. Optical emissions and behaviors of the blue starters, blue jets, and gigantic jets observed in the Taiwan transient luminous event ground campaign[J]. J. Geophys. Res, 116(A7). DOI:10.1029/2010JA016162
Cummer S A, Inan U S. 1997. Measurement of charge transfer in sprite-producing lightning using ELF radio atmospherics[J]. Geophy. Res. Lett., 24(14): 1731-1734. DOI:10.1029/97GL51791
Cummer S A, Lyons W A. 2005. Implications of lightning charge moment changes for sprite initiation[J]. J. Geophys. Res., 110(A4): A04304. DOI:10.1029/2004JA010812
Cummer S A, Li J B, Han F, et al. 2009. Quantification of the troposphere-to-ionosphere charge transfer in a gigantic jet[J]. Nat. Geosci., 2(9): 617-620. DOI:10.1038/ngeo607
Cummer S A, Lyons W A, Stanley M A. 2013. Three years of lightning impulse charge moment change measurements in the United States[J]. J. Geophys. Res., 118(11): 5176-5189. DOI:10.1002/jgrd.50442
Cummins K L, Krider E P, Malone M D. 1998. The US national lightning detection network/sup TM/and applications of cloud-to-ground lightning data by electric power utilities[J]. IEEE Transactions on Electromagnetic Compatibility, 40(4): 465-480. DOI:10.1109/15.736207
Cummins K L, Murphy M J. 2009. An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN[J]. IEEE Transactions on Electromagnetic Compatibility, 51(3): 499-518. DOI:10.1109/TEMC.2009.2023450
Fukunishi H, Takahashi Y, Uchida A, et al. 1999. Occurrences of sprites and elves above the Sea of Japan near Hokuriku in winter[J]. Eos, Transactions, American Geophysical Union, 80(46): F217.
Ganot M, Yair Y, Price C, et al. 2007. First detection of transient luminous events associated with winter thunderstorms in the eastern Mediterranean[J]. Geophy. Res. Lett., 34(12). DOI:10.1029/2007GL029258
Hayakawa M, Nakamura T, Hobara Y, et al. 2004. Observation of sprites over the Sea of Japan and conditions for lightning-induced sprites in winter[J]. J. Geophys. Res., 109(A1): A01312. DOI:10.1029/2003JA009905
Hayakawa M, Nakamura T, Iudin D, et al. 2005. On the fine structure of thunderstorms leading to the generation of sprites and elves: Fractal analysis[J]. J. Geophys. Res., 110(D6): D06104. DOI:10.1029/2004JD004545
Hobara Y, Iwasaki N, Hayashida T, et al. 2001. Interrelation between ELF transients and ionospheric disturbances in association with sprites and elves[J]. Geophy. Res. Lett., 28(5): 935-938. DOI:10.1029/2000GL003795
Hu W Y, Cummer S A, Lyons W A, et al. 2002. Lightning charge moment changes for the initiation of sprites[J]. Geophy. Res. Lett., 29(8): 1279. DOI:10.1029/2001GL014593
Kuo C L, Chen A B, Lee Y J, et al. 2007. Modeling elves observed by FORMOSAT-2 satellite[J]. J. Geophys. Res., 112(A11): A11312. DOI:10.1029/2007JA012407
Kuo C L, Chou J K, Tsai L Y, et al. 2009. Discharge processes, electric field, and electron energy in ISUAL-recorded gigantic jets[J]. J. Geophys. Res., 114(A4): A04314. DOI:10.1029/2008JA013791
Lang T J, Lyons W A, Cummer S A, et al. 2016. Observations of two sprite-producing storms in Colorado[J]. J. Geophys. Res., 121(16): 9675-9695. DOI:10.1002/2016JD025299
Lu G, Cummer S A, Chen A B, et al. 2017. Analysis of lightning strokes associated with sprites observed by ISUAL in the vicinity of North America[J]. Terr., Atmos. Ocean. Sci., 28(4): 583-595. DOI:10.3319/TAO.2017.03.31.01
Lu G P, Cummer S A, Lyons W A, et al. 2011. Lightning development associated with two negative gigantic jets[J]. Geophy. Res. Lett., 38(12): L12801. DOI:10.1029/2011GL047662
Lu G P, Cummer S A, Li J B, et al. 2013. Coordinated observations of sprites and in-cloud lightning flash structure[J]. J. f Geophys. Res., 118(12): 6607-6632. DOI:10.1002/jgrd.50459
Lu G P, Cummer S A, Tian Y, et al. 2016. Sprite produced by consecutive impulse charge transfers following a negative stroke: Observation and simulation[J]. J. Geophys. Res., 121(8): 4082-4092. DOI:10.1002/2015JD024644
Lyons W A. 1994. Characteristics of luminous structures in the stratosphere above thunderstorms as imaged by low-light video[J]. Geophy. Res. Lett., 21(10): 875-878. DOI:10.1029/94GL00560
Lyons W A. 1996. Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems[J]. J. Geophys. Res., 101(D23): 29641-29652. DOI:10.1029/96JD01866
Lyons W A. 2006. The meteorology of transient luminous events-An introduction and overview[M]//Füllekrug M, Mareev E A, Rycroft M J. Sprites, Elves and Intense Lightning Discharges. Dordrecht: Springer, 19–56. doi:10.1007/1-4020-4629-4_2.
Lyons W A, Cummer S A, Stanley M A, et al. 2008. Supercells and sprites[J]. Bull. Amer. Meteor. Soc., 89(8): 1165-1174. DOI:10.1175/2008BAMS2439.1
Lyons W A, Nelson T E, Williams E R, et al. 2003. Characteristics of sprite-producing positive cloud-to-ground lightning during the 19 July 2000 STEPS mesoscale convective systems[J]. Mon. Wea. Rev, 131(10): 2417. DOI:10.1175/1520-0493(2003)131<2417:COSPCL>2.0.CO;2
Mohr K I, Zipser E J. 1996. Mesoscale convective systems defined by their 85-GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents[J]. Mon. Wea. Rev., 124(11): 2417-2437. DOI:10.1175/1520-0493(1996)124<2417:MCSDBT>2.0.CO;2
Moudry D, Stenbaek-Nielsen H, Sentman D, et al. 2003. Imaging of elves, halos and sprite initiation at 1ms time resolution[J]. J. Atmos. Solar-Terr. Phys., 65(5): 509-518. DOI:10.1016/S1364-6826(02)00323-1
Pasko V P. 2003. Electrical jets[J]. Nature, 423: 927-929. DOI:10.1038/423927a
Peng K M, Hsu R R, Su H T, et al. 2017. Transient luminous event coordinated observations using FORMOSAT-2 satellite and Taiwan sprites campaign[J]. Terr., Atmos. Ocean. Sci., 28(4): 597-608. DOI:10.3319/TAO.2016.09.21.03
Qin J Q, Celestin S, Pasko V P. 2013. Dependence of positive and negative sprite morphology on lightning characteristics and upper atmospheric ambient conditions[J]. J. Geophys. Res., 118(5): 2623-2638. DOI:10.1029/2012JA017908
Ren H, Tian Y, Lu G P, et al. 2019. Examining the influence of current waveform on the lightning electromagnetic field at the altitude of halo formation[J]. J. Atmos. Solar-Terr. Phys., 189: 114-122. DOI:10.1016/j.jastp.2019.04.010
São Sabbas F T, Sentman D D, Wescott E M, et al. 2003. Statistical analysis of space–time relationships between sprites and lightning[J]. J. Atmos. Solar-Terr. Phys., 65(5): 525-535. DOI:10.1016/S1364-6826(02)00326-7
São Sabbas F T, Taylor M J, Pautet P D, et al. 2010. Observations of prolific transient luminous event production above a mesoscale convective system in Argentina during the Sprite2006 Campaign in Brazil[J]. J. Geophys. Res., 115(A11): A00E58. DOI:10.1029/2009JA014857
Sentman D D, Wescott E M, Osborne D L, et al. 1995. Preliminary results from the Sprites94 Aircraft Campaign: 1. Red sprites[J]. Geophy. Res. Lett., 22(10): 1205-1208. DOI:10.1029/95GL00583
Singh R, Maurya A K, Chanrion O, et al. 2017. Assessment of unusual gigantic jets observed during the monsoon season: First observations from Indian subcontinent[J]. Sci. Rep., 7(1): 16436. DOI:10.1038/s41598-017-16696-5
Soula S, van der Velde O, Montanyà J, et al. 2009. Analysis of thunderstorm and lightning activity associated with sprites observed during the EuroSprite campaigns: Two case studies[J]. Atmos. Res., 91(2-4): 514-528. DOI:10.1016/j.atmosres.2008.06.017
Suzuki T, Hayakawa M, Hobara Y, et al. 2006a. Characteristics of the sprite parent winter thundercloud with positive single flash in Hokuriku, Japan (A case study on 14th December 2001)[J]. IEEJ Transactions on Fundamentals and Materials, 126(2): 78-83. DOI:10.1541/ieejfms.126.78
Suzuki T, Hayakawa M, Matsudo Y, et al. 2006b. How do winter thundercloud systems generate sprite-inducing lightning in the Hokuriku area of Japan?[J]. Geophy. Res. Lett., 33(10): L10806. DOI:10.1029/2005GL025433
Suzuki T, Matsudo Y, Asano T, et al. 2011. Meteorological and electrical aspects of several winter thunderstorms with sprites in the Hokuriku area of Japan[J]. J. Geophys. Res., 116(D6). DOI:10.1029/2009JD013358
Takahashi Y, Miyasato R, Adachi T, et al. 2003. Activities of sprites and elves in the winter season, Japan[J]. J. Atmos. Solar-Terr. Phys., 65(5): 551-560. DOI:10.1016/S1364-6826(02)00330-9
Wang Y P, Lu G P, Ma M, et al. 2019. Triangulation of red sprites observed above a mesoscale convective system in North China[J]. Earth and Planetary Physics, 3(2): 111-125. DOI:10.26464/epp2019015
王志超, 杨静, 陆高鹏, 等. 2015. 华北地区一次中尺度对流系统上方的Sprite放电现象及其对应的雷达回波和闪电特征[J]. 大气科学, 39(4): 839-848. Wang Z C, Yang J, Lu G P, et al. 2015. Sprites over a mesoscale convective system in North China and the corresponding characteristics of radar echo and lightning[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(4): 839-848. DOI:10.3878/j.issn.1006-9895.1412.14232
Wescott E M, Sentman D, Osborne D, et al. 1995. Preliminary results from the Sprites94 aircraft campaign: 2. Blue jets[J]. Geophy. Res. Lett., 22(10): 1209-1212. DOI:10.1029/95GL00582
Wescott E M, Sentman D D, Heavner M J, et al. 1996. Blue starters: Brief upward discharges from an intense Arkansas thunderstorm[J]. Geophy. Res. Lett., 23(16): 2153-2156. DOI:10.1029/96GL01969
Wescott E M, Sentman D D, Heavner M J, et al. 1998. Blue jets: Their relationship to lightning and very large hailfall, and their physical mechanisms for their production[J]. J. Atmos. Solar-Terr. Phys., 60(7-9): 713-724. DOI:10.1016/S1364-6826(98)00018-2
Wescott E M, Sentman D D, Stenbaek-Nielsen H C, et al. 2001. New evidence for the brightness and ionization of blue starters and blue jets[J]. J. Geophys. Res., 106(A10): 21549-21554. DOI:10.1029/2000JA000429
Winckler J R, Lyons W A, Nelson T E, et al. 1996. New high-resolution ground-based studies of sprites[J]. J. Geophys. Res., 101(D3): 6997-7004. DOI:10.1029/95JD03443
杨静, 郄秀书, 张广庶, 等. 2008. 发生于山东沿海雷暴云上方的红色精灵[J]. 科学通报, 53(7): 1079-1086. Yang J, Qie X S, Zhang G S, et al. 2008. Red sprites over thunderstorms in the coast of Shandong province, China[J]. Chinese Sci. Bull. (in Chinese), 53(7): 1079-1086. DOI:10.1007/s11434-008-0141-8
Yang J, Yang M R, Liu C, et al. 2013. Case studies of sprite-producing and non-sprite-producing summer thunderstorms[J]. Adv. Atmos. Sci., 30(6): 1786-1808. DOI:10.1007/s00376-013-2120-5
Yang J, Sato M, Liu N Y, et al. 2018. A gigantic jet observed over an mesoscale convective system in midlatitude region[J]. J. Geophys. Res., 123(2): 977-996. DOI:10.1002/2017JD026878
Zhang J B, Zhang Q L, Guo X F, et al. 2019. Simulated impacts of atmospheric gravity waves on the initiation and optical emissions of sprite halos in the mesosphere[J]. Sci. China Earth Sci., 62(4): 631-642. DOI:10.1007/s11430-018-9311-y
Adachi T, Fukunishi H, Takahashi Y, et al. 2005. Characteristics of thunderstorm systems producing winter sprites in Japan[J]. J. Geophys. Res., 110(D11): D11203. DOI:10.1029/2004JD005012
Barrington-Leigh C P, Inan U S. 1999. Elves triggered by positive and negative lightning discharges[J]. Geophy. Res. Lett., 26(6): 683-686. DOI:10.1029/1999GL900059
Barrington-Leigh C P, Inan U S, Stanley M. 2001. Identification of sprites and elves with intensified video and broadband array photometry[J]. J.Geophys. Res, 106(A2): 1741-1750. DOI:10.1029/2000JA000073
Boccippio D J, Williams E R, Heckman S J, et al. 1995. Sprites, ELF transients, and positive ground strokes[J]. Science, 269(5227): 1088-1091. DOI:10.1126/science.269.5227.1088
Chern A B, Kuo C L, Lee Y J, et al. 2008. Global distributions and occurrence rates of transient luminous events[J]. J. Geophys. Res., 113(A8): A08306. DOI:10.1029/2008JA013101
Chern J L, Hsu R R, Su H T, et al. 2003. Global survey of upper atmospheric transient luminous events on the ROCSAT-2 satellite[J]. J. Atmos. Solar-Terr. Phys., 65(5): 647-659. DOI:10.1016/S1364-6826(02)00317-6
Chou J K, Tsai L Y, Kuo C L, et al. 2011. Optical emissions and behaviors of the blue starters, blue jets, and gigantic jets observed in the Taiwan transient luminous event ground campaign[J]. J. Geophys. Res, 116(A7). DOI:10.1029/2010JA016162
Cummer S A, Inan U S. 1997. Measurement of charge transfer in sprite-producing lightning using ELF radio atmospherics[J]. Geophy. Res. Lett., 24(14): 1731-1734. DOI:10.1029/97GL51791
Cummer S A, Lyons W A. 2005. Implications of lightning charge moment changes for sprite initiation[J]. J. Geophys. Res., 110(A4): A04304. DOI:10.1029/2004JA010812
Cummer S A, Li J B, Han F, et al. 2009. Quantification of the troposphere-to-ionosphere charge transfer in a gigantic jet[J]. Nat. Geosci., 2(9): 617-620. DOI:10.1038/ngeo607
Cummer S A, Lyons W A, Stanley M A. 2013. Three years of lightning impulse charge moment change measurements in the United States[J]. J. Geophys. Res., 118(11): 5176-5189. DOI:10.1002/jgrd.50442
Cummins K L, Krider E P, Malone M D. 1998. The US national lightning detection network/sup TM/and applications of cloud-to-ground lightning data by electric power utilities[J]. IEEE Transactions on Electromagnetic Compatibility, 40(4): 465-480. DOI:10.1109/15.736207
Cummins K L, Murphy M J. 2009. An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN[J]. IEEE Transactions on Electromagnetic Compatibility, 51(3): 499-518. DOI:10.1109/TEMC.2009.2023450
Fukunishi H, Takahashi Y, Uchida A, et al. 1999. Occurrences of sprites and elves above the Sea of Japan near Hokuriku in winter[J]. Eos, Transactions, American Geophysical Union, 80(46): F217.
Ganot M, Yair Y, Price C, et al. 2007. First detection of transient luminous events associated with winter thunderstorms in the eastern Mediterranean[J]. Geophy. Res. Lett., 34(12). DOI:10.1029/2007GL029258
Hayakawa M, Nakamura T, Hobara Y, et al. 2004. Observation of sprites over the Sea of Japan and conditions for lightning-induced sprites in winter[J]. J. Geophys. Res., 109(A1): A01312. DOI:10.1029/2003JA009905
Hayakawa M, Nakamura T, Iudin D, et al. 2005. On the fine structure of thunderstorms leading to the generation of sprites and elves: Fractal analysis[J]. J. Geophys. Res., 110(D6): D06104. DOI:10.1029/2004JD004545
Hobara Y, Iwasaki N, Hayashida T, et al. 2001. Interrelation between ELF transients and ionospheric disturbances in association with sprites and elves[J]. Geophy. Res. Lett., 28(5): 935-938. DOI:10.1029/2000GL003795
Hu W Y, Cummer S A, Lyons W A, et al. 2002. Lightning charge moment changes for the initiation of sprites[J]. Geophy. Res. Lett., 29(8): 1279. DOI:10.1029/2001GL014593
Kuo C L, Chen A B, Lee Y J, et al. 2007. Modeling elves observed by FORMOSAT-2 satellite[J]. J. Geophys. Res., 112(A11): A11312. DOI:10.1029/2007JA012407
Kuo C L, Chou J K, Tsai L Y, et al. 2009. Discharge processes, electric field, and electron energy in ISUAL-recorded gigantic jets[J]. J. Geophys. Res., 114(A4): A04314. DOI:10.1029/2008JA013791
Lang T J, Lyons W A, Cummer S A, et al. 2016. Observations of two sprite-producing storms in Colorado[J]. J. Geophys. Res., 121(16): 9675-9695. DOI:10.1002/2016JD025299
Lu G, Cummer S A, Chen A B, et al. 2017. Analysis of lightning strokes associated with sprites observed by ISUAL in the vicinity of North America[J]. Terr., Atmos. Ocean. Sci., 28(4): 583-595. DOI:10.3319/TAO.2017.03.31.01
Lu G P, Cummer S A, Lyons W A, et al. 2011. Lightning development associated with two negative gigantic jets[J]. Geophy. Res. Lett., 38(12): L12801. DOI:10.1029/2011GL047662
Lu G P, Cummer S A, Li J B, et al. 2013. Coordinated observations of sprites and in-cloud lightning flash structure[J]. J. f Geophys. Res., 118(12): 6607-6632. DOI:10.1002/jgrd.50459
Lu G P, Cummer S A, Tian Y, et al. 2016. Sprite produced by consecutive impulse charge transfers following a negative stroke: Observation and simulation[J]. J. Geophys. Res., 121(8): 4082-4092. DOI:10.1002/2015JD024644
Lyons W A. 1994. Characteristics of luminous structures in the stratosphere above thunderstorms as imaged by low-light video[J]. Geophy. Res. Lett., 21(10): 875-878. DOI:10.1029/94GL00560
Lyons W A. 1996. Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems[J]. J. Geophys. Res., 101(D23): 29641-29652. DOI:10.1029/96JD01866
Lyons W A. 2006. The meteorology of transient luminous events-An introduction and overview[M]//Füllekrug M, Mareev E A, Rycroft M J. Sprites, Elves and Intense Lightning Discharges. Dordrecht: Springer, 19–56. doi:10.1007/1-4020-4629-4_2.
Lyons W A, Cummer S A, Stanley M A, et al. 2008. Supercells and sprites[J]. Bull. Amer. Meteor. Soc., 89(8): 1165-1174. DOI:10.1175/2008BAMS2439.1
Lyons W A, Nelson T E, Williams E R, et al. 2003. Characteristics of sprite-producing positive cloud-to-ground lightning during the 19 July 2000 STEPS mesoscale convective systems[J]. Mon. Wea. Rev, 131(10): 2417. DOI:10.1175/1520-0493(2003)131<2417:COSPCL>2.0.CO;2
Mohr K I, Zipser E J. 1996. Mesoscale convective systems defined by their 85-GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents[J]. Mon. Wea. Rev., 124(11): 2417-2437. DOI:10.1175/1520-0493(1996)124<2417:MCSDBT>2.0.CO;2
Moudry D, Stenbaek-Nielsen H, Sentman D, et al. 2003. Imaging of elves, halos and sprite initiation at 1ms time resolution[J]. J. Atmos. Solar-Terr. Phys., 65(5): 509-518. DOI:10.1016/S1364-6826(02)00323-1
Pasko V P. 2003. Electrical jets[J]. Nature, 423: 927-929. DOI:10.1038/423927a
Peng K M, Hsu R R, Su H T, et al. 2017. Transient luminous event coordinated observations using FORMOSAT-2 satellite and Taiwan sprites campaign[J]. Terr., Atmos. Ocean. Sci., 28(4): 597-608. DOI:10.3319/TAO.2016.09.21.03
Qin J Q, Celestin S, Pasko V P. 2013. Dependence of positive and negative sprite morphology on lightning characteristics and upper atmospheric ambient conditions[J]. J. Geophys. Res., 118(5): 2623-2638. DOI:10.1029/2012JA017908
Ren H, Tian Y, Lu G P, et al. 2019. Examining the influence of current waveform on the lightning electromagnetic field at the altitude of halo formation[J]. J. Atmos. Solar-Terr. Phys., 189: 114-122. DOI:10.1016/j.jastp.2019.04.010
São Sabbas F T, Sentman D D, Wescott E M, et al. 2003. Statistical analysis of space–time relationships between sprites and lightning[J]. J. Atmos. Solar-Terr. Phys., 65(5): 525-535. DOI:10.1016/S1364-6826(02)00326-7
São Sabbas F T, Taylor M J, Pautet P D, et al. 2010. Observations of prolific transient luminous event production above a mesoscale convective system in Argentina during the Sprite2006 Campaign in Brazil[J]. J. Geophys. Res., 115(A11): A00E58. DOI:10.1029/2009JA014857
Sentman D D, Wescott E M, Osborne D L, et al. 1995. Preliminary results from the Sprites94 Aircraft Campaign: 1. Red sprites[J]. Geophy. Res. Lett., 22(10): 1205-1208. DOI:10.1029/95GL00583
Singh R, Maurya A K, Chanrion O, et al. 2017. Assessment of unusual gigantic jets observed during the monsoon season: First observations from Indian subcontinent[J]. Sci. Rep., 7(1): 16436. DOI:10.1038/s41598-017-16696-5
Soula S, van der Velde O, Montanyà J, et al. 2009. Analysis of thunderstorm and lightning activity associated with sprites observed during the EuroSprite campaigns: Two case studies[J]. Atmos. Res., 91(2-4): 514-528. DOI:10.1016/j.atmosres.2008.06.017
Suzuki T, Hayakawa M, Hobara Y, et al. 2006a. Characteristics of the sprite parent winter thundercloud with positive single flash in Hokuriku, Japan (A case study on 14th December 2001)[J]. IEEJ Transactions on Fundamentals and Materials, 126(2): 78-83. DOI:10.1541/ieejfms.126.78
Suzuki T, Hayakawa M, Matsudo Y, et al. 2006b. How do winter thundercloud systems generate sprite-inducing lightning in the Hokuriku area of Japan?[J]. Geophy. Res. Lett., 33(10): L10806. DOI:10.1029/2005GL025433
Suzuki T, Matsudo Y, Asano T, et al. 2011. Meteorological and electrical aspects of several winter thunderstorms with sprites in the Hokuriku area of Japan[J]. J. Geophys. Res., 116(D6). DOI:10.1029/2009JD013358
Takahashi Y, Miyasato R, Adachi T, et al. 2003. Activities of sprites and elves in the winter season, Japan[J]. J. Atmos. Solar-Terr. Phys., 65(5): 551-560. DOI:10.1016/S1364-6826(02)00330-9
Wang Y P, Lu G P, Ma M, et al. 2019. Triangulation of red sprites observed above a mesoscale convective system in North China[J]. Earth and Planetary Physics, 3(2): 111-125. DOI:10.26464/epp2019015
王志超, 杨静, 陆高鹏, 等. 2015. 华北地区一次中尺度对流系统上方的Sprite放电现象及其对应的雷达回波和闪电特征[J]. 大气科学, 39(4): 839-848. Wang Z C, Yang J, Lu G P, et al. 2015. Sprites over a mesoscale convective system in North China and the corresponding characteristics of radar echo and lightning[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(4): 839-848. DOI:10.3878/j.issn.1006-9895.1412.14232
Wescott E M, Sentman D, Osborne D, et al. 1995. Preliminary results from the Sprites94 aircraft campaign: 2. Blue jets[J]. Geophy. Res. Lett., 22(10): 1209-1212. DOI:10.1029/95GL00582
Wescott E M, Sentman D D, Heavner M J, et al. 1996. Blue starters: Brief upward discharges from an intense Arkansas thunderstorm[J]. Geophy. Res. Lett., 23(16): 2153-2156. DOI:10.1029/96GL01969
Wescott E M, Sentman D D, Heavner M J, et al. 1998. Blue jets: Their relationship to lightning and very large hailfall, and their physical mechanisms for their production[J]. J. Atmos. Solar-Terr. Phys., 60(7-9): 713-724. DOI:10.1016/S1364-6826(98)00018-2
Wescott E M, Sentman D D, Stenbaek-Nielsen H C, et al. 2001. New evidence for the brightness and ionization of blue starters and blue jets[J]. J. Geophys. Res., 106(A10): 21549-21554. DOI:10.1029/2000JA000429
Winckler J R, Lyons W A, Nelson T E, et al. 1996. New high-resolution ground-based studies of sprites[J]. J. Geophys. Res., 101(D3): 6997-7004. DOI:10.1029/95JD03443
杨静, 郄秀书, 张广庶, 等. 2008. 发生于山东沿海雷暴云上方的红色精灵[J]. 科学通报, 53(7): 1079-1086. Yang J, Qie X S, Zhang G S, et al. 2008. Red sprites over thunderstorms in the coast of Shandong province, China[J]. Chinese Sci. Bull. (in Chinese), 53(7): 1079-1086. DOI:10.1007/s11434-008-0141-8
Yang J, Yang M R, Liu C, et al. 2013. Case studies of sprite-producing and non-sprite-producing summer thunderstorms[J]. Adv. Atmos. Sci., 30(6): 1786-1808. DOI:10.1007/s00376-013-2120-5
Yang J, Sato M, Liu N Y, et al. 2018. A gigantic jet observed over an mesoscale convective system in midlatitude region[J]. J. Geophys. Res., 123(2): 977-996. DOI:10.1002/2017JD026878
Zhang J B, Zhang Q L, Guo X F, et al. 2019. Simulated impacts of atmospheric gravity waves on the initiation and optical emissions of sprite halos in the mesosphere[J]. Sci. China Earth Sci., 62(4): 631-642. DOI:10.1007/s11430-018-9311-y
Figure 1 Distributions of (a) 500-hPa geopotential height (black contours, units: dagpm), wind vectors (arrows, units: m s−1), and temperature (shaded, unit: ℃); and (b) 850-hPa geopotential height (black contours, units: dagpm), vapor flux (shaded, units: g cm−1 hPa−1 s−1), and wind vectors (arrows, units: m s−1) at 1200 UTC on December 27, 2008
Figure 2 SkewT–logp diagram for LZK at 1200 UTC on December 27, 2008. The black, green, and yellow solid lines represent parcel adiabatic lapse rate, temperature, and dew point, respectively
Figure 3 Cloud-top brightness temperature from (a‒f) 0000 UTC to 0500 UTC on December 28, 2008, with flashes within 15 min centered at the time shown in the figure (the white “×,” rose red “+” and red plus “×” denote −CG flash, +CG flashes, and red sprites, respectively).
Figure 6 Areal evolution of different radar reflectivities during the sprite-producing thunderstorm on December, 2008 (the dotted line in the picture shows the occurrence time of the red sprites).
Figure 7 (a) Overlap of composite radar reflectivity at 0445 UTC December 28, 2008 with CG flashes within 15 min centered at the time shown on the figure (the black plus “+”, blue plus “+”, black “×”, and red “×” represent the parent strokes, sprites, +CG, and −CG flashes, respectively; CG1 and CG2 represent parent strokes; and SP1 and SP2 represent red sprites). (b) and (c) show the vertical cross section along line AB (passing through the parent strokes) and line CD, respectively
Figure 8 (a, b) Two red sprites observed by ISUAL (Imager of Sprites and Upper Atmospheric Lightning) on December 28, 2008, and (c, d) the associated ULF (Ultra Low Frequency) signals in Duke Forest
图 9 2008年12月(a)母体雷暴中每6 min地闪频数、(b)红色精灵发生前后约两小时内每6 min地闪频数和(c)地闪峰值电流随时间的演变。(a)和(b)中的黑色虚线表示红色精灵发生的时间,(c)中蓝色“+”为红色精灵的母体闪电,峰值电流分别为+183 kA和+45 kA
Figure 9 (a) Evolution of CG flashes per six minutes in the parent thunderstorm; (b) CG flashes per six minutes about two hours before and after the sprite; and (c) peak current of CG flashes in the parent thunderstorm on December, 2008. The black dotted line in (a) and (b) represents the sprite occurrence time, and the blue “+” in (c) represents the parent flashes of the red sprites and the peak currents are +183 kA and +45 kA, respectively