Meteorological Bureau of Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan 666100
2.
Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/International Joint Laboratory on Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044
3.
Meteorological Bureau of Liupanshui, Liupanshui, Guizhou 553000
Funded by:National Key Research and Development Program of China (Grant 2019YFC1510201), National Natural Science Foundation of China (Grant 41975073)
利用美国NOAA(National Oceanic and Atmospheric Administration)的CMAP(Climate Prediction Center (CPC) Merged Analysis of Precipitation)月平均降水资料、NCEP/DOE(National Centers for Environmental Prediction/Design of Experiments)II的月平均再分析资料和中国气象局国家信息中心提供的中国160站逐月降水和平均气温资料,通过定义一个亚洲急流纬向非均匀性指数(IAja),分析了1979~2019年夏季亚洲西风急流纬向非均匀性的年际变化特征,揭示了夏季亚洲急流纬向非均匀性变化异常的成因及其对东亚夏季降水和气温的影响。结果表明:夏季亚洲西风急流纬向非均匀性具有显著的年际变化特征,并存在6~8年和2年左右的振荡周期。当急流纬向非均匀性典型偏强(弱)年,东亚东部地区从低纬到高纬,降水异常主要呈现出偏多—偏少—偏多(偏少—偏多—偏少)的经向分布;气温则在中国西部地区和日本北部偏高(低),贝加尔湖地区偏低(高)。引起夏季亚洲急流纬向非均匀性异常的可能原因如下:由大气非绝热加热异常而引起的热带和中纬度地区辐合/辐散运动造成的涡度源强迫,和来自西风带中波扰动能量的注入,两者共同作用形成并维持了与急流纬向非均匀性强弱变化相联系的异常环流,从而使亚洲急流东、西段强度差异增强(减弱),进而有利于急流纬向非均匀性异常偏强(偏弱)。而上述西风带中波扰动能量的东传可能与北大西洋海表面温度异常有关。这对于深刻理解夏季亚洲急流纬向非均匀性异常的形成机理提供了有用的线索。
本文使用的资料包括:美国NOAA(National Oceanic and Atmospheric Administration)提供的CMAP(Climate Prediction Center (CPC) Merged Analysis of Precipitation)月平均降水资料、NCEP/DOE(National Centers for Environmental Prediction/Design of Experiments)Ⅱ的月平均再分析资料和中国气象局国家信息中心提供的中国160站逐月观测资料。NCEP/DOEⅡ再分析资料的变量包括:月平均的17层风场、位势高度场、地面以上2 m高度处气温、12层等压面上的垂直速度以及地面气压等。资料的水平分辨率为2.5°×2.5°,但地面以上2 m高度处气温资料的纬向分辨率为1.875°,经向为高斯纬度分布。研究时段为1979~2019年,变量的夏季平均值被定义成其在6~8月的平均值。下文中所述物理量的“距平”均为某一年夏季平均值与41年夏季平均值的差值。
2.2 方法
文中采用了相关分析、合成分析及t检验等方法。本文所使用的波作用通量是Takaya and Nakamura(1997, 2001)推导出的三维波作用通量(简称T-N通量),该通量在WKB(Wenzel, Kramers, Brillouin)近似假定下与波位相无关,且与定常Rossby波列的局地群速度方向一致。对应波作用通量(W)的计算公式为
夏季亚洲西风急流存在两个中心。1979~2019年夏季200 hPa纬向风平均场及均方差显示(图1a),夏季亚洲上空存在东、西2个西风极大值中心,西部极大值中心位于(37.5°~42.5°N,80°~105°E),强度达32 m s−1;东部极大值中心位于日本海—日本中部—西北太平洋西侧(37.5°~42.5°N,135°~155°E),中心风速小于西部,强度为26 m s−1。可见,两者中心均主要位于40°N附近,且东段强度弱于西段。
图 1
图 1 1979~2019年夏季(6~8月)200 hPa(a)纬向风平均场(等值线,单位:m s−1)及均方差(阴影,单位:m2 s−2),(b)亚洲区域(0°~70°N,65°~160°E)纬向风距平EOF第一模态(阴影、等值线,单位:×102),(c)急流东段强度指数IIEj(虚线)及西段强度指数IIWj(实线)时间序列(点虚线是各自的平均值),(d)急流纬向非均匀性指数IAja的时间序列(柱状,点虚线表示0.3倍标准差,实线为九点二次平滑值),(e)急流纬向非均匀性指数IAja序列的Morlet小波变换功率谱(阴影区表示通过90%信度水平检验,打点区域为受边界影响区)
Figure 1 Climatology of (a) the zonal wind (contours, units: m s−1) and the variance (shadings, units: m2 s−2), (b) the first empirical orthogonal function mode of the zonal wind anomalies (shading, contours, units: ×102) over Asia (0°–70°N, 65°–160°E), (c) the time series of the intensity of the East Asian jet stream (IIEj, dashed line, lower dotted-dashed line indicates mean value) and west Asian jet stream (IIWj, solid line, upper dotted-dashed line indicates mean value), (d) the time series of IAja (Index of Asian jet stream asymmetry) index (bars, dotted-dashed line indicates ±0.3
$\sigma $
(standard deviation), solid line denotes the nine-point quadratic smoothing result), (e) the power spectrum of the Morlet wavelet transform for index IAja (shading areas represent the power spectrum above the 90% confidence level, dotted areas indicate the cone of influence) averaged in JJA (June, July, August) at 200 hPa during 1979–2019
(2)从每年东、西段风速最大值的中心经纬度开始,以15°×2.5°的矩形框为标准,计算该矩形框内所有格点风速的平均值,将该值定义为该年急流东、西段的强度值,分别以IIEj(The intensity of East Asian jet stream)和IIWj(The intensity of West Asian jet stream)记之。IIEj和IIWj的变化(图1c)显示,近41年以来,除了2002年、2015年和2019年东段强度略强于西段,及1980年东、西段强度相当之外,其余年份均为西段强于东段,这与前面相应时段内夏季200 hPa纬向风平均场分析所得结论相一致(图1a)。此外,急流东、西段各自强度在时间变化上存在不一致性(图1c),计算IIEj和IIWj各自线性变化趋势,其系数分别为−0.1/(10 a)和−0.35/(10 a),这说明近41年来急流东段、西段强度均有略微减小的趋势,但西段强度变幅略大于东段。以上特征均体现了急流纬向非均匀性的特点。
(3)为更好地描述急流东段和西段之间强度差异的变化,体现亚洲急流纬向非均匀性的异常,下文将西段强度值(IIWj)减去东段强度值(IIEj)后的绝对值进行标准化,得到的序列定义为亚洲急流纬向非均匀性指数IAja (Index of Asian jet stream asymmetry)。当IAja为正值时,表示夏季亚洲急流东、西段强度差异偏大,即夏季亚洲急流纬向非均匀性偏强;当IAja为负值时,表示急流东、西段强度差异小,即急流纬向非均匀性偏弱。
为了更直观地分辨出夏季亚洲急流强度纬向非均匀性的年际变化周期,图1e给出了夏季亚洲急流纬向非均匀性指数序列的Morlet小波变换结果(Torrence and Compo, 1998)。在过去的41年中,尤其是1980年代中期到1990年代中期,亚洲急流强度纬向非均匀性存在显著的准6~8年周期,2015年前后可能存在2年左右的振荡周期。
图 2 (a)200 hPa纬向风距平(单位:m s−1,阴影部分通过90%信度水平的显著性检验),(b)850 hPa(灰色阴影表示海拔高于850 hPa的区域)旋转风场(流线)、辐散风场(箭头,单位:m s−1,红色箭头表示超过90%信度水平显著性检验的辐散风)、涡度制造项(阴影,单位:1010 m s−2,黄色系表示负涡度,绿色系表示正涡度,黑色虚线所围区域表示涡度制造项通过90%信度水平显著性检验的区域)的合成差值场(差值场指夏季亚洲急流纬向非均匀性异常典型偏强年减去典型偏弱年,下同),(c)同(b),但为200 hPa的合成差值场
Figure 2 Composite differences (positive IAja years minus negative IAja years, the same below) of (a) the zonal wind anomalies (units: m s−1, shaded areas indicate anomalies above the 90% confidence level) at 200 hPa, rotational wind (streamlines) and divergent wind (arrows, units: m s−1, the red arrows indicate divergent wind exceeding the 90% confidence level), vorticity production term (shadings, units: 1010 m s−2, the yellow (green) shadings indicate negative (positive) values, the areas enclosed by the black dashed line represent the vorticity production term above the 90% confidence level) at (b) 850 hPa (gray shadings indicate the altitudes are higher than 850 hPa) and (c) 200 hPa
上述东亚地区异常辐合/辐散运动的分析表明,亚洲急流纬向非均匀性的年际异常与对流层中的垂直运动有关,而异常的上升运动通常伴随着非绝热加热的异常(Guan and Yamagata, 2003)。因而下文对急流纬向非均匀性典型偏强、偏弱年时整层大气的加热异常进行分析。计算了亚洲上空急流纬向非均匀性异常时,对流层垂直积分的大气加热场(图3a、b、c)。
图 3
图 3 (a)非绝热加热率异常、(b)垂直运动异常所致动力加热率和(c)整层水平温度平流所致动力加热率异常的合成差值。所有变量均自地表积分至100 hPa,红(蓝)色阴影表示正(负)值,黑色虚线所围区域表示加热率通过90%信度水平的显著性检验 Figure 3 Composite differences in (a) the diabatic heating rate anomalies, (b) the dynamic heating rate due to the vertical motion anomalies, and (c) the dynamic heating rate anomalies due to the horizontal temperature advection. All variables are integrated from the surface to 100 hPa, the red (blue) shadings indicate positive (negative) values, the areas enclosed by the black dashed line represent heating rate above the 90% confidence level
上述异常环流系统的维持亦可从中纬度Rossby波扰动能量的传播得到部分解释。急流纬向非均匀性典型偏强年,在对流层低层(图4a),显著的扰动能量主要由副热带低纬地区向较高纬地区辐散,中国南部和日本南部有较强的扰动能量辐合,有利于亚洲东部低纬至高纬异常环流的维持,这可能与EAP(East Asia–Pacific)型遥相关有关。在对流层上层(图4b),从乌拉尔山至东亚存在显著的扰动能量自西向东的传播,同时波作用通量交替出现辐合和辐散。中国的西北地区、长江流域和日本海上空主要处于能量的辐合区域,波扰动能量的注入有利于中国大陆和西北太平洋上空异常反气旋性环流系统的维持。这可能与急流的波导作用有关,也可能与丝路型(silkroad pattern)遥相关(Enomoto et al., 2003)及W-J遥相关型(West Asia–Japan Pattern)有关(Wakabayashi and Kawamura, 2004)。而当亚洲急流纬向非均匀性典型偏弱年,上述这种自西向东的扰动能量的传播同样存在,只是波扰位相(图2c所示的异常气旋和反气旋环流)相反。
图 4
图 4 (a)850 hPa、(b)200 hPa波作用通量(箭头,单位:m2 s−2)和波作用通量散度(阴影,单位:10−6 m2 s−2)的合成差值分布
Figure 4 Composite differences in the wave-activity fluxes (arrows, units: m2 s−2) and the divergence of the wave-activity fluxes (shadings, units: 10−6 m2 s−2) at (a) 850 hPa and (b) 200 hPa
图 5 海表温度距平合成差值分布(单位:10−1 °C),阴影表示通过90%信度水平的显著性检验
Figure 5 Composite differences in the sea surface temperature anomalies (units: 10−1 °C), the shadings areas indicate the values above 90% confidence level
图 6 夏季(a)降水距平场、(b)地面2米高度处气温距平场与IAja的相关分布,阴影表示通过90%信度水平的显著性检验
Figure 6 Correlations between the JJA (a) rainfall anomalies, (b) air temperature anomalies at 2-m height and IAja, the shadings areas represent correlations above 90% confidence level
图 7 (a)整层(从地表积分至300 hPa)、(b)700 hPa水汽通量(只绘制出通过90%信度水平显著性检验的水汽通量(红色箭头),单位:g cm−1 hPa−1 s−1)、水汽通量散度(阴影,单位:10−6 g cm−2 hPa−1 s−1,黑色虚线区域为通过90%信度水平的显著性检验区域)的距平合成差值分布
Figure 7 Composite differences in the vapor fluxes anomalies (the water vapor fluxes above the 90% confidence level are showed by the red arrows, units: g cm−1 hPa−1 s−1) and the fluxes divergence anomalies (shadings, units: 10−6 g cm−2 hPa−1 s−1, the areas enclosed by the black dashed line indicate the values above the 90% confidence level) (a) integrated from the surface to 300 hPa and (b) at 700 hPa
(1)1979~2019年夏季亚洲急流纬向非均匀性存在显著的年际变化,这与已有的研究结果(Lin and Lu, 2005)一致。文中定义了用以表征夏季亚洲急流东、西段强度之间差异变化的急流纬向非均匀性指数IAja。当IAja为正值时,表示夏季亚洲急流东、西段强度差异偏大,即夏季亚洲急流纬向非均匀性偏强;当IAja为负值时,表示急流东、西段强度差异小,即急流纬向非均匀性偏弱。总体而言,近41年来亚洲急流以西段强度强于东段为主,且纬向非均匀性并无显著增强或减弱趋势,但IAja在不同年代存在6~8年和2年左右的振荡周期。
Ambrizzi T, Hoskins B J, Hsu H H. 1995. Rossby wave propagation and teleconnection patterns in the Austral winter[J]. J. Atmos. Sci., 52(21): 3661-3672. DOI:10.1175/1520-0469(1995)052<3661:RWPATP>2.0.CO;2
蔡尔诚. 2001. 中国夏季主雨带的形成过程[J]. 河南气象, (1): 6-8. Cai E C. 2001. The formation of main rain-band in summer in China[J]. Meteorology Journal of Henan (in Chinese), (1): 6-8. DOI:10.3969/j.issn.1673-7148.2001.01.004
Chen S F, Wu R G. 2017. Interdecadal changes in the relationship between interannual variations of spring North Atlantic SST and Eurasian surface air temperature[J]. J. Climate, 30(10): 3771-3787. DOI:10.1175/JCLI-D-16-0477.1
Chen S F, Wu R G, Liu Y. 2016. Dominant modes of interannual variability in Eurasian surface air temperature during boreal spring[J]. J. Climate, 29(3): 1109-1125. DOI:10.1175/JCLI-D-15-0524.1
Chen S F, Wu R G, Chen W, et al. 2018. Enhanced linkage between Eurasian winter and spring dominant modes of atmospheric interannual variability since the early 1990s[J]. J. Climate, 31(9): 3575-3595. DOI:10.1175/JCLI-D-17-0525.1
Clark M P, Serreze M C. 2000. Effects of variations in East Asian snow cover on modulating atmospheric circulation over the North Pacific Ocean[J]. J. Climate, 13(20): 3700-3710. DOI:10.1175/1520-0442(2000)013<3700:EOVIEA>2.0.CO;2
董敏, 余建锐, 高守亭. 1999. 东亚西风急流变化与热带对流加热关系的研究[J]. 大气科学, 23(1): 62-70. Dong M, Yu J R, Gao S T. 1999. A study on the variations of the westerly jet over East Asia and its relation with the tropical convective heating[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 23(1): 62-70. DOI:10.3878/j.issn.1006-9895.1999.01.08
董敏, 朱文妹, 徐祥德. 2001. 青藏高原地表热通量变化及其对初夏东亚大气环流的影响[J]. 应用气象学报, 12(4): 458-468. Dong M, Zhu W M, Xu X D. 2001. The variation of surface heat flux over Tibet Plateau and its influences on the East Asia circulation in early summer[J]. Quarterly Journal of Applied Meteorology (in Chinese), 12(4): 458-468. DOI:10.3969/j.issn.1001-7313.2001.04.008
杜银, 张耀存, 谢志清. 2009. 东亚副热带西风急流位置变化及其对中国东部夏季降水异常分布的影响[J]. 大气科学, 33(3): 581-592. Du Y, Zhang Y C, Xie Z Q. 2009. Location variation of the East Asia subtropical westerly jet and its effect on the summer precipitation anomaly over eastern China[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(3): 581-592. DOI:10.3878/j.issn.1006-9895.2009.03.15
Du Y, Li T, Xie Z Q, et al. 2016. Interannual variability of the Asian subtropical westerly jet in boreal summer and associated with circulation and SST anomalies[J]. Climate Dyn., 46(7): 2673-2688. DOI:10.1007/s00382-015-2723-x
Enomoto T, Hoskins B J, Matsuda Y. 2003. The formation mechanism of the Bonin high in August[J]. J. Meteor. Soc. Japan, 129(587): 157-178. DOI:10.1256/qj.01.211
方晓洁, 曾晓枚, 陈雪芹. 2009. 东亚夏季200 hPa西风急流时空分布特征与我国夏季降水关系的初步分析[J]. 气象与环境科学, 32(2): 12-15. Fang X J, Zeng X M, Chen X Q. 2009. Spatial and temporal distribution characteristics of westerly jet in 200 hPa in East Asia and the analysis of relationship between it and summer precipitation in China[J]. Meteorological and Environmental Sciences (in Chinese), 32(2): 12-15. DOI:10.3969/j.issn.1673-7148.2009.02.003
Guan Z Y, Yamagata T. 2003. The unusual summer of 1994 in East Asia: IOD teleconnections[J]. Geophys. Res. Lett., 30(10): 1544. DOI:10.1029/2002GL016831
黄荣辉, 李维京. 1988. 夏季热带西太平洋上空的热源异常对东亚上空副热带高压的影响及其物理机制[J]. 大气科学, 12(S1): 107-116. Huang R H, Li W J. 1988. Influence of heat source anomaly over the western tropical Pacific on the subtropical high over East Asia and its physical mechanism[J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 12(S1): 107-116. DOI:10.3878/j.issn.1006-9895.1988.t1.08
Kuang X Y, Zhang Y C. 2005. Seasonal variation of the East Asian subtropical westerly jet and its association with the heating field over East Asia[J]. Adv. Atmos. Sci., 22(6): 831-840. DOI:10.1007/BF02918683
况雪源, 张耀存. 2006a. 东亚副热带西风急流季节变化特征及其热力影响机制探讨[J]. 气象学报, 64(5): 564-575. Kuang X Y, Zhang Y C. 2006a. The seasonal variation of the East Asian subtrpical westerly jet and its thermal mechanism[J]. Acta Meteor. Sinica (in Chinese), 64(5): 564-575. DOI:10.3321/j.issn:0577-6619.2006.05.003
况雪源, 张耀存. 2006b. 东亚副热带西风急流位置异常对长江中下游夏季降水的影响[J]. 高原气象, 25(3): 382-389. Kuang X Y, Zhang Y C. 2006b. Impact of the position abnormalities of East Asian subtropical westerly jet on summer precipitation in middle-lower reaches of Yangtze River[J]. Plateau Meteorology (in Chinese), 25(3): 382-389. DOI:10.3321/j.issn:1000-0534.2006.03.004
Lau K M, Kim K M, Yang S. 2000. Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon[J]. J. Climate, 13(14): 2461-2482. DOI:10.1175/1520-0442(2000)013<2461:DABFCO>2.0.CO;2
李崇银, 王作台, 林士哲, 等. 2004. 东亚夏季风活动与东亚高空西风急流位置北跳关系的研究[J]. 大气科学, 28(5): 641-658. Li C Y, Wang Z T, Lin S Z, et al. 2004. The relationship between East Asian summer monsoon activity and northward jump of the upper westerly jet location[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 28(5): 641-658. DOI:10.3878/j.issn.1006-9895.2004.05.01
廖清海, 高守亭, 王会军, 等. 2004. 北半球夏季副热带西风急流变异及其对东亚夏季风气候异常的影响[J]. 地球物理学报, 47(1): 10-18. Liao Q H, Gao S T, Wang H J, et al. 2004. Anomalies of the extratropical westerly jet in the North Hemisphere and their impacts on East Asian summer monsoon climate anomalies[J]. Chinese J. Geophys. (in Chinese), 47(1): 10-18. DOI:10.3321/j.issn:0001-5733.2004.01.003
Lin Z D, Lu R Y. 2005. Interannual meridional displacement of the East Asian upper-tropospheric jet stream in summer[J]. Adv. Atmos. Sci., 22(2): 199-211. DOI:10.1007/BF02918509
Lin Z D, Lu R Y, Zhou W. 2010. Change in early-summer meridional teleconnection over the western North Pacific and East Asia around the late 1970s[J]. Int. J. Climatol., 30(14): 2195-2204. DOI:10.1002/joc.2038
刘匡南, 邬鸿勋. 1956. 近五年东亚夏季自然天气季节的划分及夏季特征的初步探讨[J]. 气象学报, 27(3): 219-242. Liu K N, Wu H S. 1956. A preliminary study on the determination of natural synoptic summer season over Asiatic natural synoptic region and the prevailing weather process in this season[J]. Acta Meteor. Sinica (in Chinese), 27(3): 219-242. DOI:10.11676/qxxb1956.017
刘飞, 何金海, 姜爱军. 2006. 亚洲夏季西风指数与中国夏季降水的关系[J]. 南京气象学院学报, 29(4): 517-525. Liu F, He J H, Jiang A J. 2006. Relationship between Asian summer westerly wind index and summer rainfall in China[J]. Journal of Nanjing Institute of Meteorology (in Chinese), 29(4): 517-525. DOI:10.3969/j.issn.1674-7097.2006.04.012
陆日宇. 2002. 华北汛期降水量变化中年代际和年际尺度的分离[J]. 大气科学, 26(5): 611-624. Lu R Y. 2002. Separation of interannual and interdecadal variations of rainfall in North China[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 26(5): 611-624. DOI:10.3878/j.issn.1006-9895.2002.05.03
陆日宇. 2003. 华北汛期降水量年代际和年际变化之间的线性关系[J]. 科学通报, 48(10): 1040-1044. Lu R Y. 2003. Linear relationship between the interdecadal and interannual variabilities of North China rainfall in rainy season[J]. Chinese Science Bulletin (in Chinese), 48(10): 1040-1044. DOI:10.1007/BF03184223
Lu R Y, Oh J H, Kim B J. 2002. A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer[J]. Tellus A, 54(1): 44-55. DOI:10.3402/tellusa.v54i1.12122
陆日宇, 林中达, 张耀存. 2013. 夏季东亚高空急流的变化及其对东亚季风的影响[J]. 大气科学, 37(2): 331-340. Lu R Y, Lin Z D, Zhang Y C. 2013. Variability of the East Asian upper- tropospheric jet in summer and its impacts on the East Asian monsoon[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(2): 331-340. DOI:10.3878/j.issn.1006-9895.2012.12310
卢楚翰, 周洁雯, 胡叶, 等. 2019. 春季影响江淮地区的天气尺度气旋活动与同期降水的联系[J]. 大气科学, 43(2): 311-324. Lu C H, Zhou J W, Hu Y, et al. 2019. Simultaneous relationship between precipitation and activities of springtime synoptic scale affecting cyclone over the Yangtzi-Huaihe River valleys[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(2): 311-324. DOI:10.3878/j.issn.1006-9895.1804.17294
倪东鸿, 孙照渤, 李忠贤, 等. 2010a. 冬季中东急流与中国气候异常的联系[J]. 气象科学, 30(3): 301-307. Ni D H, Sun Z B, Li Z X, et al. 2010a. Relation of Middle East jet stream and China climate anomaly in winter[J]. Scientia Meteorologica Sinica (in Chinese), 30(3): 301-307. DOI:10.3969/j.issn.1009-0827.2010.03.003
倪东鸿, 孙照渤, 李忠贤, 等. 2010b. 冬季中东急流时空变化特征及其与中国气候的关系[J]. 解放军理工大学学报(自然科学版), 11(3): 354-359. Ni D H, Sun Z B, Li Z X, et al. 2010b. Spatiotemporal characteristics of the Middle East jet stream and its relationship with China climate in winter[J]. Journal of PLA University of Science and Technology (Natural Science Edition) (in Chinese), 11(3): 354-359. DOI:10.3969/j.issn.1009-3443.2010.03.022
Nitta T. 1987. Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation[J]. J. Meteor. Soc. Japan, 65(3): 373-390. DOI:10.2151/jmsj1965.65.3_373
秦育婧, 卢楚翰. 2017. 冬季欧亚大陆反气旋活动特征及其与中国气温的关系[J]. 大气科学学报, 40(3): 418-424. Qin Y J, Lu C H. 2017. Characteristics of the anticyclone over Eurasia and its relationship with the winter temperature in China[J]. Trans. Atmos. Sci. (in Chinese), 40(3): 418-424. DOI:10.13878/j.cnki.dqkxxb.20150405001
Qu X, Huang G. 2012. Impacts of tropical Indian Ocean SST on the meridional displacement of East Asian jet in boreal summer[J]. Int. J. Climatol., 32(13): 2073-2080. DOI:10.1002/joc.2378
Reiter E R. 1963. Jet-Stream Meteorology [M]. Chicago: University of Chicago Press, 515pp
任雪娟, 杨修群, 周天军, 等. 2010. 冬季东亚副热带急流与温带急流的比较分析: 大尺度特征和瞬变扰动活动[J]. 气象学报, 68(1): 1-11. Ren X J, Yang X Q, Zhou T J, et al. 2010. Diagnostic comparison of the East Asian subtropical jet and polar-front jet: Large-scale characteristics and transient eddy activities[J]. Acta Meteor. Sinica (in Chinese), 68(1): 1-11. DOI:10.11676/qxxb2010.001
沈柏竹, 林中达, 陆日宇, 等. 2011. 影响东北初夏和盛夏降水年际变化的环流特征分析[J]. 中国科学: 地球科学, 54(7): 1095-1104. Shen B Z, Lin Z D, Lu R Y, et al. 2011. Circulation anomalies associated with interannual variation of early- and late-summer precipitation in Northeast China[J]. Science China Earth Sciences (in Chinese), 54(7): 1095-1104. DOI:10.1007/s11430-011-4173-6
Takaya K, Nakamura H. 1997. A formulation of a wave-activity flux for stationary Rossby waves on a zonally varying basic flow[J]. Geophys. Res. Lett., 24(23): 2985-2988. DOI:10.1029/97GL03094
Takaya K, Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow[J]. J. Atmos. Sci., 58(6): 608-627. DOI:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2
陶诗言, 陈隆勋. 1957. 夏季亚洲大陆上空大气环流的结构[J]. 气象学报, 28(3): 233-247. Dao S Y, Chen L S. 1957. The structure of general circulation over continent of Asia in summer[J]. Acta Meteor. Sinica (in Chinese), 28(3): 233-247. DOI:10.11676/qxxb1957.019
陶诗言, 赵煜佳, 陈晓敏. 1958. 东亚的梅雨期与亚洲上空大气环流季节变化的关系[J]. 气象学报, 29(2): 119-134. Dao S Y, Zhao Y J, Chen X M. 1958. The relationship between May-Yü in Far East and the behaviour of circulation over Asia[J]. Acta Meteor. Sinica (in Chinese), 29(2): 119-134. DOI:10.11676/qxxb1958.014
Wakabayashi S, Kawamura R. 2004. Extraction of major teleconnection patterns possibly associated with the anomalous summer climate in Japan[J]. J. Meteor. Soc. Japan, 82(6): 1577-1588. DOI:10.2151/jmsj.82.1577
Walland D J, Simmonds I. 1996. Modelled atmospheric response to changes in Northern Hemisphere snow cover[J]. Climate Dyn., 13(1): 25-34. DOI:10.1007/s003820050150
魏林波, 周甘霖, 王式功, 等. 2012. 亚洲副热带高空西风急流活动的气候特征及其与我国部分地区夏季降水的关系[J]. 高原气象, 31(1): 87-93. Wei L B, Zhou G L, Wang S G, et al. 2012. Climatic features of Asian upper westerly jet activities and their relationship with summer precipitation in partly areas of China[J]. Plateau Meteorology (in Chinese), 31(1): 87-93.
谢韶青, 卢楚翰. 2018. 近16a来冬季欧亚大陆中纬度地区低温事件频发及其成因[J]. 大气科学学报, 41(3): 423-432. Xie S Q, Lu C H. 2018. Intensification of winter cold events over the past 16 years in the mid-latitudes of Eurasia and their causes[J]. Transactions of Atmospheric Sciences (in Chinese), 41(3): 423-432. DOI:10.13878/j.cnki.dqkxxb.20160415003
Xie S P, Hu K M, Hafner J, et al. 2009. Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño[J]. J. Climate, 22(3): 730-747. DOI:10.1175/2008JCLI2544.1
杨莲梅, 张庆云. 2007. 夏季东亚西风急流扰动异常与副热带高压关系研究[J]. 应用气象学报, 18(4): 452-459. Yang L M, Zhang Q Y. 2007. Relationships between perturbation kinetic energy anomaly along East Asian westerly jet and subtropical high in summer[J]. Journal of Applied Meteorological Science (in Chinese), 18(4): 452-459. DOI:10.3969/j.issn.1001-7313.2007.04.005
杨莲梅, 张庆云. 2008. 夏季亚洲副热带西风急流气候特征[J]. 气候与环境研究, 13(1): 10-20. Yang L M, Zhang Q Y. 2008. Climate features of summer Asia subtropical westerly jet stream[J]. Climatic and Environmental Research (in Chinese), 13(1): 10-20. DOI:10.3878/j.issn.1006-9585.2008.01.02
姚慧茹, 李栋梁. 2013. 东亚副热带急流的空间结构及其与中国冬季气温的关系[J]. 大气科学, 37(4): 881-890. Yao H R, Li D L. 2013. Spatial structure of East Asia subtropical jet stream and its relation with winter air temperature in China[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(4): 881-890. DOI:10.3878/j.issn.1006-9895.2012.12072
葉篤正, 陶诗言, 李麥村. 1958. 在六月和十月大气环流的突变现象[J]. 气象学报, 29(4): 249-263. Ye T C, Tao S Y, Li M T. 1958. The abrupt change of circulation over Northern Hemisphere during June and October[J]. Acta Meteor. Sinica (in Chinese), 29(4): 249-263.
Zhang Y C, Kuang X Y, Guo W D, et al. 2006. Seasonal evolution of the upper-tropospheric westerly jet core over East Asia[J]. Geophys. Res. Lett., 33(11): L11708. DOI:10.1029/2006GL026377
张驰, 范广洲, 周定文, 等. 2011. 东亚副热带西风急流的时间演变特征及其与中国东部夏季降水的关系[J]. 成都信息工程学院学报, 26(6): 590-600. Zhang C, Fan G Z, Zhou D W, et al. 2011. Temporal evolvement characteristics of East Asia subtropical westerly jet and its relationship with the summer precipitation over eastern China[J]. Journal of Chengdu University of Information Technology (in Chinese), 26(6): 590-600. DOI:10.16836/j.cnki.jcuit.2011.06.002
Zhao W, Chen S F, Chen W, et al. 2019. Interannual variations of the rainy season withdrawal of the monsoon transitional zone in China[J]. Climate Dyn., 53(3−4): 2031-2046. DOI:10.1007/s00382-019-04762-9
Ambrizzi T, Hoskins B J, Hsu H H. 1995. Rossby wave propagation and teleconnection patterns in the Austral winter[J]. J. Atmos. Sci., 52(21): 3661-3672. DOI:10.1175/1520-0469(1995)052<3661:RWPATP>2.0.CO;2
蔡尔诚. 2001. 中国夏季主雨带的形成过程[J]. 河南气象, (1): 6-8. Cai E C. 2001. The formation of main rain-band in summer in China[J]. Meteorology Journal of Henan (in Chinese), (1): 6-8. DOI:10.3969/j.issn.1673-7148.2001.01.004
Chen S F, Wu R G. 2017. Interdecadal changes in the relationship between interannual variations of spring North Atlantic SST and Eurasian surface air temperature[J]. J. Climate, 30(10): 3771-3787. DOI:10.1175/JCLI-D-16-0477.1
Chen S F, Wu R G, Liu Y. 2016. Dominant modes of interannual variability in Eurasian surface air temperature during boreal spring[J]. J. Climate, 29(3): 1109-1125. DOI:10.1175/JCLI-D-15-0524.1
Chen S F, Wu R G, Chen W, et al. 2018. Enhanced linkage between Eurasian winter and spring dominant modes of atmospheric interannual variability since the early 1990s[J]. J. Climate, 31(9): 3575-3595. DOI:10.1175/JCLI-D-17-0525.1
Clark M P, Serreze M C. 2000. Effects of variations in East Asian snow cover on modulating atmospheric circulation over the North Pacific Ocean[J]. J. Climate, 13(20): 3700-3710. DOI:10.1175/1520-0442(2000)013<3700:EOVIEA>2.0.CO;2
董敏, 余建锐, 高守亭. 1999. 东亚西风急流变化与热带对流加热关系的研究[J]. 大气科学, 23(1): 62-70. Dong M, Yu J R, Gao S T. 1999. A study on the variations of the westerly jet over East Asia and its relation with the tropical convective heating[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 23(1): 62-70. DOI:10.3878/j.issn.1006-9895.1999.01.08
董敏, 朱文妹, 徐祥德. 2001. 青藏高原地表热通量变化及其对初夏东亚大气环流的影响[J]. 应用气象学报, 12(4): 458-468. Dong M, Zhu W M, Xu X D. 2001. The variation of surface heat flux over Tibet Plateau and its influences on the East Asia circulation in early summer[J]. Quarterly Journal of Applied Meteorology (in Chinese), 12(4): 458-468. DOI:10.3969/j.issn.1001-7313.2001.04.008
杜银, 张耀存, 谢志清. 2009. 东亚副热带西风急流位置变化及其对中国东部夏季降水异常分布的影响[J]. 大气科学, 33(3): 581-592. Du Y, Zhang Y C, Xie Z Q. 2009. Location variation of the East Asia subtropical westerly jet and its effect on the summer precipitation anomaly over eastern China[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(3): 581-592. DOI:10.3878/j.issn.1006-9895.2009.03.15
Du Y, Li T, Xie Z Q, et al. 2016. Interannual variability of the Asian subtropical westerly jet in boreal summer and associated with circulation and SST anomalies[J]. Climate Dyn., 46(7): 2673-2688. DOI:10.1007/s00382-015-2723-x
Enomoto T, Hoskins B J, Matsuda Y. 2003. The formation mechanism of the Bonin high in August[J]. J. Meteor. Soc. Japan, 129(587): 157-178. DOI:10.1256/qj.01.211
方晓洁, 曾晓枚, 陈雪芹. 2009. 东亚夏季200 hPa西风急流时空分布特征与我国夏季降水关系的初步分析[J]. 气象与环境科学, 32(2): 12-15. Fang X J, Zeng X M, Chen X Q. 2009. Spatial and temporal distribution characteristics of westerly jet in 200 hPa in East Asia and the analysis of relationship between it and summer precipitation in China[J]. Meteorological and Environmental Sciences (in Chinese), 32(2): 12-15. DOI:10.3969/j.issn.1673-7148.2009.02.003
Guan Z Y, Yamagata T. 2003. The unusual summer of 1994 in East Asia: IOD teleconnections[J]. Geophys. Res. Lett., 30(10): 1544. DOI:10.1029/2002GL016831
黄荣辉, 李维京. 1988. 夏季热带西太平洋上空的热源异常对东亚上空副热带高压的影响及其物理机制[J]. 大气科学, 12(S1): 107-116. Huang R H, Li W J. 1988. Influence of heat source anomaly over the western tropical Pacific on the subtropical high over East Asia and its physical mechanism[J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 12(S1): 107-116. DOI:10.3878/j.issn.1006-9895.1988.t1.08
Kuang X Y, Zhang Y C. 2005. Seasonal variation of the East Asian subtropical westerly jet and its association with the heating field over East Asia[J]. Adv. Atmos. Sci., 22(6): 831-840. DOI:10.1007/BF02918683
况雪源, 张耀存. 2006a. 东亚副热带西风急流季节变化特征及其热力影响机制探讨[J]. 气象学报, 64(5): 564-575. Kuang X Y, Zhang Y C. 2006a. The seasonal variation of the East Asian subtrpical westerly jet and its thermal mechanism[J]. Acta Meteor. Sinica (in Chinese), 64(5): 564-575. DOI:10.3321/j.issn:0577-6619.2006.05.003
况雪源, 张耀存. 2006b. 东亚副热带西风急流位置异常对长江中下游夏季降水的影响[J]. 高原气象, 25(3): 382-389. Kuang X Y, Zhang Y C. 2006b. Impact of the position abnormalities of East Asian subtropical westerly jet on summer precipitation in middle-lower reaches of Yangtze River[J]. Plateau Meteorology (in Chinese), 25(3): 382-389. DOI:10.3321/j.issn:1000-0534.2006.03.004
Lau K M, Kim K M, Yang S. 2000. Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon[J]. J. Climate, 13(14): 2461-2482. DOI:10.1175/1520-0442(2000)013<2461:DABFCO>2.0.CO;2
李崇银, 王作台, 林士哲, 等. 2004. 东亚夏季风活动与东亚高空西风急流位置北跳关系的研究[J]. 大气科学, 28(5): 641-658. Li C Y, Wang Z T, Lin S Z, et al. 2004. The relationship between East Asian summer monsoon activity and northward jump of the upper westerly jet location[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 28(5): 641-658. DOI:10.3878/j.issn.1006-9895.2004.05.01
廖清海, 高守亭, 王会军, 等. 2004. 北半球夏季副热带西风急流变异及其对东亚夏季风气候异常的影响[J]. 地球物理学报, 47(1): 10-18. Liao Q H, Gao S T, Wang H J, et al. 2004. Anomalies of the extratropical westerly jet in the North Hemisphere and their impacts on East Asian summer monsoon climate anomalies[J]. Chinese J. Geophys. (in Chinese), 47(1): 10-18. DOI:10.3321/j.issn:0001-5733.2004.01.003
Lin Z D, Lu R Y. 2005. Interannual meridional displacement of the East Asian upper-tropospheric jet stream in summer[J]. Adv. Atmos. Sci., 22(2): 199-211. DOI:10.1007/BF02918509
Lin Z D, Lu R Y, Zhou W. 2010. Change in early-summer meridional teleconnection over the western North Pacific and East Asia around the late 1970s[J]. Int. J. Climatol., 30(14): 2195-2204. DOI:10.1002/joc.2038
刘匡南, 邬鸿勋. 1956. 近五年东亚夏季自然天气季节的划分及夏季特征的初步探讨[J]. 气象学报, 27(3): 219-242. Liu K N, Wu H S. 1956. A preliminary study on the determination of natural synoptic summer season over Asiatic natural synoptic region and the prevailing weather process in this season[J]. Acta Meteor. Sinica (in Chinese), 27(3): 219-242. DOI:10.11676/qxxb1956.017
刘飞, 何金海, 姜爱军. 2006. 亚洲夏季西风指数与中国夏季降水的关系[J]. 南京气象学院学报, 29(4): 517-525. Liu F, He J H, Jiang A J. 2006. Relationship between Asian summer westerly wind index and summer rainfall in China[J]. Journal of Nanjing Institute of Meteorology (in Chinese), 29(4): 517-525. DOI:10.3969/j.issn.1674-7097.2006.04.012
陆日宇. 2002. 华北汛期降水量变化中年代际和年际尺度的分离[J]. 大气科学, 26(5): 611-624. Lu R Y. 2002. Separation of interannual and interdecadal variations of rainfall in North China[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 26(5): 611-624. DOI:10.3878/j.issn.1006-9895.2002.05.03
陆日宇. 2003. 华北汛期降水量年代际和年际变化之间的线性关系[J]. 科学通报, 48(10): 1040-1044. Lu R Y. 2003. Linear relationship between the interdecadal and interannual variabilities of North China rainfall in rainy season[J]. Chinese Science Bulletin (in Chinese), 48(10): 1040-1044. DOI:10.1007/BF03184223
Lu R Y, Oh J H, Kim B J. 2002. A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer[J]. Tellus A, 54(1): 44-55. DOI:10.3402/tellusa.v54i1.12122
陆日宇, 林中达, 张耀存. 2013. 夏季东亚高空急流的变化及其对东亚季风的影响[J]. 大气科学, 37(2): 331-340. Lu R Y, Lin Z D, Zhang Y C. 2013. Variability of the East Asian upper- tropospheric jet in summer and its impacts on the East Asian monsoon[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(2): 331-340. DOI:10.3878/j.issn.1006-9895.2012.12310
卢楚翰, 周洁雯, 胡叶, 等. 2019. 春季影响江淮地区的天气尺度气旋活动与同期降水的联系[J]. 大气科学, 43(2): 311-324. Lu C H, Zhou J W, Hu Y, et al. 2019. Simultaneous relationship between precipitation and activities of springtime synoptic scale affecting cyclone over the Yangtzi-Huaihe River valleys[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(2): 311-324. DOI:10.3878/j.issn.1006-9895.1804.17294
倪东鸿, 孙照渤, 李忠贤, 等. 2010a. 冬季中东急流与中国气候异常的联系[J]. 气象科学, 30(3): 301-307. Ni D H, Sun Z B, Li Z X, et al. 2010a. Relation of Middle East jet stream and China climate anomaly in winter[J]. Scientia Meteorologica Sinica (in Chinese), 30(3): 301-307. DOI:10.3969/j.issn.1009-0827.2010.03.003
倪东鸿, 孙照渤, 李忠贤, 等. 2010b. 冬季中东急流时空变化特征及其与中国气候的关系[J]. 解放军理工大学学报(自然科学版), 11(3): 354-359. Ni D H, Sun Z B, Li Z X, et al. 2010b. Spatiotemporal characteristics of the Middle East jet stream and its relationship with China climate in winter[J]. Journal of PLA University of Science and Technology (Natural Science Edition) (in Chinese), 11(3): 354-359. DOI:10.3969/j.issn.1009-3443.2010.03.022
Nitta T. 1987. Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation[J]. J. Meteor. Soc. Japan, 65(3): 373-390. DOI:10.2151/jmsj1965.65.3_373
秦育婧, 卢楚翰. 2017. 冬季欧亚大陆反气旋活动特征及其与中国气温的关系[J]. 大气科学学报, 40(3): 418-424. Qin Y J, Lu C H. 2017. Characteristics of the anticyclone over Eurasia and its relationship with the winter temperature in China[J]. Trans. Atmos. Sci. (in Chinese), 40(3): 418-424. DOI:10.13878/j.cnki.dqkxxb.20150405001
Qu X, Huang G. 2012. Impacts of tropical Indian Ocean SST on the meridional displacement of East Asian jet in boreal summer[J]. Int. J. Climatol., 32(13): 2073-2080. DOI:10.1002/joc.2378
Reiter E R. 1963. Jet-Stream Meteorology [M]. Chicago: University of Chicago Press, 515pp
任雪娟, 杨修群, 周天军, 等. 2010. 冬季东亚副热带急流与温带急流的比较分析: 大尺度特征和瞬变扰动活动[J]. 气象学报, 68(1): 1-11. Ren X J, Yang X Q, Zhou T J, et al. 2010. Diagnostic comparison of the East Asian subtropical jet and polar-front jet: Large-scale characteristics and transient eddy activities[J]. Acta Meteor. Sinica (in Chinese), 68(1): 1-11. DOI:10.11676/qxxb2010.001
沈柏竹, 林中达, 陆日宇, 等. 2011. 影响东北初夏和盛夏降水年际变化的环流特征分析[J]. 中国科学: 地球科学, 54(7): 1095-1104. Shen B Z, Lin Z D, Lu R Y, et al. 2011. Circulation anomalies associated with interannual variation of early- and late-summer precipitation in Northeast China[J]. Science China Earth Sciences (in Chinese), 54(7): 1095-1104. DOI:10.1007/s11430-011-4173-6
Takaya K, Nakamura H. 1997. A formulation of a wave-activity flux for stationary Rossby waves on a zonally varying basic flow[J]. Geophys. Res. Lett., 24(23): 2985-2988. DOI:10.1029/97GL03094
Takaya K, Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow[J]. J. Atmos. Sci., 58(6): 608-627. DOI:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2
陶诗言, 陈隆勋. 1957. 夏季亚洲大陆上空大气环流的结构[J]. 气象学报, 28(3): 233-247. Dao S Y, Chen L S. 1957. The structure of general circulation over continent of Asia in summer[J]. Acta Meteor. Sinica (in Chinese), 28(3): 233-247. DOI:10.11676/qxxb1957.019
陶诗言, 赵煜佳, 陈晓敏. 1958. 东亚的梅雨期与亚洲上空大气环流季节变化的关系[J]. 气象学报, 29(2): 119-134. Dao S Y, Zhao Y J, Chen X M. 1958. The relationship between May-Yü in Far East and the behaviour of circulation over Asia[J]. Acta Meteor. Sinica (in Chinese), 29(2): 119-134. DOI:10.11676/qxxb1958.014
Wakabayashi S, Kawamura R. 2004. Extraction of major teleconnection patterns possibly associated with the anomalous summer climate in Japan[J]. J. Meteor. Soc. Japan, 82(6): 1577-1588. DOI:10.2151/jmsj.82.1577
Walland D J, Simmonds I. 1996. Modelled atmospheric response to changes in Northern Hemisphere snow cover[J]. Climate Dyn., 13(1): 25-34. DOI:10.1007/s003820050150
魏林波, 周甘霖, 王式功, 等. 2012. 亚洲副热带高空西风急流活动的气候特征及其与我国部分地区夏季降水的关系[J]. 高原气象, 31(1): 87-93. Wei L B, Zhou G L, Wang S G, et al. 2012. Climatic features of Asian upper westerly jet activities and their relationship with summer precipitation in partly areas of China[J]. Plateau Meteorology (in Chinese), 31(1): 87-93.
谢韶青, 卢楚翰. 2018. 近16a来冬季欧亚大陆中纬度地区低温事件频发及其成因[J]. 大气科学学报, 41(3): 423-432. Xie S Q, Lu C H. 2018. Intensification of winter cold events over the past 16 years in the mid-latitudes of Eurasia and their causes[J]. Transactions of Atmospheric Sciences (in Chinese), 41(3): 423-432. DOI:10.13878/j.cnki.dqkxxb.20160415003
Xie S P, Hu K M, Hafner J, et al. 2009. Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño[J]. J. Climate, 22(3): 730-747. DOI:10.1175/2008JCLI2544.1
杨莲梅, 张庆云. 2007. 夏季东亚西风急流扰动异常与副热带高压关系研究[J]. 应用气象学报, 18(4): 452-459. Yang L M, Zhang Q Y. 2007. Relationships between perturbation kinetic energy anomaly along East Asian westerly jet and subtropical high in summer[J]. Journal of Applied Meteorological Science (in Chinese), 18(4): 452-459. DOI:10.3969/j.issn.1001-7313.2007.04.005
杨莲梅, 张庆云. 2008. 夏季亚洲副热带西风急流气候特征[J]. 气候与环境研究, 13(1): 10-20. Yang L M, Zhang Q Y. 2008. Climate features of summer Asia subtropical westerly jet stream[J]. Climatic and Environmental Research (in Chinese), 13(1): 10-20. DOI:10.3878/j.issn.1006-9585.2008.01.02
姚慧茹, 李栋梁. 2013. 东亚副热带急流的空间结构及其与中国冬季气温的关系[J]. 大气科学, 37(4): 881-890. Yao H R, Li D L. 2013. Spatial structure of East Asia subtropical jet stream and its relation with winter air temperature in China[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(4): 881-890. DOI:10.3878/j.issn.1006-9895.2012.12072
葉篤正, 陶诗言, 李麥村. 1958. 在六月和十月大气环流的突变现象[J]. 气象学报, 29(4): 249-263. Ye T C, Tao S Y, Li M T. 1958. The abrupt change of circulation over Northern Hemisphere during June and October[J]. Acta Meteor. Sinica (in Chinese), 29(4): 249-263.
Zhang Y C, Kuang X Y, Guo W D, et al. 2006. Seasonal evolution of the upper-tropospheric westerly jet core over East Asia[J]. Geophys. Res. Lett., 33(11): L11708. DOI:10.1029/2006GL026377
张驰, 范广洲, 周定文, 等. 2011. 东亚副热带西风急流的时间演变特征及其与中国东部夏季降水的关系[J]. 成都信息工程学院学报, 26(6): 590-600. Zhang C, Fan G Z, Zhou D W, et al. 2011. Temporal evolvement characteristics of East Asia subtropical westerly jet and its relationship with the summer precipitation over eastern China[J]. Journal of Chengdu University of Information Technology (in Chinese), 26(6): 590-600. DOI:10.16836/j.cnki.jcuit.2011.06.002
Zhao W, Chen S F, Chen W, et al. 2019. Interannual variations of the rainy season withdrawal of the monsoon transitional zone in China[J]. Climate Dyn., 53(3−4): 2031-2046. DOI:10.1007/s00382-019-04762-9
Figure 1 Climatology of (a) the zonal wind (contours, units: m s−1) and the variance (shadings, units: m2 s−2), (b) the first empirical orthogonal function mode of the zonal wind anomalies (shading, contours, units: ×102) over Asia (0°–70°N, 65°–160°E), (c) the time series of the intensity of the East Asian jet stream (IIEj, dashed line, lower dotted-dashed line indicates mean value) and west Asian jet stream (IIWj, solid line, upper dotted-dashed line indicates mean value), (d) the time series of IAja (Index of Asian jet stream asymmetry) index (bars, dotted-dashed line indicates ±0.3
$\sigma $
(standard deviation), solid line denotes the nine-point quadratic smoothing result), (e) the power spectrum of the Morlet wavelet transform for index IAja (shading areas represent the power spectrum above the 90% confidence level, dotted areas indicate the cone of influence) averaged in JJA (June, July, August) at 200 hPa during 1979–2019
Figure 2 Composite differences (positive IAja years minus negative IAja years, the same below) of (a) the zonal wind anomalies (units: m s−1, shaded areas indicate anomalies above the 90% confidence level) at 200 hPa, rotational wind (streamlines) and divergent wind (arrows, units: m s−1, the red arrows indicate divergent wind exceeding the 90% confidence level), vorticity production term (shadings, units: 1010 m s−2, the yellow (green) shadings indicate negative (positive) values, the areas enclosed by the black dashed line represent the vorticity production term above the 90% confidence level) at (b) 850 hPa (gray shadings indicate the altitudes are higher than 850 hPa) and (c) 200 hPa
Figure 3 Composite differences in (a) the diabatic heating rate anomalies, (b) the dynamic heating rate due to the vertical motion anomalies, and (c) the dynamic heating rate anomalies due to the horizontal temperature advection. All variables are integrated from the surface to 100 hPa, the red (blue) shadings indicate positive (negative) values, the areas enclosed by the black dashed line represent heating rate above the 90% confidence level
Figure 4 Composite differences in the wave-activity fluxes (arrows, units: m2 s−2) and the divergence of the wave-activity fluxes (shadings, units: 10−6 m2 s−2) at (a) 850 hPa and (b) 200 hPa
Figure 5 Composite differences in the sea surface temperature anomalies (units: 10−1 °C), the shadings areas indicate the values above 90% confidence level
Figure 6 Correlations between the JJA (a) rainfall anomalies, (b) air temperature anomalies at 2-m height and IAja, the shadings areas represent correlations above 90% confidence level
Figure 7 Composite differences in the vapor fluxes anomalies (the water vapor fluxes above the 90% confidence level are showed by the red arrows, units: g cm−1 hPa−1 s−1) and the fluxes divergence anomalies (shadings, units: 10−6 g cm−2 hPa−1 s−1, the areas enclosed by the black dashed line indicate the values above the 90% confidence level) (a) integrated from the surface to 300 hPa and (b) at 700 hPa