双月刊

ISSN 1006-9585

CN 11-3693/P

+高级检索 English
基于小波分解和最小二乘支持向量机的大气臭氧含量时间序列预测
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家重点基础研究发展计划资助2006CB403705


Combination of Wavelet Decomposition and Least Square Support Vector Machine to Forcast Atmospheric Ozone Content Time Series
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    基于小波分解(WT)和最小二乘支持向量机(LSSVM)理论,建立了将二者相结合的大气臭氧含量时间序列预测模型。采用香河等4个观测站的月平均臭氧总量观测样本,经小波分解为不同频段的子序列,将这些子序列分别进行LSSVM预测,最后经小波重构得到月平均臭氧总量时间序列预测结果。实验表明该方法能有效预测大气臭氧含量,与支持向量机(SVM)以及人工神经网络(ANN)的预测结果相比,该方法具有较高的预测精度。

    Abstract:

    The atmosphere ozone content forecast model was established based on the combination of wavelet decomposition and advanced Least Square Support Vector Machine (LSSVM) regression. This can be approached in three steps: (1)The observations were decomposed into several different frequency signal subsets,(2)the independent prediction models of decomposed signals with Takens delay embedding theorem and Least-Squares Support Vector Machine (LSSVM) were set up, (3)independent predicted results were integrated as the final prediction with wavelet reconstruction. Application experiments with data from Xianghe and the other three observation stations show that the method can make better prediction effectively for the atmospheric ozone content, as compared with conventional Support Vector Machine(SVM) and Artificial Neural Network(ANN).

    参考文献
    相似文献
    引证文献
引用本文

朱佳,王振会,金天力,郝晓静.2010.基于小波分解和最小二乘支持向量机的大气臭氧含量时间序列预测[J].气候与环境研究,15(3):295-302. ZHU Jia,WANG Zhenhui,JIN Tianli,HAO Xiaojing.2010.Combination of Wavelet Decomposition and Least Square Support Vector Machine to Forcast Atmospheric Ozone Content Time Series[J].Climatic and Environmental Research (in Chinese],15(3):295-302.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2011-12-01
  • 出版日期: