Abstract:In order to explore the characteristics of PM2.5 pollution in autumn and winter in cities along the Taihang Mountains, Jiyuan City, a typical industrial city was selected as the research object. According to the influence characteristics of meteorological factors on the hourly concentration change of PM2.5 in different time periods, the pollution level of PM2.5, and the difference of pollutant growth rate before and after the start of heating in winter (November 15, 2021), October 2021 to March 2022 are divided into four stages, and the hourly data of PM2.5 and meteorological factors in different stages are analyzed by using multiple linear regression model. The results show that in the first stage (2021.10.1-11.14), 26.1% of PM2.5 hourly concentration change is determined by meteorological factors, and the correlation between single factor and PM2.5 is less than 36%; In the second stage (2021.11.15-12.31), 72.4% of the hourly concentration change of PM2.5 was determined by meteorological factors. The wind direction, relative humidity and visibility had significant effects on PM2.5, and the correlation between PM2.5 and relative humidity and visibility reached the highest (61.5% and 73.1%); In the third stage (2022.1.1-1.31), 53.2% of the hourly concentration change of PM2.5 is determined by meteorological factors, and the relative humidity and wind speed have no significant impact on the hourly change of PM2.5, which is related to the large impact of the long-range migration and detention of pollution clusters in this stage; In the fourth stage (2022.2.1-3.31), 32.2% of PM2.5 hourly concentration change is determined by meteorological factors. Affected by sand and dust, wind speed has no significant impact on PM2.5 hourly change. In the process of pollution in autumn and winter in Jiyuan City, the main components of particulate matter are NO3-, NH4+, OC and SO42-, of which the proportion of SNA (SO42-, NO3-, NH4+) is more than 65.7%, and the secondary pollution is serious. On the whole, the growth rate of particle component concentration shows that the growth rate of NO3-, S, EC and Cl- slows down with the increase of pollution, while the growth rate of SO42, OC, K+ and NH4+ shows a "slow-fast" trend with the increase of pollution.