2014, 19(2):127-139. DOI: 10.3878/j.issn.1006-9585.2014.13136
摘要:2013年1月华北平原出现了罕见的重污染天气过程,并引发连续多天大范围重霾现象。利用中华人民共和国环境保护部公布的空气污染指数日值数据和气象常规观测数据,结合区域空气质量模式系统RAMS-CMAQ的模拟结果,对1月10~15日污染过程的气象要素和关键气溶胶物种时空分布特征进行了详细分析,并对灰霾成因进行了探讨。结果表明,受本次污染过程影响的区域主要分布在北京-天津-唐山、河北省中南部和山东省大部。这些地区细颗粒物(即PM2.5)日均质量浓度超过120 μg m-3,且基本被灰霾覆盖,日均能见度在5~8 km之间。其中在北京、天津、石家庄和济南市及周边地区细颗粒物日均质量浓度可达250~300 μg m-3,部分市区可超过300 μg m-3,而日均能见度则可下降至3 km以下,形成重度灰霾。此外,对气象场的分析显示,本次污染过程期间华北平原大部分地区水平风速较多年平均值偏小约20%,且有明显逆温层覆盖,北京-天津-唐山、河北省南部和山东省北部的相对湿度则较多年平均值偏高达10%~40%。这样的气象条件不仅造成污染物易于堆积,而且有利于吸湿性粒子消光效应的快速增长,使能见度明显下降,是引发灰霾的重要因素之一。在北京地区引发灰霾的主要气溶胶物种为硫酸盐、硝酸盐和铵盐,这3种无机盐对近地面的消光贡献比率达到50%以上。其中硝酸盐的消光贡献比率最高,可达总体效应的1/4,表明在这次污染过程中除相关工业源排放外,交通源排放也是北京地区主要的污染源之一。
2014, 19(2):140-152. DOI: 10.3878/j.issn.1006-9585.2014.13135
摘要:2013年1月11~14日,华北地区经历重雾霾过程。为了探讨其形成原因,利用大气化学模式系统Weather Research and Forecasting(WRF)-Chem模拟2013年1月华北地区气溶胶的时空变化。模拟的能见度、气象要素(温度、湿度、降水、风速和风向)以及细颗粒物(PM2.5,大气中直径≤2.5 μm的颗粒物)地表浓度的时间变化与近地面观测值都较为吻合。模拟结果表明,1月11~14日,细颗粒物高值分布于河北省南部和东部、天津地区以及北京地区,其日均值约为400~500 μg m-3。通过与历史气候数据比较发现,2013年1月10~15日华北地区的气象条件表现为较大的相对湿度正距平(20%~40%)以及风速的负距平(-1 m s-1)。北京站点的探空数据还表明,在1月11~13日期间,垂直方向上,1 km以下的大气中存在明显的逆温层,并且湿度保持较高的值(80%~90%)。模拟结果表明,1月11~14日,近地面南向风和东向风将水汽输送到华北地区,上层大气(850 hPa)的西北风则将沙尘输送到华北地区。以上气象条件有利于气溶胶的吸湿增长和浓度的聚集。硝酸盐的收支分析表明,在北京地区,与1~9日相比,10~14日夜间化学生成和传输的显著增加都贡献于硝酸盐浓度,是重雾霾形成的主要原因。
王哲 , 王自发 , 李杰 , 郑海涛 , 晏平仲 , 李健军
2014, 19(2):153-163. DOI: 10.3878/j.issn.1006-9585.2014.13231
摘要:为解析大气污染物与气象的双向反馈机制及其对气象和环境的影响,建立基于Mie散射理论的气溶胶—光学性质模块,研制气象-化学双向耦合器,以嵌套网格空气质量预报模式NAQPMS (Nested Air Quality Prediction Modeling System)为基础,建立了NAQPMS和中尺度气象模式WRF (Weather Research and Forecasting Model)的双向耦合模式(WRF-NAQPMS)。利用此模式数值模拟了2013年9月27日至10月1日的北京-天津-河北地区一次秋季严重灰霾过程。结果表明,考虑气溶胶辐射反馈的双向耦合模式模拟的气象要素和细颗粒物(PM2.5)浓度与观测结果更为一致。灰霾期间,气溶胶直接辐射效应显著改变了边界层气象要素,北京-天津-河北地区地面接收的太阳短波辐射减少25%,2 m高度的温度平均下降1 ℃,湍流动能下降20%,10 m高度的风速降低超过0.2 m/s,边界层高度下降25%,使得边界层大气更加静稳,进而造成了重污染地区污染进一步加剧,如石家庄近地面细颗粒物浓度增加可达30%。分析表明灰霾与边界层气象要素之间存在一种正反馈机制,采用该机制的双向耦合模式有利于准确模拟和预报灰霾污染过程。
2014, 19(2):164-172. DOI: 10.3878/j.issn.1006-9585.2014.13224
摘要:利用观测的气象要素和细颗粒物(即PM2.5)浓度资料,并结合中尺度数值天气模式WRF(Weather Research and Forecasting Model),对2013年1月北京地区雾霾污染期间天气条件和边界层气象特征进行了分析。模拟与观测对比表明,WRF模式可以较好地反映北京—天津—河北地区地面和高空主要气象要素的时空分布。对1月10~14日、27~31日两次重雾霾天气的分析表明,雾霾的形成是高浓度的大气颗粒物和特殊的气象条件共同作用的结果。小风或静风、稳定的大气层结,使大气扩散能力减弱,造成污染物堆积,偏南气流将周边污染物和水汽输送到北京,不仅增加了污染物浓度,而且有利于气溶胶吸湿增长,消光增强,使能见度下降,进而形成雾霾。
王跃 , 王莉莉 , 赵广娜 , 王跃思 , 安俊琳 , 刘子锐 , 唐贵谦
2014, 19(2):173-184. DOI: 10.3878/j.issn.1006-9585.2014.13178
摘要:城市重霾污染事件的发生除排放源内在原因之外,气象条件是最直接的客观外因。本文以2013年2月21~28日北京地区典型细颗粒物(即PM2.5)重污染过程为例,基于颗粒物水平和垂直监测数据,常规及加密自动气象站数据和高时间分辨率风廓线数据,分析了重污染过程中不同尺度环流形势以及边界层结构的变化对细颗粒物重度污染形成、累积和消散的影响。结果表明:弱低压场或弱高压场控制下,局地西南风和东南风输送与北部山区偏北风在山前的汇聚,配合边界层低层顺时针方向的风切变,易发生大气中细颗粒物的爆发性增长;而均压场控制和近地层持续偏南气流输送,配合高层持续稳定的西北风,是污染长时间持续稳步增长的主因。此外,近地层低风速、高湿度和逆温的维持是区域霾污染爆发增长和长时间持续增长的关键气象因素。高压前部的系统性西北大风是污染得以驱散的直接外部动力。
2014, 19(2):185-192. DOI: 10.3878/j.issn.1006-9585.2014.14008
摘要:北京-天津-河北地区工业城市保定大气颗粒物(Particulate matter,PM)污染严重,保定大气颗粒物尤其是细粒子和超细粒子污染严重,其中含碳组分具有重大贡献,PM1.1、PM2.1和PM2.1-9.0中含碳气溶胶总量(total carbonaceous aerosols,TCA)分别占到(49±20)%、(45±19)%和(19±7)%。PM9.0中的含碳气溶胶主要富集在PM2.1乃至PM1.1中。颗粒物浓度谱分布及含碳气溶胶富集量呈显著季节变化,由于采暖过程秋冬季各粒径段有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)的浓度均增加,秋、冬季节细颗粒物中OC浓度可高达44.0±38.3、78.5±30.2 μg m-3,EC浓度分别为3.5±1.6、8.5±6.8 μg m-3。各个季节OC和EC在总悬浮颗粒物(total suspended particulate,TSP)中的几何平均直径(geometric mean diameter,GMD)均集中在较小粒径段。粗颗粒物中OC的GMD在春夏季较高,秋季减少,而冬季最低。而粗颗粒物中EC的GMD则是冬季最高,夏季最低。保定<0.4 μm的颗粒物中OC/EC比值4个季节的水平较为稳定,春、夏、秋、冬季OC/EC比值分别为5.2、3.5、4.1和5.4,来源主要为交通和燃煤。其余几个粒径段的颗粒物的来源更为复杂,其来源主要为燃煤、木材和生物质。
2014, 19(2):193-199. DOI: 10.3878/j.issn.1006-9585.2014.13078
摘要:为了研究空气中的水汽层结变化对雾、霾生消的影响,对北京2011年10月至2012年2月雾、霾天气个例中能见度变化和地基微波辐射计观测的相对湿度及液态水含量资料进行分析,结果表明:大气总液态水含量时序图对预报雾、霾没有参考意义,无论是大气总液态水含量数值的大小,还是大气总液态水含量随时间的变化都不能预测雾、霾的生成与消散。但不同时刻大气液态水含量的廓线图对雾、霾天气的预报还是具有指示意义的,因为雾、霾生消前后大气液态水含量层结变化明显。进一步分析不同情况的雾、霾天气发现:雾、霾生消前后均无降水出现和先出大雾后降水的情况,即降水后消散的雾、霾天气,大气相对湿度的变化和液态水含量的变化主要集中在3 km以下;对于先降水后出大雾的情况,整层大气相对湿度的变化都很明显,液态水含量的变化主要在3~7 km之间。由于降水既可以增加近地面的空气湿度,又可以消耗空气中的水汽,因此降水既是大雾形成的有利条件,也是大雾消散的有利条件。有降水出现的大雾天气,有饱和层(空气相对湿度达到或接近100%),无降水出现的重霾天气,则没有饱和层,且整体相对湿度偏低。
李艳红 , 赵彩萍 , 荆肖军 , 郭雪梅 , 周晋红 , 李瑞萍
2014, 19(2):200-208. DOI: 10.3878/j.issn.1006-9585.2014.13191
摘要:利用2008~2012年太原常规地面气象观测资料、高空探测资料和大气污染物观测资料,对主要天气形势、典型气象要素以及空气污染状况下灰霾天气特征及形成机制进行了综合分析。结果表明:1)太原地区灰霾出现频率存在明显的季节变化,冬半年灰霾出现天数占全年的65.7%;一天中 08:00(北京时间,下同)至13:00发生灰霾的频率较高。2)霾日静风频率较高,主导风向为偏东南风;重度灰霾天气出现时相对湿度较高。3)霾日的大气稳定度主要表现为稳定类;霾日平均混合层高度比非霾日低约 100 m;08:00逆温出现次数高于20:00,霾时平均逆温强度和厚度高于非霾时。4)高压类型天气形势对灰霾的产生有重要影响,低压天气形势下较少出现灰霾天气。5)可吸入颗粒物、SO2和NO2浓度在非霾日比霾日分别下降32.6%、48.6%、21.7%;随着灰霾等级的增加,SO2和可吸入颗粒物的浓度有显著的增加。6)灰霾天气下到达地面的太阳辐射强度明显减弱,日照时数明显减少。
2014, 19(2):209-218. DOI: 10.3878/j.issn.1006-9585.2014.13156
摘要:利用MICAPS资料、地面观测资料、NCEP资料和衡水市环境监测站细颗粒物(PM2.5)及PM10浓度资料,对2013年1月衡水市出现的连续雾霾天气从PM10及细颗粒物浓度演变、雾霾天气污染物浓度与地面要素关系、中低层环流形势特征进行了分析,结果表明:1)雾霾天气期间06:00(北京时间,下同)至07:00和16:00至21:00为PM10和细颗粒物浓度较低时段,PM10最大值出现在15:00,细颗粒物最大值出现在02:00,两者并不同时达到极值。2)雾霾天气污染物浓度与地面湿度并不是简单的正相关或负相关关系,还和许多其它因素有关。3)衡水市污染源主要来源于工业污染源、扬尘污染、冬季燃煤采暖、局部污染源及区域性污染。4)雾霾天气相对湿度和能见度基本呈负相关,气压变化不大,风向频率最多为北到东北风,平均风速一般都在2 m/s以下。雾日时大部分时段为雾和霾的混合物。5)重污染日期间500 hPa为平直偏西气流或西北偏西气流,没有明显的槽脊活动。而污染较轻的时段500 hPa为明显的西北气流控制或有槽脊活动。6)雾霾天气期间大部分日数08:00在850 hPa以下都存在逆温层;地面气压场偏弱,尤其河北平原一带基本为均压场。最后对雾霾天气影响及对策进行了简单探讨。
2014, 19(2):219-226. DOI: 10.3878/j.issn.1006-9585.2014.13213
摘要:对1960~2010年我国中东部地区霾日数的时空变化特征的分析结果表明:1)霾日数大值区主要分布在人口众多的四川盆地、北京-天津-河北地区、长江中下游地区以及广东-广西中部。2)季节变化上,霾日数冬季较多,其中北京-天津-河北地区中部和西南部、四川盆地和东北地区东部和南部等地超过20 d,夏季最少。3)霾日数气候趋势系数在北京-天津-河北地区、长江三角洲地区和珠江三角洲地区趋势系数高达0.8。4)霾日数呈现明显的上升趋势[3.69 d(10 a)-1],其气候趋势系数为0.82,通过了99.9%的信度检验。5)我国中东部气溶胶光学厚度和对流层NO2的空间分布与年平均霾日数的分布基本一致,近51年来能源消耗量的稳定上升趋势也表明,人为因素导致的大气污染物排放量增加是引起霾天气出现频率上升的重要因素。
2014, 19(2):227-236. DOI: 10.3878/j.issn.1006-9585.2014.13112
摘要:2013年1月安徽霾天气具有范围广、持续时间长、能见度低等特点。利用合肥、安庆、阜阳2009~2013年1月地面常规资料、高分辨率探空资料,结合轨迹分析和聚类分析,讨论了2013年1月安徽霾天气频发的原因。结果表明:低风速、高湿度不能解释2013年1月霾天气增多、增强的现象。大气层结稳定、接地逆温偏多、偏厚,可部分解释这次霾天气增多现象。边界层中上部输送条件的变化也不能解释2013年1月霾天气增多现象,但近地层输送条件的变化能较好地解释2013年1月霾天气增多现象,如偏东北来向的轨迹组对应着最低的能见度,且2013年1月各地最低能见度对应的轨迹组所占比例(或与次低能见度的轨迹组所占比例之和)在历年中最高。因此,大气层结稳定、近地层偏东北来向气团较多是2013年1月安徽各地能见度偏低、霾天气偏多的主要原因。
2014, 19(2):237-247. DOI: 10.3878/j.issn.1006-9585.2014.13209
摘要:利用常规观测资料和NCEP再分析资料,从污染情况、环流背景、地面气象要素特征、水汽、热力及动力条件等几个方面对江苏2012年6月中上旬持续雾霾天气进行了分析。结果表明:江苏及周边省市秸秆焚烧造成大量的气溶胶粒子悬浮于空中,是造成江苏出现持续不同程度的霾天气的主要原因,同时也为雾滴形成提供了丰富的凝结核;中高层冷空气强度未能完全破坏底层相对稳定的层结,较小的风速和较大的湿度有利于雾霾的发展,重度霾或雾风速多在3 m/s以下,且相对湿度在80%以上。频繁的弱降水过程对雾的形成和霾的加重起到了重要的作用;低层的逆温或近中性层结的维持,为雾霾持续存在提供了有利的层结条件,且浓雾形成主要有辐射贴地逆温和平流逆温两种形式;垂直上升运动与雾霾的发展之间有着互相影响的紧密联系,在具备一定的水汽条件时,底层弱的上升运动有利于雾体的向上发展从而促进雾的加浓。后向轨迹模拟雾霾相对较严重的6月10日污染轨迹表明沿江和苏南地区污染物浓度上升除了本地悬浮颗粒物外,安徽境内的污染物的输送也是一个重要因素,而北部地区更多还是本地的污染源。
2014, 19(2):248-264. DOI: 10.3878/j.issn.1006-9585.2014.13110
摘要:珠江三角洲地区是我国气溶胶污染较严重的地区之一,也是国内较早开展灰霾天气研究的地区,从灰霾标准、科学概念、长期变化趋势、细粒子污染本质、水平输送和垂直扩散能力以及气溶胶的光学特性和物理化学特性方面进行了研究。结果表明,近年来珠江三角洲地区的气溶胶污染日趋严重,气溶胶云一年四季都出现,且长期稳定存在,重污染区位于珠江口以西的珠江三角洲西侧。灰霾天气主要出现在10月至次年4月。灰霾导致能见度恶化。自20世纪80年代初开始,该地区的能见度急剧恶化,灰霾天气显著增加,其中有3次大的波动,分别代表珠江三角洲经济发展相伴随的粗颗粒气溶胶污染、硫酸盐+粗颗粒气溶胶污染、光化学过程的细粒子+硫酸盐和粗颗粒气溶胶的复合污染时期。雾和轻雾造成的低能见度的长期变化趋势,没有由于人类活动影响或经济发展影响带来的趋势性变化,其波动主要反映了气候波动固有的年际和年代际变化。珠江三角洲能见度的恶化主要与细粒子关系比较大,PM10有一半年份的年均值超过国家二级标准的年均值浓度限值(70 μg m-3),而细颗粒物(即PM2.5)各年都超过国家二级标准的年均值限值(35 μg m-3),尤其是有些年份年均值浓度超过标准限值的2倍,细粒子浓度甚高。另外,近年细颗粒物占PM10的比重非常高,可达57%~79%,黑碳气溶胶浓度非常高,月均值达到5.0~9.1 μg m-3,黑碳气溶胶污染严重。和20余年前的资料相比较,细粒子在气溶胶中的比重有明显增加,有机碳和硝酸盐、铵盐的占比增加,而硫酸盐占比略有减少,钙占比明显减少。区域气流停滞区的形成是发生严重灰霾天气的主要气象条件,垂直输送能力不足也是加重灰霾天气的气象条件之一。
地址: 邮政编码:100029 联系电话:010-82995048,010-82995413
发行: 传真: E-mail:qhhj@mail.iap.ac.cn
版权所有:气候与环境研究 ® 2024 版权所有 技术支持:北京勤云科技发展有限公司 ICP:京ICP备14024088号-7