张岳军, 余锦华, 刘征宇, 等. 2013. 2009/2010 年冬季中国气温异常及其对海表温度的遥响应 [J]. 气候与环境研究, 18 (5): 626–638, doi:10.3878/j.issn. 1006-9585.2013.12018. Zhang Yuejun, Yu Jinhua, Liu Zhengyu, et al. 2013. Winter 2009/2010 temperature anomaly in China and its remote response to sea surface temperature [J]. Climatic and Environmental Research (in Chinese), 18 (5): 626–638.

2009/2010 年冬季中国气温异常及其对海表 温度的遥响应

张岳军^{1,2,3} 余锦华^{1,2} 刘征宇^{1,2} 吴燕珠^{1,2} 李芬² 李明明³

1 南京信息工程大学气象灾害教育部重点实验室,南京 210044
2 南京信息工程大学大气科学学院,南京 210044
3 山西省气象科学研究所,太原 030002

摘 要 基于 1958/1959~2009/2010 年冬季全球海表温度(HadISST) 和中国 160 站地面月平均温度等资料,利用广义平衡反馈分析方法(GEFA),分析了中国地区 2009/2010 年冬季气温异常型态与 SST 异常的关系。结果表明,热带中东太平洋 El Niño 型和热带大西洋"三极型"对 2009/2010 年冬季中国地区西南暖东北冷的异常型态(简称 LN 型)影响显著。

为了验证统计结果的可靠性,利用 MPI (Max Planck Institute for Meteorology)全球大气环流模式 ECHAM5 进行气温异常型态对关键海盆 SST 变化响应的敏感性试验,结果表明西南地区气温异常对热带太平洋 El Niño 模 态强迫的增暖响应在 0.5 ℃ 左右;对热带大西洋"三极型"强迫的增暖响应在 0.6 ℃ 左右,增暖中心的云贵高原 一带最大增温幅度达到 1 ℃。对 El Niño 模态、热带大西洋"三极型"的强迫,东北绝大部分地区表现出冷的响 应,气温异常下降分别在 0.6 ℃和 0.45 ℃ 左右,中国东部地区气温异常型态是热带大西洋"三极型"海温异常 和热带太平洋 El Niño 模共同强迫的结果。这两种海温异常型态使中高纬度地区西风加强,阻挡了来至高纬度地 区的冷空气向南方输送,导致西南地区较常年偏暖,而东北偏冷。同时,西太平洋地区出现的海平面气压反气旋 式环流异常可能削弱了东亚冬季风。

关键词 冬季气温异常 广义平衡反馈分析方法(GEFA) ECHAM5 模式 SST 遥响应
文章编号 1006-9585 (2013) 05-0626-13 中图分类号 P461⁺.2 文献标识码 A doi:10.3878/j.issn.1006-9585.2013.12018

Winter 2009/2010 Temperature Anomaly in China and Its Remote Response to Sea Surface Temperature

ZHANG Yuejun^{1, 2, 3}, YU Jinhua^{1, 2}, LIU Zhengyu^{1, 2}, WU Yanzhu^{1, 2}, LI Fen^{1, 2}, and LI Mingming³

1 Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044

2 College of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing 210044

3 Shanxi Province Meteorological Science Research Institute, Taiyuan 030002

Abstract On the basis of 1958/1959–2009/2010 winter global sea surface temperature (HadISST) and the stations data from the 160 Chinese stations, etc., the relationships between temperature anomalies in China during the winter of

收稿日期 2012-02-04 收到, 2013-06-20 收到修定稿

资助项目 公益性行业(气象)科研专项 GYHY200906016,国家重点基础研究发展计划项目 2012CB955903,江苏高校优势学科建设工程项目

作者简介 张岳军,男,1985年出生,硕士研究生,研究方向为气候诊断与数值模拟。E-mail: ccolos@163.com

通讯作者 余锦华, E-mail: jhyu@nuist.edu.cn

2009/2010 and SST anomalies are analyzed by the general equilibrium feedback method developed recently. The results show that the tropical eastern Pacific El Niño and tropical Atlantic "three-pole" pattern significantly affect the anomaly pattern of temperature, with warmer temperatures in southwestern China and colder temperatures in northeastern China (the LN pattern) during the winter of 2009/2010.

To verify the reliability of the statistical results, several model sensitivity experiments with the MPI (Max Planck Institute for Meteorology) global atmospheric general circulation model ECHAM5 were conducted by varying the SST in key basins. The results show that the temperature in southwestern China warms by about 0.5 °C and 0.6 °C in response to the tropical Pacific El Niño event and the tropical Atlantic three-pole SST anomaly pattern, respectively. Furthermore, the largest amplitude in the Yunnan–Guizhou Plateau is as high as 1 °C in response to the three-pole pattern. Forced by the modes of El Niño and the three-pole pattern, most areas of northeastern China show a negative anomalous response, and the temperature variation is about -0.6 °C and -0.45 °C, respectively. Both the three-pole SST anomaly and the El Niño event produce an anomalous temperature pattern in eastern China. Together, these two types of SST anomalous patterns strengthened the westerly winds at high latitudes, blocking high-latitude cold air transmission to the south and leading to warming in southwest China and cooling in Northeast China. Simultaneously, the anti-cyclonic circulation anomaly over the western Pacific at sea level may weaken the East Asian winter monsoon.

Keywords Winter temperature anomaly, GEFA, ECHAM5 model, SST, Remote response

1 引言

2009 年冬季 (2009 年 12 月~2010 年 2 月) 华 北北部、东北大部及内蒙古东部平均气温普遍偏低 2~4 °C,极端最低气温为-40~-25 °C,内蒙古 局部地区在-45 °C 以下,东北平均气温出现了 1951 年以来历史同期最低值。同时,我国江南、华 南和西南等地没有受到强寒潮的影响,平均气温普 遍偏高,尤其是西南地区气温高于气候平均值 1~ 4 °C。这种气温异常分布导致中国东北地区出现了 异常低温,而南方出现了异常高温干旱的天气,特 别是西南地区爆发了最近 50 年来罕见的旱灾,农 作物受灾面积为 900×10⁴ hm²,直接经济损失达到 了 116×10⁸元人民币。

海表温度(SST)异常对中国气候变化的影响 一直受到学者的关注。许多研究表明东亚冬季风的 年际变化与 ENSO 现象存在密切的联系。一般情况 下 El Niño 年都伴随着弱的东亚冬季风,中国广大 地区冬季温度比气候平均值偏高,而 La Niña 年一 般都伴随着强的冬季风,中国大部分地区冬季温度 比气候平均值偏低(李崇银,1989a,1989b;陈文, 2002;张庆云等,2008)。太平洋十年涛动(PDO) 对东亚大气环流及中国气候年代际变化的影响极 为深刻。对应于 PDO 正位相期间,冬季阿留申低 压增强,蒙古高压也增强(但东西伯利亚高压减 弱),中国东北、华北和西北地区气温异常显著偏 高,而西南和华南地区气温偏低(朱益民和杨修群, 2003)。最近研究发现 ENSO 对东亚冬季风的影响 受 PDO 调制,当 PDO 处于正位相时 ENSO 对东 亚冬季风的影响并不显著,当 PDO 处于负位相时, ENSO 对东亚冬季风的影响加强(Wang et al., 2008)。冬季大西洋海温异常也是影响同期中国地 区气候变化的重要因子之一。北大西洋中部地区 海温异常偏高,冬季中国东部地区气温将偏高,反 之则偏低;近 20 年中国冬季东部气温的偏高与 北大西洋中部海温的年代际增温相一致(曲金华, 2006)。事实上人们很早就认识到北大西洋副热带 SST 变率是北美月、季时间尺度气候变化的一个非 常重要的预报因子 (Radcliffe and Murray, 1970; Wallace and Jiang, 1987; Namias et al., 1988)。 ⊟ 有的这些研究主要立足于单一海盆 SST 对中国或 某一区域气候异常的影响,实际上全球各海盆 SST 异常变化同时在起作用,常规统计方法(如相关分 析)得到的某一海盆海表温度异常(SSTA)的影响 也许并不能真正代表该海盆的作用, 而是包含了其 它海盆的影响,比如上述研究大西洋年际 SST 异常 对中国气候变化的影响结果很可能是 El Niño 事件 影响的体现。

Liu et al. (2008) 将平衡反馈方法(Equilibrium Feedback Assessment, EFA)(Frankignoul, 1987) 对大气的一元反馈拓展到多元反馈,提出了广义平衡反馈方法(Generalized Equilibrium Feedback Assessment, GEFA)(Liu et al., 2008; Liu and Wen, 2008),这样既可以避免 EFA 反馈中不同海盆之间的相互影响,也能够分离不同海盆 SSTA 对气候异

常的各自反馈贡献。但是,随着研究的深入,GEFA 对样本误差的敏感性问题被提出来。在样本有限的 情况下,样本误差会随着强迫场空间分辨率的提高 而增大。也就是说,只有在强迫场空间分辨率比较 低的情况下,GEFA 估算的反馈系数才有效,当强 迫海洋的大气空间尺度增大时,使得不同海盆 SST 之间的联系更加密切,结果导致样本误差增大。为 减小样本误差,用经验正交函数展开(EOF)截断 方法来优化 GEFA 的估算效果。最近, Zhong and Liu (2008)利用 GEFA 分析了不同海域 SSTA 模态 对美国降水的影响,给出了全球海温影响美国水文 气候的综合估计。目前使用 GEFA 诊断分析中国气 候异常的研究尚未系统开展。本文利用 GEFA 分析 2009/2010年冬季中国温度异常期间,热带太平洋、 热带大西洋海气相互作用各自对中国气温异常型 态的影响,并通过一系列数值敏感性试验对两大海 盆海气相互作用的机制进行研究。文章第二部分对 资料、GEFA 方法、模式以及试验设计进行了简要 介绍; 第三部分分析了 2009/2010 年冬季的观测事 实; 第四部分为模式性能检验及敏感性试验结果; 若干结论和讨论在第五部分给出。

2 资料和方法

2.1 资料

本文使用的资料有中国 160 个台站冬季逐月平均气温; NCEP/NCAR 再分析资料,包括海平面气压(SLP)、位势高度场、风场等,垂直方向上 17 个层次;在提取 5 个海盆前 3 个 EOF 模态时使用了 HadISST OI 海温月平均数据。所用数据时间序列均为 1958/1959~2009/2010 年,共计 52 年。

2.2 方法

2.2.1 GEFA 方法简介

GEFA 方法的详细介绍请参阅文献(Liu and Wen, 2008; Liu et al., 2008),下面做简要说明。

设某地区在气候时间尺度上大气异常变化为X_t,

$$\boldsymbol{X}_{t} = \begin{bmatrix} \boldsymbol{x}_{1}(t) \\ \boldsymbol{x}_{2}(t) \\ \vdots \\ \boldsymbol{x}_{1}(t) \end{bmatrix} , \qquad (1)$$

其中,*I*是该地区的小区域数或 EOF 展开的典型场数目。根据广义准平衡反馈(GEFA)原理,可用

两部分线性表示,一部分来自下垫面异常 Y_t的反馈 作用(包括不同海盆的共同作用结果),另一部分 是大气内变化 N_t。即:

$$\boldsymbol{X}_{t} = \boldsymbol{B}\boldsymbol{Y}_{t} + \boldsymbol{N}_{t} , \qquad (2)$$

$$x_{i}(t) = \sum_{j=1}^{J} b_{ij} y_{j}(t) + n_{i}(t) , \qquad (3)$$

其中,

$$\boldsymbol{Y}_{t} = \begin{bmatrix} y_{1}(t) \\ y_{2}(t) \\ \vdots \\ y_{J}(t) \end{bmatrix}, \qquad (4)$$
$$\boldsymbol{B} = (b_{ij})_{I \times J}, \qquad (5)$$

其中, *b_{ij}*为区域 *i* 大气对第 *j* 个下垫面异常的响应 系数,反映了某地下垫面异常对所研究地区第 *i* 个 区域大气的独自贡献。

考虑到气候时间尺度上大气内变化可以看作 白噪音,后期大气无法影响前期下垫面异常,即

$$\langle N(t), Y(t-\tau) \rangle \geq 0$$
. (6)

由方程(2),可得反馈系数阵:

$$\boldsymbol{B}(\tau) = \boldsymbol{C}_{xv}(\tau)\boldsymbol{C}_{vv}^{-1}(\tau), \qquad (7)$$

其中, $C_{xy}(\tau)$ 是 x(t) 与 $y(t-\tau)$ 的协方差阵, $C_{yy}(\tau)$ 为 y(t) 与 $y(t-\tau)$ 的自协方差阵, τ 为大气对下垫 面的响应时间, 文中取 $\tau = 1$ 。

2.2.2 ECHAM5 模式与试验设计

本文使用的模式是德国 MPI (Max Planck Institute for Meteorology) 第五代全球大气环流模式 ECHAM5,该模式采用三角形波普截断,有 T42、T63、T85、T106 等多种不同的水平分辨率、本文采用 T63,近似 1.875°(纬度)×1.875°(经度)。 垂直方向为σ混合坐标,从上到下有 19、29、31 层等多种不同的垂直分辨率可供选择,本文数值试验使用 19 层的分辨率。模式各种物理参数化方案详细内容见文献(Roeckner et al., 2003)。

为了研究 2009/2010 年冬季中国气温异常对不同海盆 SSTA 模态的响应,执行了 4 组试验:

(1) CTL: 即用气候平均态的海温去强迫初始 场;

(2) EXP1: 在气候平均态的海温中加入热带中 东太平洋 EOF 第一模态;

(3) EXP2: 在气候平均态的海温中加入热带大 西洋 EOF 第三模态;

(4) EXP3: 在气候平均态的海温中加入上述两

种异常模态。

以上试验可归纳为表 1, 然后把 3 组敏感性试验 的结果分别减去未经扰动的背景试验(Control run) 结果,来解释 3 种 SSTA 的强迫效应。上述 3 个敏感 性试验设计方案主要依据 GEFA 的诊断结果。

表 1 试验设计方案 Table 1 Experimental design

	_	_	
试验名称	范围	异常强迫	积分时间
CTL			30年
EXP1	(120°S~20°N, 20°E~60°W)	热带太平洋 EOF1	30年
EXP2	(20°S~20°N, 65°W~15°E)	热带大西洋 EOF3	30年
EXP3	EXP1+EXP2	热带太平洋 EOF1+	30年
		热带大西洋 EOF3	

3 2009/2010 年冬季中国地区气温异 常型态及观测事实的分析

3.1 2009/2010 年冬季中国地区气温异常模态的提取 康丽华等(2009)研究表明,我国冬季气温的 主要模态表现为全国一致增暖型模态和南北反向 型,两个模态可以解释 68%的贡献率,在年代际变 化上,第一模态占绝对主导作用,但是在年际变化 上第一模态解释方差大大减弱,而南北反向型相对 加强。从 2009/2010 年冬季中国地区气温距平场来 看(见图 1a),40°N 以北大部分地区偏冷,以南则 偏暖。负距平最显著的地区是东北、新疆北部等地 区,距平中心最小值为-2.5 ℃。西南地区云贵高 原一带为最显著的正距平,中心最大值为 3 ℃,总 体呈现南北反相的态势。

为了考察上述空间结构的代表性,利用 160 个 台站 1958/1959~2009/2010 年冬季逐月平均气温距 平场做 EOF 分解,第一模态(方差贡献为 54%) 主要反映全国一致变化型异常(图略)。第二模 态方差贡献为 15%(图 1b),主要反映了中国东北、 华北局部、新疆北部与长江以南、西南地区呈现反 位相的分布。从图 1a 和 1b 来看,二者非常相近, 并且相关系数可达 0.76,第二模态 2009/2010 年的 时间系数也较高。说明 2009/2010 年冬季中国温度 异常属于 EOF 第二模态类型。为了表述方便,我们 将第二模态标记为 LN 型。

图 1 (a) 2009/2010 年冬季(12~2月) 气温距平场(相对于 1970/1971~2000/2001 年冬季气候平均值);(b) 1958/1959~2009/2010 年冬季气温距 平 EOF 第二模态及其(c) EOF 时间系数

Fig. 1 (a) 2009/2010 winter (December, January, and Feberary, DJF) temperature anomaly field (relative to the 1970/1971–2000/2001 DJF mean temperature); (b) the second EOF mode and (c) the time coefficient of 1958/1959–2009/2010 DJF temperature anomaly

3.2 2009/2010 年冬季中国地区气温异常对海表温度的响应

3.2.1 2009/2010 年冬季海温异常空间结构

由图 2a 可以看出,2009/2010 年冬季在热带太 平洋中东部海盆最明显的特征是暖异常,呈现 El Niño 异常模态。在 180°W~150°W 之间达到最大 值,中心强度为 2 ℃ 左右。热带大西洋有一个弱的 "三极型"分布,在赤道附近的南美洲沿岸到非洲的 几内亚湾存在一个低值中心,两个高值中心分别位 于 10°N 和 30°W,中心值可达 1.2 ℃。印度洋为一 致增暖型,中心位于热带印度洋西部,最大值为 0.9 ℃。对于中高纬度而言,北太平洋为西暖东冷 型,北大西洋为南北反位相型分布,正值中心位于 冰岛以南附近海盆,最大值为 0.6 ℃。

图 2b 为 1958/1959~2009/2010 年中国地区冬季气温距平 EOF 第二模态的时间序列与同期冬季 SSTA 的相关系数分布,可以看到 160°E 以东的热带太平洋、北印度洋和热带大西洋北部地区的 SST 都与第二模态时间序列存在显著正相关关系,负相 关则主要表现在北太平洋中北部和北大西洋中部。 可见,这些海盆的海温异常都对 2009/2010 年中国 冬季气温异常型有一定的影响。但是相关分析无法 分离不同海盆对气温异常型的各自贡献,且由于各 海盆可能存在遥相关联系,与气温的关系可能不独 立。因此我们分析观测事实的时候引入 GEFA 方法 来分离不同海盆 SSTA 对 2009/2010 年中国冬季气 温异常型的影响,评估各个海盆对 2009/2010 年中 国冬季气温异常型的贡献。

3.2.2 不同海盆海温异常模态的提取

为了计算 2009/2010 年冬季温度异常型的 GEFA 响应系数,我们首先把热带和中纬度大洋划 分成5个非重叠的子海盆,分别为:热带太平洋(TP) (20°S~20°N,120°E~60°W)、热带印度洋(TI) (20°S~20°N,35°E~120°E)、热带大西洋(TA) (20°S~20°N,65°W~15°E)、北太平洋(NP) (20°N~60°N,120°E~100°W)、北大西洋(NA) (20°N~60°N,80°W~0°)。鉴于海温异常的一些 主要物理模态可以通过 EOF 模来定义,取5个海 盆冬季同期海温异常进行 EOF 分解,以得到各海 盆的海温模态为强迫场。图3给出了这5个海盆 EOF 的前3个空间模态分布及其对应的方差贡献和 累积贡献率。由表2可以看出各海域前3个模态的 累计方差都超过了50%。

3.2.3 2009/2010 年冬季中国温度异常对不同海盆 海温异常模态的响应

用中国 160 站冬季温度距平 EOF 第二模态的

图 2 (a) 2009/2010 年冬季海温距平(单位: ℃)(相对于 1958/1959~2009/2010 年冬季气候平均);(b) 1958/1959~2009/2010 年冬季气温距平 EOF 第二模态时间系数与同期海温距平场的相关系数分布(阴影部分表示相关系数通过了 90%信度检验)

Fig. 2 (a) 2009/2010 DJF sea surface temperature anomalies (SSTA) (relative to the 1958/1959–2009/2010 DJF mean); (b) the same period correlation coefficients between the second EOF mode time coefficients of 1958/1959–2009/2010 DJF temperature anomaly and the SSTA field (the shadings are above 90% confidence level)

图 3 五大海盆海温距平 EOF 第一(左列)、第二(中列)、第三(右列)模态:(a1、a2、a3)热带太平洋;(b1、b2、b3)热带印度洋;(c1、c2、c3)热带大西洋;(d1、d2、d3)北太平洋;(e1、e2、e3)北大西洋

Fig. 3 The first (left column), second (middle column), and third (right column) SSTA EOF modes: (a1, a2, a3) Tropical Pacific Ocean; (b1, b2, b3) tropical Indian Ocean; (c1, c2, c3) tropical Atlantic; (d1, d2, d3) North Pacific; (e1, e2, e3) North Atlantic

时间系数作为大气响应场,前面 5 个海盆 SSTA 前 3 个 EOF 模态组合代表大气的主要强迫场,利用 GEFA 公式 (7),计算得到 LN 型异常对五大海盆 SSTA 的响应估计值。通过考察响应系数估计值的 稳定性,发现当样本长度超过 96 个月时,响应系 数 b 值趋于稳定。鉴于响应系数稳定性的分析非本 文重点,具体操作过程不再详述。

选取 1959/1960~2008/2009 年冬季 150 个月作 为样本容量,计算得到冬季气温 LN 型对热带和北 半球大洋海温模态的响应系数 *b*,并通过 Monte Carlo 方法来检验大气响应的显著性。图 4a 可以看 出我国冬季气温 LN 型对热带太平洋第二空间模态 (TP2)、热带印度洋第三空间模态(TI3)和北太 平洋第三空间模态(NP3)的响应显著,对应的响 应系数值分别为 0.92、1.8、−1.21 °C/°C。表明出 现 TP2 海温强迫型的 SST 变化 1 °C 时, LN 型的响 应为 0.92 °C,其它以此类推。

631

利用前述 LN 型对应的响应系数估计值 b 和 2009/2010 冬季海温距平场,求得对应 2009/2010 年 冬季 SST 不同 EOF 模态下,同期中国气温的响应 振幅(图 4b)。可以看出热带中东太平洋 El Niño 模态(TP1)和热带大西洋"三极型"模态(TA3)

图 4 (a)五大海盆 EOF 前三个模态对应的 LN 型 GEFA 响应系数 b 和(b)对应的 2009/2010 年冬季气温 LN 型的响应振幅(黑色代表通过 95%的 信度检验)

Fig. 4 (a) Response coefficient b of the first three EOF modes corresponding to LN-type GEFA (the blacks are above 90% confidence level) and (b) the response amplitude of 2009/2010 DJF temperature LN-type of the five sea basins

的强迫贡献最为显著,相应冬季气温型响应振幅为 0.3 ℃和 0.25 ℃。可见海温模态强迫贡献的大小不 仅取决于响应系数,还与强迫场 SSTA 的强度有 关,如 TP1 的响应系数不很大,但由于 2009/2010 年 TP1 对应的海温异常十分显著(El Niño 年),导 致了 TP1 对 2009/2010 年冬季气温 LN 型的响应振 幅值最高。

表 2 各海盆 SSTA 前三个 EOF 模态的方差贡献率及累积 贡献率

Table 2The variance contribution rate and cumulativecontribution rate of the first three SSTA EOF modes

	方差贡献率			累计方差
	EOF1	EOF2	EOF3	贡献率
热带太平洋	61.11%	10.88%	5.26%	77.25%
热带印度洋	41.35%	11.03%	9.53%	61.91%
热带大西洋	37.33%	25.50%	7.31%	70.14%
北太平洋	27.52%	17.51%	11.79%	56.83%
北大西洋	28.84%	12.63%	10.40%	51.87%

基于上文给出的 b 值及响应振幅,考虑到 2009/2010 年冬季气温主要呈现 EOF2 的模态结 构,图 5 给出了该年冬季气温距平场对主要海温强 迫场 TP1、TA3 及其两者共同作用下的响应场。由 图 5a 可见:赤道中东太平洋 El Niño 模使西南地区 增温在 0.3 ℃ 以上,东北大部分地区降温在 0.7 ℃ 以上;热带大西洋"三极型"模则使西南地区增温在 0.2 ℃ 以上、东北绝大部分地区降温在 0.5 ℃ 以上 (见图 5b)。TP1、TA3 两个模态共同作用下的响应 场(见图 5c),显示西南地区的增温响应中心达 1.5 ℃左右,东北地区的降温响应中心在 1.5 ℃以 上。与观测距平场图 1a 对比,发现其强迫响应贡 献大部分地区达到了 47%左右。

上述分析表明 2009/2010 年中国冬季气温主要 受热带中东太平洋 El Niño 模态、热带大西洋"三 极型"模态的共同强迫作用而致。为了验证结论是 否成立,我们设计了3组敏感性试验,下面为试验 结果分析。

4 ECHAM5 模式试验结果

4.1 海温异常对中国地区温度异常的强迫效应

许多研究表明我国冬季温度与太平洋中东部 海盆存在正的相关关系,但是这种相关并不强,很 多地区通不过检验(陈佩燕和倪允琪,2001)。事 实上相关分析并不能把各海盆的单独强迫分离出 来,并且也不可能考虑到海温异常强度的影响程 度。通过数值试验来分离不同海盆各自影响不失为 一种较为理想的方法。图 6a 为 El Niño 模态强迫下 的敏感性试验(EXP1),由图可以看出全国大部分 地区为正的异常,强的增温中心位于河套平原、新 疆北部和西南等地,增温幅度达到了 0.53 ℃ 左右。 在东北等地则出现了负的异常,平均降温幅度在 0.6 ℃ 左右,局部地区降温可达 0.9 ℃ 以上。这与

图 5 (a)El Niño 模态 TP1、(b)"三极型"模态 TA3 以及(c)TP1+TA3 对应 LN 型的 GEFA 响应场

Fig. 5 The GEFA LN-type response field of (a) El Niño mode TP1, (b) "three-polar" mode TA3, and (c) TP1+TA3

许多学者研究结果是一致的, El Niño (La Niña)发生的当年冬季,东亚季风明显偏弱(强),中国东部地区气温比常年偏暖,而东北及附近地区冷空气活动频繁,导致异常低温。

图 6b 为热带大西洋"三极型"模态的强迫试验(EXP2)。新疆大部、东北、华北局部大幅降温, 平均降温幅度在 0.45 ℃ 以上,长江以南、西北局 部、西南大部为增暖区,增温幅度为 0.6 ℃ 左右, 在云贵高原一带最大增温幅度可达到 1 ℃。可以看 出热带大西洋"三极型"海温对我国 40°N 以南有 强烈增暖效应,以北则相反。目前国内对热带大西 洋研究甚少,这种影响机制尚不明了。EXP3 的强 迫(见图 6c)对中国地区温度异常变化的贡献部分 地区可达 58.2%,尤其是对西南地区增暖效果更为 显著,可以达到 1.2 °C 左右。东北地区最大降温幅 度达 1.5 °C。这与 2009/2010 年中国气温异常的统 计结果是一致的。高出了 GEFA 估计的增温幅度, 可喜的是,类似于 2009/2010 年冬季 LN 型异常分 布形势可以较好地展现出来,为进一步分析环流异 常奠定了基础。

4.2 500 hPa 高度场的异常响应

图 7a(填色)为 2009/2010 北半球 500 hPa 冬季位势高度距平场。总体来看,60°N 以北为一致正 异常响应,30°N~60°N 为负异常,30°N 以南则为 正异常响应。西伯利亚到贝加尔湖一带和阿留申地 区分别存在负距平中心,表明东亚大槽偏西,西风 环流加强,冷空气偏东偏北。同时,低纬地区东亚、 西太平洋为正响应异常,中国西南地区位势高度也 较常年偏高,这使得经向风减弱,冷空气也较常年 偏弱。

由图 7b 可以看出,在 EXP1 的强迫下,其主要 特征表现为太平洋一北美的遥相关分布 (PNA 型) 和中高纬度长波系统整体向西移动。赤道热源对大 气的强迫作用最容易在冬半年西风带盛行时沿大 圆路径向下游传播(Namias, 1952; Klein, 1952)。 在 PNA 正位相加强的冬季欧亚大陆经向环流减弱, 纬向环流加强(施能, 1996),这种环流形势使得 影响中国的冷空气减弱而东北及附近地区西风环 流加强, 直接造成中国南部增暖而东北地区偏冷。 在 EXP2 的强迫下 (见图 7c), 西伯利亚以西为正 的响应异常,中亚一带到贝加尔湖为负响应异常, 青藏高原北部脊线进一步削弱,新疆地区西风加 强。中国东部到日本为弱的正响应异常,在这种情 况下,东亚大槽减弱向东部移动、中国东部地区整 体上来说受冷空气影响较小。在 EXP3 强迫下(见 图 7d), 上游区依然处于正响应异常, 从西伯利亚 到日本东部的为大范围负异常,东亚大槽西移,青 藏高原北部脊线削弱,亚太地区中高纬度西风异常 加强,可能给我国东北地区、新疆北部带来低温暴 雪等气象灾害。

上述分析表明,热带中东太平洋厄尔尼诺型海 温异常使得大气环流出现异常,引起贝加尔湖以东 负响应异常,东亚大槽西移,西风环流加强,西伯 利亚冷空气主要影响我国东北地区。同时经向风减

图 6 不同的海温异常强迫(左列)与中国气温异常响应(右列): (a1、a2) EXP1; (b1、b2) EXP2; (c1、c2) EXP3 Fig. 6 The SST anomalies forcing field (left column) and corresponding temperature in China (right column) forced by (a1, a2) EXP1, (b1, b2) EXP2, and (c1, c2) EXP3

弱,极地冷空气被迫盘踞在高纬,无法南下影响我 国西南地区。热带大西洋"三极型"海温异常使青 藏高原北部脊削弱,中国东部处于正异常响应,从 而进一步加强了中国西南地区增暖异常和新疆地 区低温。

4.3 海平面气压和 850 hPa 风场的异常

2009/2010 年北半球冬季海平面气压距平场最 主要的特征是:北半球高纬度 60°N 基本为正距平 区域,中纬度 30°N~60°N 则主要为负距平区域(见 图 8a)。西伯利亚高压位置较常年偏北,其脊沿着 乌拉尔山脉向南伸展;北太平洋北部有海平面低 值区,对应阿留申低压加深,位置比常年偏东偏南, 我国东北地区为偏北风异常。东亚沿海和北大西洋 中部有海平面气压低值区。总体呈现出类似北极涛动(Arctic Oscillation, AO)负位相模态。北极涛动(AO)对北半球特别是欧亚大陆气候具有重要影响,在其正位相阶段中高纬度欧亚大陆近地面平均气温一般也显著偏暖,反之,则偏冷(任国玉等,2005)。

在 El Niño 成熟阶段,热带中东太平洋海温正 异常区,对流加强,同时 Hadley 环流加强。但是 在西太平洋,由于 Walker 环流的减弱,对流活动 受到了抑制(Gill, 1982, 1983)。根据 Gill 的理 论,对流减弱,在西太平洋热带、副热带地区形 成反气旋式环流异常(图 8b),我国南方(西南地 区)为偏南风异常,从而使中国南部地区出现了

图 7 (a) 冬季 500 hPa 气候平均高度场(等值线,单位: gpm) 与 2009/2010 年冬季异常场(填色,单位: gpm); (b) EXP1、(c) EXP2、(d) EXP3 冬季 500 hPa 高度异常响应场(等值线和填色,单位: gpm)

Fig. 7 (a) The winter averaged 500-hPa height (contour, units: gpm) and the anomalies (colour, units: gpm) in the winter of 2009/2010; corresponding 500-hPa height anomalies (contour and colour, units: gpm) of (b) EXP1, (c) EXP2, and (d) EXP3 in winter

暖冬现象。有趣的是,在图 8c、8d 中(EXP1、EXP2 试验对应的海平面气压异常场),西太平洋热带 副热带地区都出现了反气旋式环流异常。在西西 伯利亚地区也存在共同的现象,即皆为正异常 响应。由此可以看出,3 种强迫情形都使得欧亚 大陆中高纬度平均纬向环流加强,西北太平洋地 区出现了反气旋式环流异常。后者可能抑制了冷空 气向南方移动,难以影响到我国东部和西南地区。

5 结论

本文考察了一个全球大气环流模式对热带太 平洋和热带大西洋海温异常的响应。由于中高纬度 大气对 SSTA 的响应很大程度上取决于模式的气候 态,因此可以说本工作检验了模式对热带中东太平 洋和热带大西洋地区气候变率的模拟能力,同时也

图 8 (a) 冬季海平面气压气候平均场 (等值线,单位: hPa)、2009/2010 年冬季海平面气压异常场 (填色,单位: hPa)和 850 hPa 风场异常场 (矢量,单位: m/s); (b) EXP1、(c) EXP2、(d) EXP3 冬季海平面气压异常场 (等值线和填色,单位: hPa)和 850 hPa 风场异常场 (矢量) Fig. 8 (a) The winter averaged sea level pressure (SLP, contour, units: hPa) and the SLP anomalies (colour, units: hPa) and 850-hPa wind anomalies (vector) of (b) EXP1, (c) EXP2, and (d) EXP3 in winter

检验了广义平衡反馈法(GEFA)在气候诊断研究 方面的可行性与优越性。通过分析观测事实和试验 结果,可以得出如下结论:

(1)2009/2010年中国冬季气温异常型态(LN型)与EOF第二模态的空间结构有较好的吻合,因此可以认为2009/2010年中国冬季气温异常型是近50年来气温年际变化异常型中的典型代表。GEFA统计结果表明,这种异常型与热带中东太平洋 El

Niño 模(TP1)和热带大西洋第三模(TA3)存在 密切的联系。

(2) 在敏感性试验中,中国冬季气温对海温异 常模态的响应较 GEFA 统计结果更为强烈,尤其是 在热带大西洋第三模态(TA3)的强迫下,西南地 区的响应最大可以达到1℃以上。中国冬季气温对 热带太平洋 El Niño 模态(TP1)的异常响应,在东 北比较显著,极值可以达到-1.5℃左右,而在西 南地区并不是太强烈,仅仅达到了 0.5 ℃ 左右。在 TP1 和 TA3 两个异常模的强迫下,可以解释 58%左 右的贡献。

(3)从环流场的异常响应来看,无论在哪一种 情形的强迫下(EXP1、EXP2、EXP3),在中高纬 度地区,西伯利亚一带海平面气压3种情形都存在 一个正的异常,中高纬度纬向西风存在加强的可 能。但是,在500 hPa高度场上,3种情形都存在 一些差别,在EXP1强迫下,东亚大槽有一个加强 的趋势,但是在EXP2的强迫下,东亚大槽反而减 弱了,EXP3作用下有一个折中的趋势。这也充分 反映了两种异常模态各自对中国冬季气温异常的 不同贡献。总体来说,这两种海温异常型态使中高 纬度地区纬向西风加强,而经向风减弱,东亚中低 纬度冬季风减弱,同时,西太平洋地区出现的海平 面气压反气旋式环流异常可能削弱了东亚沿海的 冬季风,从而,导致了华南、西南地区较常年偏暖, 而东北偏冷。

本文仅仅对 2009/2010 年中国冬季气温异常型 态进行诊断和敏感性试验,今后将利用更多的个例 进行合成分析和数值试验,研究我国冬季气温异常 型态的可能影响因素和影响机制。

参考文献(References)

- 陈佩燕, 倪允琪. 2001. 近 50 年来全球海温异常对我国东部地区冬季温 度异常影响的诊断研究 [J]. 热带气象学报, 17 (4): 371–380. Chen Peiyan, Ni Yunqi. 2001. Diagnostic study on the impact of the global sea surface temperature anomalies on the winter temperature anomalies in the eastern China in past 50 years [J]. Journal of Tropical Meteorology (in Chinese), 17 (4): 371–380.
- 陈文. 2002. El Niño 和 La Niña 事件对东亚冬、夏季风循环的影响 [J]. 大 气科学, 26 (5): 595–610. Chen Wen. 2002. Impacts of El Niño and La Niña on the cycle of the East Asian winter and summer monsoon [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 26 (5): 595–610.
- Frankignoul C. 1987. Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes [J]. Rev. Geophys., 23 (4): 357–390.
- Gill A E. 1982. Changes in thermal structure of the equatorial Pacific during the 1972 El Niño as revealed by bathythermograph observations [J]. J. Phys. Oceanogr., 12 (12): 1373–1387.
- Gill A E. 1983. An estimation of sea-level and surface-current anomalies during the 1972 El Niño and consequent thermal effects [J]. J. Phys. Oceanogr., 13 (4): 586–606.
- 康丽华, 陈文, 王林, 等. 2009. 我国冬季气温的年际变化及其与大气环 流和海温异常的关系 [J]. 气候与环境研究, 14 (1): 45-53. Kang Lihua,

Chen Wen, Wang Lin, et al. 2009. Interannual variations of winter temperature in China and their relationship with the atmospheric circulation and sea surface temperature [J]. Climatic and Environmental Research (in Chinese), 14 (1): 45–53.

- Klein W H. 1952. Some empirical characteristics of long waves on monthly mean charts [J]. Mon. Wea. Rev., 80 (11): 203–219.
- 李崇银. 1989a. El Niño 事件与中国东部气温异常 [J]. 热带气象学报, 5 (3): 210–219. Li Chongyin. 1989a. El Niño event and temperature anomalies in eastern China [J]. Journal of Tropical Meteorology (in Chinese), 5 (3): 210–219.
- 李崇银. 1989b. 中国东部地区的暖冬与厄尔尼诺 [J]. 科学通报, 34 (4): 283–286. Li Chongyin. 1989b. Warm winter in eastern China and El Niño event [J]. Chinese Science Bulletin (in Chinese), 34 (4): 283–286.
- Liu Z Y, Wen N. 2008. On the assessment of nonlocal climate feedback. Part II: EFA-SVD and optimal feedback modes [J]. J. Climate, 21 (20): 5402–5416.
- Liu Z Y, Wen N, Liu Y. 2008. On the assessment of nonlocal climate feedback. Part I: The generalized equilibrium feedback assessment [J]. J. Climate, 21 (1): 134–148.
- Namias J. 1952. Pacific anticyclone of the winter 1948–1950. A case study in evolution of climate anomalies [J]. J. Met., 48: 251–261.
- Namias J, Yuan X Y, Cayan D R. 1988. Persistence of North Pacific sea surface temperature and atmospheric flow patterns [J]. J. Climate, 1 (7): 682–703.
- 曲金华, 江志红, 谭桂容, 等. 2006. 冬季北大西洋海温年际、年代际变 化与中国气温的关系 [J]. 地理科学, 26 (5): 557–563. Qu Jinhua, Jiang Zhihong, Tan Guirong, et al. 2006. Relation between interannual interdecadal variability of SST in North Atlantic in winter and air temperature in China [J]. Scientia Geographica Sinica (in Chinese), 26 (5): 557–563.
- Radcliffe R A S, Murray R. 1970. New lag associations between North Atlantic sea temperature and European pressure applied to long-range weather forecasting [J]. Quart. J. Roy. Meteor. Soc., 96 (408): 226–246.
- 任国玉, 徐铭志, 初子莹, 等. 2005. 近 54 年中国地面气温变化 [J]. 气候与环境研究, 10 (4): 717–727. Ren Guoyu, Xu Mingzhi, Chu Ziying, et al. 2005. Changes of surface air temperature in China during 1951–2004[J]. Climatic and Environmental Research (in Chinese), 10 (4): 717–727.
- Roeckner E, Bäuml G, Bonaventura L, et al. 2003. The Atmospheric General Circulation Model ECHAM5. Part I: Model Description [M]. Hamburg: Max-Planck-Institute for Meteorology.
- 施能. 1996. 北半球冬季大气环流遥相关的长期变化及其与我国气候变 化的关系 [J]. 气象学报, 54 (6): 675–683. Shi Neng. 1996. Secular variation of winter atmospheric teleconnection pattern in the Northern Hemisphere and its relation with China climate change [J]. Acta Meteorologica Sinica (in Chinese), 54 (6): 675–683.
- Wallace J M, Jiang Q R. 1987. On the observed structure of the Interannual variability of the atmosphere/ocean climate system [C] // Cattle H. Atmospheric and Oceanic Variability. Roy. Meteor. Soc., 17–43.
- Wang L, Chen W, Huang R H. 2008. Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon [J]. Geophys. Res. Lett., 35 (20), L20702, doi: 10.1029/2008GL035287.

张庆云,陶诗言,彭京备. 2008. 我国灾害性天气气候事件成因机理的 研究进展 [J]. 大气科学, 32 (4): 815–825. Zhang Qingyun, Tao Shiyan, Peng Jingbei. 2008. The studies of meteorological disasters over China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32 (4): 815–825.

Zhong Y F, Liu Z Y. 2008. A joint statistical and dynamical assessment of atmospheric response to North Pacific oceanic variability in CCSM3 [J]. J.

Climate, 21 (22): 6044-6051.

朱益民,杨修群. 2003. 太平洋年代际振荡与中国气候变率的联系 [J]. 气象学报, 61 (6): 641–654. Zhu Yimin, Yang Xiuqun. 2003. Relationships between Pacific decadal oscillation (PDO) and climate variability in China [J]. Acta Meteorologica Sinica (in Chinese), 61 (6): 641–654.