郑倩,郑有飞,王立稳,等. 2020. 京津冀地区夏季降水冰云和非降水冰云云特征对比分析 [J]. 气候与环境研究, 25(1): 77-89. ZHENG Qian, ZHENG Youfei, WANG Liwen, et al. 2020. Comparative Analysis of the Features of Precipitating and Nonprecipitating Ice Clouds in the Beijing-Tianjin-Hebei Region in Summer [J]. Climatic and Environmental Research (in Chinese), 25(1): 77-89. doi:10.3878/j.issn.1006-9585.2019.18091

京津冀地区夏季降水冰云和非降水冰云云特征 对比分析

郑倩^{1,2} 郑有飞³ 王立稳² 杜傢义⁴

1 浙江省衢州市气象局,浙江衢州324000
 2 南京信息工程大学大气物理学院,南京210044
 3 无锡太湖学院,江苏无锡214000
 4 南京信息工程大学环境科学与工程学院,南京210044

摘 要利用2013~2016年的Aqua MODIS 卫星和 CloudSat 卫星的二级产品资料,对发生在京津冀地区夏季的 降水冰云和非降水冰云进行了统计。基于此,对比分析了两类冰云的云类型,研究了二者在云特征参数、云层数 及垂直结构上的差异,并且探究了二者在不同通道下云特征参数的相对大小。结果表明: 1)京津冀地区的降水 冰云以深对流云和雨层云为主,分别占48.63%和34.65%,而非降水冰云以高层云和卷云为主,分别占55.62%和 31.58%。2)降水冰云和非降水冰云的平均云顶温度、云顶高度、光学厚度、积分云水总量、有效粒子半径分别 为230.99 K、10.90 km、53.26、937.98 g/m²、31.45 µm 和 236.17 K、10.10 km、12.81、209.00 g/m²、27.54 µm。 3)降水冰云以单层云为主,占80.39%,双层云占18.75%;而非降水冰云仍以单层云为主,占85.35%,双层云则占14.38%,比降水冰云低。4)相较于非降水冰云,降水冰云中卷云和高积云云体位置较高,而高层云和深对 流云位置较低。5)随高度变化,降水冰云冰水含量是双峰结构,而非降水冰云是单峰结构;二者的粒子数浓度 则差异不大;非降水冰云的粒子有效半径在5~7.5 km随高度变化不大,而降水冰云则随高度减小。6)降水冰云的积分云水总量、光学厚度和粒子有效半径方~7.5 km随高度变化不大,而降水冰云则随高度减小。6)降水冰云的积分云水总量、光学厚度和粒子有效半径方~7.5 km随高度变化不大,而降水冰云则随高度减小。6)降水冰云 的积分云水总量、光学厚度和粒子有效半径方~7.5 km随高度变化不大,而降水冰云则随高度减小。6)降水冰云

文章编号 1006-9585(2020)01-0077-13 中图分类号 P405 文献标识码 A **doi:**10.3878/j.issn.1006-9585.2019.18091

Comparative Analysis of the Features of Precipitating and Nonprecipitating Ice Clouds in the Beijing–Tianjin–Hebei Region in Summer

ZHENG Qian^{1,2}, ZHENG Youfei³, WANG Liwen², and DU Jiayi⁴

1 Meteorological Office of Quzhou, Quzhou, Zhejiang Province 324000

2 School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044

3 Taihu University of Wuxi, Wuxi, Jiangsu Province 214000

4 School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044

收稿日期 2018-07-11; 网络预出版日期 2019-11-15

作者简介 郑倩,女,1994年出生,硕士,研究方向为大气物理与大气环境。E-mail: 770586517qq@sina.cn

通讯作者 郑有飞, E-mail: zhengyf@nuist.edu.cn

资助项目 国家自然科学基金项目41590873

Funded by National Natural Science Foundation of China (Grant 41590873)

气 候 与 环 境 研 究	25 卷
Climatic and Environmental Research	Vol. 25

Abstract On the basis of the Level 2 product data of Aqua MODIS satellite and CloudSat satellite from 2013 to 2016, precipitating and nonprecipitating ice clouds that occurred in the Beijing-Tianjin-Hebei region in summer were counted. Moreover, the cloud feature parameters, cloud layer numbers, and cloud phase of the two types of ice clouds are compared and analyzed. The differences between the two in the vertical structure are investigated and the relative sizes of the cloud parameters in different channels are examined. Results show that precipitating ice clouds are dominated by deep convective and nimbostratus clouds, accounting for 48.63% and 34.65%, respectively. The mean cloud top temperature, cloud top height, cloud optical thickness, cloud water path, and effective particle radius are 230.99 K, 10.90 km, 53.26, 937.98 g/m², and 31.45 μm, respectively. Meanwhile, nonprecipitating ice clouds are dominated by altocumulus and cirrus clouds, accounting for 55.62% and 31.58%, respectively. The mean cloud top temperature, cloud top height, cloud optical thickness, cloud water path, and effective particle radius are 236.17 K, 10.10 km, 12.81, 209.00 g/m², and 27.54 µm, respectively. Precipitating ice clouds mainly consist of single-layer clouds (80.39%). However, double-layer clouds still account for a large proportion (18.75%) and are higher than nonprecipitating ice clouds. Moreover, nonprecipitating ice clouds still consist of single-layer clouds (85.35%) and double-layer clouds (14.38%). Compared with nonprecipitating ice clouds, the position of cirrus and altocumulus clouds, which are higher than 1-9 and 0-1.5 km, respectively, in precipitating ice clouds is higher, whereas the position of altostratus and deep convective clouds, which are lower than 0-0.5 and 0.5-3 km, respectively, are lower. The ice water content of nonprecipitating ice clouds varies with height as a double-peak structure, whereas that of precipitating ice clouds is a single-peak structure. The particle number concentrations of precipitating and nonprecipitating ice clouds vary slightly with height. The particle effective radius of nonprecipitating ice clouds varies slightly with height from 5 to 7.5 km, whereas that of precipitating ice clouds decrease with height. The ratio of the cloud water path, optical thickness, and particle effective radius of precipitating ice clouds $b_{n16} > b_{n21} \ge b_{n37}$ mode [where b_{n16} , b_{n21} , and b_{n37} represent the values of the cloud parameters at 1.6, 2.1, and 3.7 μ m, respectively; when n=1, 2, 3, they represent the optical thickness (b_1), total amount of integrated cloud water (b_2) , and effective radius (b_3) is higher than that of nonprecipitating ice clouds. Moreover, the ratio of the cloud parameters in the $b_{n21} \ge b_{n16} \ge b_{n37}$ mode is different.

Keywords CloudSat satellite, MODIS satellite, Ice cloud, Precipitation, Cloud feature

1 引言

云是地球气候系统的关键组成部分,因为它对 水循环和地球辐射平衡有很大的影响(Hartmann et al., 1992; Stephens et al., 2008)。云的结构特征与云 辐射特性、云降水条件、降水机制、降水效率及人 工增雨潜力等紧密相关(周毓荃等, 2011)。云微物 理过程的变化可以改变云的空间范围、分布特征和 寿命、云外的水汽分布以及水和大气中的辐射通量 (齐彦斌等, 2007), 且降水现象也与云微物理过程 有着内在的联系,即降水是涉及冰水粒子的过程 (Baker, 1997)。根据云粒子的相态特征及是否产生 降水,我们将含有冰晶粒子且有降水产生的云称为 降水冰云,而含有冰晶粒子但无降水产生的云称为 非降水冰云(识别方法见2.2)。因此对降水冰云和 非降水冰云宏微观特征的观测研究以及它们的对比 分析对于人工影响天气的准确识别作业和提高降水 精细化作业具有重要作用。

目前在冰云研究中使用最多的资料主要来源于

卫星观测,地面观测,飞机观测等(彭杰等,2010)。 其中,卫星观测具有覆盖范围广、观测频率高、传 感器种类多的优点,是目前云探测中重要的手段之 一(张萍,2012;邓军英,2014)。Aqua卫星和 CloudSat卫星是EOS地球观测系统的A-Train中的 一部分,在705 km的太阳同步轨道上飞行。由于 Aqua和CloudSat卫星彼此紧密地飞行(时间上不 超过90 s),非常适合把Aqua卫星上的中分辨率成 像光谱仪(MODIS)和CloudSat卫星上的云剖面 雷达(Cloud Profile Radar, CPR)的测量合并成组合 测量(Weisz et al., 2007)。MODIS主要提供云顶高 度、云顶温度、粒子有效半径、冰水路径、光学厚 度等信息(Chan and Comiso, 2011)。CPR则能提供 云的垂直信息,而且CPR还能检测降水(Stephens et al., 2008)。

国内外的学者们利用 MODIS 和 CloudSat 对云做了许多研究。关于 MODIS 的研究主要集中在云的分布和季节变化特征方面 (Heymsfield, 2003; Yang et al., 2008a, 2008b; Kahn et al., 2017)。其中,

杨亦萍等(2016)利用 MODIS 云产品数据对北极地 区夏季卷云的分布特征和云特征进行统计分析,发 现北极地区随着纬度增大,卷云出现概率增加,卷 云云顶温度降低,卷云高度增加,卷云有效粒径增 大,卷云光学厚度增大。李特等(2017)利用 MODIS对中国陆地区域冰云的分布情况进行分 析,表明冰云在青藏高原东北部发生概率最高, 在水平分布上有效粒子由东北向西南逐渐减少, 光学厚度冰水含量由西北向东南递增。关于 CloudSat 的研究则侧重于云的垂直结构,如Ham et al.(2013)联合 CloudSat 和 CALIPSO 研究冰云的 垂直剖面,发现随着冰云光学厚度的增加,冰水 含量中的最大值向云底移动。Feofilov et al.(2015) 利用 CloudSat 等卫星资料表明 80% 冰水含量剖面 可以用矩形或等腰梯形来表示。霍娟(2015)联合 CloudSat 和 CALIPSO 发现高层云和高积云中冰晶 粒子的有效半径随高度分布呈类似汉字笔画 "点"的形状。此外,还有一些学者利用 CloudSat 分析了一些特殊天气下云的特征,包括台风天气 和强降水天气等(赵姝慧, 2008; 王旭等, 2016)。其 中, 陈勇航等(2013)采用 CloudSat 卫星分析了新 疆天山地区强降雨过程中冰云冰水含量的垂直分 布特征从而表明冰水含量的值越小,它出现的频 率越大。邓军英等(2016)联合 CloudSat 和 CERES Edition3A分析了新疆地区一次强降雨中冰云粒子 的垂直分布特征,发现冰粒子有效半径、冰粒数 浓度和冰水含量在垂直高度上的分布存在明显的 分层现象。

当前,已有学者发现降水云与非降水云的垂直 结构存在明显差异(尚博等,2012;刘雪梅等,2016), 而降水云中冰云的比例超过90%(刘奇,2007),已 有研究表明冰相粒子的凝华增长作用于降水的贡献 率在35%以上,冰相粒子增强时地面降水增大, 冰相粒子消弱时降水减少(邓军英,2014),Dessler and Yang(2003)和Kahn et al.(2017)表明冰云发生概 率和光学厚度在强降水中较大,对降水冰云和非降 水冰云云特征具体差异的研究显得更为重要。因 此,本文针对京津冀地区,统计了降水冰云和非降 水冰云的云特征参数,比较了二者在云特征参数方 面整体的差异及云特征参数随高度变化的差异,并 且根据 MODIS 产品中源自近红外3个通道反演的 云特征参数的相对大小对降水冰云与非降水冰云的 差异做出分析,为京津冀地区的人工影响天气做出 贡献。

2 资料和方法

2.1 资料介绍

本文的研究区域是京津冀地区(36°01'N~ 42°37'N,113°04'E~119°53'E)。选取的资料包括2013~2016年的夏季京津冀地区的Aqua卫星的 MODIS每日合成产品MYD06_L2以及CloudSat卫 星的2B-CWC-RO和2B-CLDCLASS资料。Aqua卫 星的MODIS资料和CloudSat卫星资料由NASA提 供。其中,MODIS数据中的积分云水总量(cloud water path)包含液水路径和冰水路径,选取 CloudSat卫星资料数据中的积分云水总量(RO_ice_water_path)只含冰水路径。

MYD06 L2 由云宏微观物理参数组成。这些 参数是利用遥感红外、可见光和近红外太阳反射辐 射得到的。MODIS 红外辐射通道用于获得云顶温 度、云顶高度、云相以及白天和夜间条件下的云量 等。MODIS可见光辐射通道用于获得云光学厚度 和有效粒子半径等。近红外太阳反射辐射提供了更 多的云相信息。云相、云顶高度和云顶温度的空间 分辨率为5 km×5 km, 而光学厚度、粒子等效半 径、积分云水总量空间分辨率为1 km×1 km (Platnick et al., 2015)。其中云相信息来自 MODIS 资料中的Cloud Phase Infrared (0=无云、1=水 云、2=冰云、3=混合云、6=未确定相云)。此 文中,将Cloud Phase Infrared为2的判定为冰云, 0、1、3、6则都为非冰云。在 MODIS 的云光学厚 度和粒子有效半径的反演中,云相信息和云量是 必须的输入数据。其中,云量基于云检测算法和 云顶性质算法反演得到; 云相则在利用发射的热 辐射的基础上加入反射太阳辐射项得到。在确定 云相信息后,由于冰晶粒子的形状和方向性,为 了更好地讨论, MODIS选择一个冰粒子的大小分 布,对冰云粒子有效粒径的定义为(刘玉洁和杨忠 东,2001):

$$D_{\rm e} = \frac{\int_0^\infty LD^2 n(L) dL}{\int_0^\infty LD n(L) dL},$$
 (1)

其中, *D*。为冰云粒子有效粒径, *D*和*L*分别表示冰 晶的宽度和最大维数, *n*(*L*)是作为*L*的函数, 代表 尺寸的分布。

79

Cloudsat 的 2B-CWC-RO 和 2B-CLDCLASS 资 料的分辨率为2.5 km×1.4 km(沿轨×横轨),垂 直方向上包含125层,每层240m。其中,2B-CLDCLASS 是云分类产品,根据水平和垂直方向 上的不同规则、由CPR测量的最大雷达反射率因 子Z,降水指示以及包括欧洲中尺度天气预报中心 ECMWF的温度和高度的辅助数据共将云分为卷云 (Ci)、高层云 (As)、高积云 (Ac)、层云 (St)、 层积云 (Sc)、积云 (Cu)、雨层云 (Ns)、深对流 云 (Dc) 等 8 类 (Sassen and Wang, 2008)。根据 CloudSat 的云分类标准, 层云和层积云的主要区别 在水平尺度上, 2B-CLDCLASS产品中层云较少 (王帅辉等, 2011)。其中, 云类型及降水指标来自 2B-CLDCLASS 中的 cloud scenario 这一值。 cloud scenario 是16位整数,其第13~14位是降水 指标 Precipitation flag (00=没有降水, 01=液态 降水, 10=固态降水, 11=毛毛雨)作者将 Precipitation flag 为00 的判定为无降水,01、10、 11 判定为有降水。

2B-CWC-RO是云水含量产品,包含CPR测量 的每个雷达剖面的云的冰水含量、有效半径以及相 关量的估算值。2B-CWC-RO产品的反演过程是: 首先根据2B-GEOPROF产品的云量信息确定探测 剖面是否有云存在;再利用2B-CLDCLASS产品来 判断探测剖面上云的类型;然后基于气候和温度以 及其他标准,假定每块云体液相或冰相粒子的滴谱 分布;最后利用假定的先验值以及2B-GEOPROF 的雷达观测数据,反演每块云体的液相和冰相滴谱 参数(马占山等,2008)。该数据集在对冰云的反演 中,是假设冰晶的分布呈对数正态分布的,并由此 得到冰云粒子数浓度、冰水含量和冰云粒子有效半 径等物理量,这些物理量在反演中的计算公式如下 (Austin et al., 2009):

$$N(D) = \frac{N_{\rm T}}{\sqrt{2\pi}\,\omega D} \exp\left|\frac{-\ln^2\left(\frac{D}{D_g}\right)}{2\omega^2}\right|,\qquad(2)$$

IWC =
$$\rho_{\rm i} \frac{\pi}{6} N_{\rm T} D_{\rm g}^3 \exp\left(\frac{9}{2}\omega^2\right) 10^{-3}$$
, (3)

$$r_{\rm e} = \frac{1}{2} D_{\rm g} \exp\left(\frac{5}{2}\omega^2\right) 10^3,$$
 (4)

其中, N(D)是冰云粒子数浓度, N_T是冰粒数浓

度, ω 是宽度参数,D是冰球的等效质量直径, D_{g} 是几何平均直径, r_{e} 是冰云粒子有效半径, ρ_{i} 是冰的密度。

2.2 方法介绍

Aqua 卫星和 CloudSat 卫星每日 05:00~06:00 (协调世界时,下同)或17:00~18:00经过京津冀 地区上空。Cloudsat的2B-CLDCLASS中有一个判 定采样点是否产生降水的指标,刘旸等(2017)已在 分析东北地区的降水和非降水云系时验证过该指标 的合理性。因此,首先找出2013~2016年夏季所 有经过京津冀地区的 Cloudsat 轨道, 然后根据 Cloudsat的2B-CLDCLASS判断该轨道内的采样点 是否产生降水,如果该轨道内有采样点产生降水, 再联合 MODIS 判断该轨道内的采样点是否为冰 云,筛选出经过京津冀地区的Cloudsat轨道上的降 水冰云和非降水冰云作为研究对象。一个采样点为 一个样本数据。以2013年7月1日京津冀地区降水 冰云和非降水冰云情况(如图1)为例,图中灰色 部分为 MODIS 检测得到的冰云, 而黑色实线是 CloudSat 所经过的轨道路径,而红色和蓝色实心小 点则是轨道路径上的降水冰云和非降水冰云的采样 点。可以看出,该方法能较为理想地获得降水冰云 和非降水冰云的样本数据。

图 1 2013 年 7 月 1 日京津冀地区降水冰云和非降水冰云分布 Fig. 1 Distributions of precipitating and nonprecipitating ice clouds in the Beijing-Tianjin-Hebei region on 1 Jul 2013

 1期
 郑倩等:京津冀地区夏季降水冰云和非降水冰云云特征对比分析

 No.1
 ZHENG Qian et al. Comparative Analysis of the Features of Precipitating and Nonprecipitating Ice Clouds in ...

3 降水冰云与非降水冰云的差异

3.1 降水冰云与非降水冰云的云类型

通过筛选,2012~2016年夏季共得到48 d数据,得到非降水冰云共有5563个样本数据,降水 冰云则共有1387个样本数据。降水冰云与非降水 冰云中云类型的分布情况(见图2)表明在降水冰 云中,深对流云最多,可达48.63%,雨层云也较 多,为34.65%,其余依次为卷云、高层云、积云、 高积云,分别为5.44%、4.76%、4.00%和2.29%, 层积云较少,只有0.23%左右,层云最少,为0。 而非降水冰云中,高层云最多,可达55.62%,卷 云也较多,为31.58%,其余依次为高积云、雨层 云、深对流云、层积云、积云,分别为6.71%、 2.48%、1.60%、1.15%和0.86%,层云最少,也为 0。两类冰云都不含层云,因此接下来的讨论中不 包括层云。

3.2 降水冰云与非降水冰云的云特征

3.2.1 云特征参数

表1的结果表明,降水冰云的云顶温度范围在

表1 降水冰云与非降水冰云云特征参数

204.59~269.44 K之间, 云顶高度在 5.25~17.15 km之间,光学厚度在1.87~150之间,积分云水总 量在28~3943 g/m²之间, 粒子有效半径6.92~ 58.85 µm; 非降水冰云的云顶温度范围在 204.68~ 272.07 K之间,云顶高度在4.2~16.7 km之间,光 学厚度在 0.83~150 之间,积分云水总量在 6~ 2834 g/m²之间, 粒子有效半径5.25~59.83 μm。降 水冰云的平均云顶温度为230.99 K,平均云顶高度 为10.90 km,平均光学厚度为53.26,平均积分云 水总量为937.98 g/m²,平均有效粒子半径为31.45 μm。非降水冰云的平均云顶温度为236.17 K, 平 均云顶高度为10.10 km,平均光学厚度为12.81, 平均积分云水总量为209.00 g/m², 平均有效粒子半 径为27.54 µm。可以发现,降水冰云与非降水冰 云在取值方面相差不大, 而二者在平均值方面则存 在一定差异,尤其是光学厚度和积分云水总量这两 个参数,降水冰云的值是非降水冰云的值的4倍 多。而这一差异主要是由这两类冰云云参数频率分 布不同所导致的。

81

	降水冰云					
	最大值	最小值	平均值	最大值	最小值	平均值
云顶温度/K	269.44	204.59	230.99	272.07	204.68	236.17
云顶高度/km	17.15	5.25	10.90	16.7	4.2	10.10
光学厚度	150	1.87	53.26	150	0.83	12.81
积分云水总量/g m ⁻²	3943	28	937.98	2834	6	209.00
粒子有效半径/µm	58.85	6.92	31.45	59.83	5.25	27.54

图2 降水冰云与非降水冰云云类型的频率

因此,本文进一步讨论粒子有效半径、光学厚度、云顶温度、云顶高度、积分云水总量这5个云特征参数在降水冰云与非降水冰云中的频率分布。由于这5个参数的值分布范围比较广,因此就降水冰云和非降水冰云的这五个参数在不同取值时的分布频率进行讨论,得到图3。图3a表明降水冰云和非降水冰云的粒子有效半径的频率分布具有差异,降水冰云的粒子有效半径呈明显单峰结构,最大频率范围对应在25 µm,而非降水冰云粒子有效半径在10~45 µm之间的频率都在10%以上。虽然降水冰云和非降水冰云粒子有效半径的频率峰值对应的粒子有效半径都在25 µm左右,但25 µm对应的频率降水冰云为20%左右,略高于非降水冰云。根据吴晓等(2016)的研究,深对流云和雨层云的平均粒子有效半径分别为27.5 µm和17

μm,而高层云和卷云的平均粒子有效半径为17 μm和65μm,且降水冰云以深对流云和雨层云为 主,非降水冰云则以高层云和卷云为主。不难看 出,组成非降水冰云的这部分卷云平均粒径小于 60μm。由图3c和图3d可知,降水冰云与非降水 冰云的云顶温度和云顶高度的频率分布较为相似, 存在明显的单峰结构,且频率峰值对应的云顶温度 和云顶高度都是降水冰云大于非降水冰云。而降水 冰云云顶温度的主要范围在214~252 K,略低于 非降水冰云云顶温度的215~254 K。降水冰云云 顶高度的主要范围在7~15 km,范围略大于非降 水冰云云顶高度的8~14 km。这是因为考虑了卷 云的特性的结果。图3b和图3e则显示了降水冰云 和非降水冰云在光学厚度和积分云水总量上的较大 差异。非降水冰云的光学厚度主要集中10~50之

图3 降水冰云和非降水冰云 (a) 粒子有效半径、(b) 光学厚度、(c) 云顶温度、(d) 云顶高度、(e) 积分云水总量的频率分布 Fig. 3 Frequency distributions of the cloud (a) particle effective radius, (b) cloud optical thickness, (c) cloud top height, (d) cloud top temperature, and (e) cloud water path of precipitating and nonprecipitating ice clouds

间,频率可达80%,而降水冰云的光学厚度的分布 较为离散,在5~145之间均有大于5%的频率,且 存在双峰结构。非降水冰云的光学厚度的频率峰值 在10左右,降水冰云的光学厚度的频率峰值一个 在25左右,一个在130左右。非降水冰云的积分云 水总量主要在1000 g/m²以下,频率分布同光学厚 度较为相似,降水冰云的积分云水总量也比较离 散,在200~3000 g/m²均有较大频率。其中,非降 水冰云的积分云水总量频率峰值在100g/m²左右, 降水冰云则在750 g/m²。虽然降水冰云和非降水冰 云的积分云水总量频率都是单峰结构,但非降水冰 云的积分云水总量频率在峰值之后下降是非常迅速 的,而降水冰云则相对比较缓慢。这主要是由于深 对流云和雨层云的光学厚度都为25~100,而高层 云和卷云的光学厚度为2~32和0.1~8同理,非降 水冰云和降水冰云在积分云水总量方面的原因也是 如此。

3.2.2 云层数

云层数是大气环流模式中重要的云参数,云的 重叠(即有无多层云)对大气和地表的辐射平衡及 水循环有很大的影响(陈超等,2014)。表2给出了降 水冰云和非降水冰云中单层云、双层云和多层云的 的出现频率。从图中可以看出,两类冰云中,单层 云出现频率最高,都在80%以上,双层云次之, 多层云最低且未超过1%。但对比降水冰云和非降 水冰云,不难看出,单层云在降水冰云中的出现频 率比非降水冰云中的较低,而双层云和多层云的 比例则较高。这说明京津冀地区的降水冰云,以 单层云为主,占80.39%,但双层云仍占有较大的 比例,达18.75%,且比非降水冰云要高;而非降 水冰云仍以单层云为主,占85.35%,双层云则占 14.38%。降水冰云以单层云为主是因为云层数越 多,每层云的厚度会减小,云体发展不充分,产 生降水的可能性越低(刘旸等,2017),而降水冰云 中单层云的比例比非降水冰云中略低是因为随着 降水过程中产生的能量交换,云的发展使双层云 和多层云增多。

3.2.3 垂直结构

云的垂直结构同降水的物理过程、降水机制和 降水效率及人工增雨的条件等方面有密切的联系 (尚博,2011)。因此,本文进一步分析降水冰云和 非降水冰云的垂直结构差异。以2015年8月31日 京津冀地区降水冰云和非降水冰云云相垂直剖面情 况(如图4)为例,红色和蓝色实心小点则是轨道 路径上的降水冰云和非降水冰云。可以看出该图中

表2 降水冰云与非降水冰云中不同云层数的频率 Table 2 Frequency distributions of different cloud layer numbers of precipitating and nonprecipitating ice clouds

	不同云层数的频率			
	单层	双层	多层	
降水冰云	84.35%	14.38%	0.27%	
非降水冰云	80.39%	18.74%	0.87%	

图4 2015年8月31日降水冰云与非降水冰云云类型的垂直剖面

Fig. 4 Vertical profiles of the cloud types of precipitating and nonprecipitating ice clouds on 31 Aug 2015

的降水冰云以单层云为主,且单层云为深对流云、 雨层云,而双层云主要是卷云一积云,三层云主要 是卷云一高积云一高层云;非降水冰云中,单层云 主要为卷云、高积云、深对流云、雨层云,而双层 云有卷云一积云、高层云一高积云、卷云一高积 云、卷云一高层云,三层云主要是高层云一高积 云一层积云,四层云则有高层云一深对流云一高积 云一深对流云。

图5是降水冰云与非降水冰云7种云类型分布 高度的频率分布。由图5a可以看出卷云分布主要 范围为7~23 km,其中非降水卷云主要在7~14 km,峰值在10 km左右,降水卷云则在8~23 km, 峰值在11.5 km左右,即产生降水的卷云云体发展 比较高。高层云分布主要范围为2~15 km(见图 5b),其中非降水高层云主要在2.5~15 km,峰值 在8.5 km左右,降水高层云则在2~13 km,峰值 在9.5 km左右。高积云分布主要范围为1.5~10 km

(见图5c),其中非降水高积云主要在1.5~8.5 km, 峰值在5 km 左右,降水高积云则在1.7~10 km, 峰值在4km左右。层积云分布主要范围为1.1~ 5.5 km (见图5d),其中非降水高积云主要在1.1~ 5.5 km,降水高积云则在1.2~5 km,二者的峰值 都在2 km 左右。积云分布主要范围为1.3~9 km (见图 5e),其中非降水积云主要在 1.5~8.5 km, 降水积云则在1.3~9 km, 二者的峰值都在3.5 km 左右。显然,非降水积云比降水积云的分布高度 比较广。雨层云主要范围为2~12 km (见图5f), 且非降水雨层云云同降水雨层云的分布高度大致 相同,仅在分布频率上有少许差异。深对流云分 布主要范围为2~15 km (见图5g),其中非降水 深对流云主要在2.5~15 km,峰值在8.5 km左右, 降水深对流云则在2~12 km,峰值在4.5 km左 右。显然,降水深对流云普遍低于非降水深对 流云。

图5 降水冰云与非降水冰云云类型分布高度的频率

Fig. 5 Frequencies of the cloud types of precipitating and nonprecipitating ice clouds with height

图6给出了降水冰云与非降水冰云冰水含量、 粒子数浓度和粒子有效半径3种云特征参数随高度 的变化频率。可以看出,两类冰云的冰水含量、粒 子数浓度所处的主要高度范围均在5~15 km,而 粒子有效半径所处的高度则略低,范围为4.5~15 km。图 6a 显示了降水冰云和非降水冰云的冰水含 量随高度变化有极大差异。其中,非降水冰云的冰 水含量随高度变化是单峰结构,5~8 km 冰水含量 是递增的, 8~15 km 冰水含量递减。降水冰云冰 水含量随高度变化则是双峰结构,两个峰值对应的 高度分别为7km和8.5km。从图6b可以看出降水 冰云和非降水冰云的粒子数浓度随高度变化都是单 峰结构,都是随高度先递增然后再减小,且峰值对 应的高度都在10 km 左右,区别在于从5~10 km, 降水冰云的粒子数浓度上升较为缓慢。图6c显示 了在7.5~15 km,降水冰云和非降水冰云的粒子有 效半径随高度变化大致相同,都是先小幅减小,再 缓慢上升,再递减; 4.5~5 km,两类冰云的粒子

半径都是急速上升,且在5km达到峰值;在5~7.5km,非降水冰云的粒子有效半径几乎没有什么变化,而降水冰云的粒子有效半径则是减小的。

85

3.3 降水冰云与非降水冰云云特征参数6种模态的 差异

根据谢磊和刘奇(2017)的研究将在 MODIS 3 个 近红外通道(1.6、2.1、3.7 µm)中反演得到的云 特征参数(b_n)的相对大小差异分成6种模态($b_{n21} \ge b_{n37}$, $b_{n21} \ge b_{n37} \ge b_{n16}$, $b_{n16} \ge b_{n21} \ge b_{n37}$, $b_{n16} \ge b_{n37}$, $b_{n21} \ge b_{n37} \ge b_{n16}$, $b_{n37} \ge b_{n21}$, $b_{n16} \ge b_{n37}$, $b_{n37} \ge b_{n21} \ge b_{n16}$, $b_{n37} \ge b_{n21}$, b_{n16} , b_{n21} , $b_{n37} \ge b_{n21} \ge b_{n16}$, $b_{n37} \ge b_{n21}$, b_{n16} , b_{n21} , $b_{n37} \ge b_{n21} \ge b_{n16}$, $b_{n37} \ge b_{n21}$, b_{n16} , b_{n21} , $b_{n37} \ge b_{n21} \ge b_{n16}$, $b_{n37} \ge b_{n21}$, b_{n16} , b_{n21} , $b_{n37} \ge b_{n21} \ge b_{n16}$, $b_{n37} \ge b_{n21}$, b_{n16} , b_{n21} , $b_{n37} \ge b_{n21} \ge b_{n16}$, $b_{n37} \ge b_{n21}$, b_{n16} , $b_{n37} \ge b_{n21}$, $b_{n37} \ge b_{n21} \ge b_{n16}$, $b_{n37} \ge b_{n21}$, b_{n16} , $b_{n37} \ge b_{n21}$, $b_{n37} \ge b_{n21} \ge b_{n16}$, $b_{n37} \ge b_{n21}$, $b_{n37} \ge b_{n37} \ge b_{n21} \ge b_{n37} \ge b_{n21} \ge b_{n37}$, $b_{n16} \ge b_{n37} \ge b_{n21}$, $b_{n37} \ge b_{n21} \ge b_{n37} \ge b_{n21} \ge b_{n37}$, $b_{n37} \ge b_{n37} \ge b_{n21} \ge b_{n37} \ge b_{n37} \ge b_{n37} \ge b_{n37}$, $b_{n37} \ge b_{n37} \ge b_{n37} \ge b_{n37} \ge b_{n37} \ge b_{n37} \ge b_{n37}$, $b_{n37} \ge b_{n37} \ge b_{n37} \ge b_{n37} \ge b_{n37} \ge b_{n37} \ge b_{n37}$, $b_{n37} \ge b_{n37} \ge b_{n37} \ge b_{n37} \ge b_{n37} \ge b_{n37} \ge b_{n37}$, $b_{n37} \ge b_{n37} \ge b_{n37} \ge b_{n37} \ge b_{n37} \ge b_{n37} \ge b_{n37} \ge b_{n37}$, $b_{n37} \ge b_{n37} \ge b_{n$

图6 降水冰云与非降水冰云冰水含量、粒子数浓度和粒子有效半径随高度变化

Fig. 6 Vertical distributions of the ice water content, cloud particle number concentration, and cloud effective particle radius of precipitating and nonprecipitating ice clouds

云和非降水冰云的光学厚度、积分云水总量、有效 半径这3个云参数在6种模态中的样本数量。由表 3可知,两类冰云中,光学厚度和粒子有效半径都 是以*b*_{n16}>*b*_{n21}≥*b*_{n37}模态为主,而积分云水总量是 以*b*_{n21}≥*b*_{n16}≥*b*_{n37}为主。两类冰云的云参数*b*_{n37}> *b*_{n16}>*b*_{n21}模态都是最少的,其中非降水冰云的积分 云水总量该模态的样本数量甚至为0。

图7则是两类冰云参数6种模态的频率分布。

结合表3和图7可以发现,两类冰云中,光学厚度 和粒子有效半径6种模态的分布较为相似, b_{n16} > $b_{n21} \ge b_{n37}$ 模态比例最高,在50%以上, $b_{n21} \ge b_{n16}$ b_{n37} 模态比例也很多,在20%~30%,其 $\gtrsim b_{n21} \ge b_{n37}$ 模态比例也很多,在20%~30%,其 $\gtrsim b_{n21} \ge b_{n37} \ge b_{n16} \ge b_{n21} \ge b_{n37} > b_{n16} \ge b_{n21} \ge b_{n37} > b_{n16} \ge b_{n21} \ge b_{n37} = 20\%$ 在5%~10%左右。降水冰云的光学厚度和粒子有效半径 $b_{n16} \ge b_{n21} \ge b_{n37}$ 模态的比例都高于非降水冰云,而 $b_{n21} \ge b_{n16} \ge b_{n37}$ 模态的比例则小于非降水冰

表3	降水冰云与非降水冰云云参数6种模态样本个数统计	

Table 3 Statistics of six modal samples of the parameters of precipitating and nonprecipitating ice clouds

	降水冰云			非降水冰云			
	<i>n</i> =1	<i>n</i> =2	<i>n</i> =3	n=1	<i>n</i> =2	<i>n</i> =3	
模态	光学厚度	积分云水总量/g m ⁻²	有效半径/µm	光学厚度	积分云水总量/g m ⁻²	有效半径/µm	
$b_{n21} \ge b_{n16} \ge b_{n37}$	1279	2800	1327	263	866	267	
$b_{n21} \ge b_{n37} \ge b_{n16}$	219	286	210	61	68	61	
$b_{n16} > b_{n21} > b_{n37}$	2245	742	2211	874	289	870	
$b_{n16} > b_{n37} > b_{n21}$	188	243	204	27	51	27	
$b_{n37} \ge b_{n21} > b_{n16}$	191	147	200	55	25	55	
$b_{n37} > b_{n16} > b_{n21}$	132	36	102	19	0	19	

图7 降水冰云与非降水冰云云参数6种模态的频率分布

Fig. 7 Frequency distributions of six modal samples of the parameters of precipitating and nonprecipitating ice clouds

云。这与谢磊和刘奇(2017)在研究暖云垂直结构差 异时的发现相符。 $b_{n16} > b_{n21} \ge b_{n37}$ 模态代表的垂直 结构是云滴向下增长,这符合云滴碰并增长机制导 致的降水过程,表明冰云发展至产生降水时,云层 中上部的云滴尺寸和光学厚度多呈现为向下增长的 特征。两类冰云中,积分云水总量仍以 $b_{n21} \ge b_{n16} \ge$ b_{n37} 和 $b_{n16} > b_{n21} \ge b_{n37}$ 模态居多,但 $b_{n21} \ge b_{n16} \ge b_{n37}$ 的比例大于 $b_{n16} > b_{n21} \ge b_{n37}$,超过 50%,且降水冰 云的积分云水总量中 $b_{n21} \ge b_{n37}$,超过 50%,且降水冰 云的积分云水总量中 $b_{n21} \ge b_{n37}$,和 $b_{n16} \ge b_{n37}$ 代表 的垂直结构是云滴表现为向下先增大后减小,积分 云水总量是粒子有效半径和粒子数浓度共同作用的 结果(马占山等,2008),粒子数浓度随云滴增长减 小,因此这同样也符合云滴碰并增长机制导致的降 水过程。

4 结论

本文通过 MODIS 和 CloudSat 资料,对京津冀 地区夏季降水冰云和非降水冰云的云类型、云特征 参数、云层数、云类型和云特征参数随高度变化及 云参数6种模态分布的差异进行统计和分析,得到 结论如下:

(1)降水冰云以深对流云和雨层云为主,分别占48.63%和34.65%,而非降水冰云以高层云和卷云为主,分别占55.62%和31.58%。

(2)降水冰云的平均云顶温度、云顶高度、光学厚度、积分云水总量、有效粒子半径分别为230.99 K、10.90 km、53.26、937.98 g/m²、31.45 μm;降水冰云的平均云顶温度、云顶高度、光学厚度、积分云水总量、有效粒子半径分别为236.17 K、10.10 km、12.81、209.00 g/m²、27.54 μm。

(3)降水冰云和非降水冰云在光学厚度和积分 云水总量频率分布上差异较大,非降水冰云的光学 厚度主要集中在10~50之间,而降水冰云的光学 厚度的分布较为离散,且存在双峰结构;非降水冰 云的积分云水总量主要在1000 g/m²以下,降水冰 云的积分云水总量也比较离散,都是单峰结构;在 云顶温度和云顶高度的频率分布较为相似,都是单 峰结构,且频率峰值对应的云顶温度和云顶高度都 是降水冰云大于非降水冰云;在粒子有效半径的频 率分布上,降水冰云的粒子有效半径呈明显单峰结 构,而非降水冰云则并不明显,频率峰值对应的粒子有效半径都在25 µm左右,但25 µm对应的频率降水冰云为20%左右,略高于非降水冰云。

87

(4)两类冰云中,单层云出现频率最高,都在 80%以上,双层云次之,多层云最低且未超过1%, 但单层云在降水冰云中的出现频率比非降水冰云中 的较低。

(5)相对于非降水冰云而言,产生降水的冰云中,卷云和高积云云体位置较高,分别比非降水冰云中高1~9 km和0~1.5 km,而高层云和深对流云位置较低,分别比非降水冰云中高0~0.5 km和0.5~3 km。而降水雨层云和非降水雨层云位置大致相同,降水层积云的云体范围较小,而降水积云云体范围较大。

(6)两类冰云的冰水含量、粒子数浓度所处的 主要高度范围均在5~15 km,而粒子有效半径所 处的高度则略低,范围为4.5~15 km。非降水冰云 冰水含量从5~8 km是递增的,从8~15 km递减, 降水冰云冰水含量随高度变化则是双峰结构,两个 峰值对应的高度分别为7 km和8.5 km;降水冰云 和非降水冰云的粒子数浓度随高度变化都是单峰结 构,都是随高度先递增然后再减小,且峰值对应的 高度都在10 km左右;降水冰云和非降水冰云的粒 子有效半径随高度变化在5~7.5 km差异较大,非 降水冰云的粒子有效半径几乎没有什么变化,而降 水冰云的粒子有效半径则是减小的。

(7)两类冰云的光学厚度和粒子有效半径都以 $b_{n21} \ge b_{n37} 和 b_{n16} \ge b_{n21} \ge b_{n37}$ 模态居多,降水冰 云的光学厚度和粒子有效半径 $b_{n16} \ge b_{n21} \ge b_{n37}$ 模态的 比例都高于非降水冰云,而 $b_{n21} \ge b_{n37}$ 模态的 比例则小于非降水冰云;两类冰云中,积分云水总 量仍以以 $b_{n21} \ge b_{n16} \ge b_{n37}$ 和 $b_{n16} \ge b_{n37}$ 模态居 多,但 $b_{n21} \ge b_{n16} \ge b_{n37}$ 的比例大于 $b_{n16} \ge b_{n37}$, 超过50%,且降水冰云的积分云水总量中 $b_{n21} \ge$ $b_{n16} \ge b_{n37}$ 和 $b_{n16} \ge b_{n37}$ 模态都略高于非降水 冰云。

参考文献(References)

Austin R T, Heymsfield A J, Stephens G L. 2009. Retrieval of ice cloud microphysical parameters using the CloudSat millimeter—Wave radar and temperature [J]. J. Geophys. Res.: Atmos., 114(D8): D00A23. doi:10.1029/2008JD010049

Baker M B. 1997. Cloud microphysics and climate [J]. Science, 276

(5315): 1072-1078. doi:10.1126/science.276.5315.1072

- Chan M A, Comiso J C. 2011. Cloud features detected by MODIS but not by CloudSat and CALIOP [J]. Geophys. Res. Lett., 38(24): L24813. doi:10.1029/2011GL050063
- 陈勇航, 邓军英, 张萍, 等. 2013. 中天山附近强降雨过程中云冰水含 量 随 高 度 变 化 特 征 [J]. 资 源 科 学, 35(3): 655-664. Chen Yonghang, Deng Junying, Zhang Ping, et al. 2013. Vertical distribution of ice water content in clouds during heavy rains around Tianshan Mountain [J]. Resources Science (in Chinese), 35(3): 655-664.
- 陈超, 孟辉, 靳瑞军, 等. 2014. 基于 CloudSat 云分类资料的华北地区 云宏观特征分析 [J]. 气象科技, 42(2): 294-301. Chen Chao, Meng Hui, Jin Ruijun, et al. 2014. Cloud macroscopic characteristics over North China based on CloudSat data [J]. Meteorological Science and Technology (in Chinese), 42(2): 294-301. doi:10.3969/j. issn.1671-6345.2014.02.020
- 邓军英. 2014. 云卫星在降水云研究中的应用 [D]. 东华大学硕士学 位论文, 83pp. Deng Junying. 2014. Application of CloudSat in the study of precipitation clouds [D]. M. S. thesis (in Chinese), Donghua University, 83pp.
- 邓军英, 丁明月, 王文彩, 等. 2016. 冰云粒子微物理属性在一次强降 雨过程中的垂直分布 [J]. 干旱区地理, 39(1): 590-599. Deng Junying, Ding Mingyue, Wang Wencai, et al. 2016. Vertical distributions microphysical properties of ice particles in a heavy rain [J]. Arid Land Geography (in Chinese), 39(1): 590-599. doi: 10. 13826/j.cnki.cn65-1103/x.2016.03.016
- Dessler A E, Yang P. 2003. The distribution of tropical thin cirrus clouds inferred from *terra* MODIS data [J]. J. Climate, 16(8): 1241–1247. doi:10.1175/1520-0442(2003)16<1241:TDOTTC>2.0.CO;2
- Feofilov A G, Stubenrauch C J, Delanoë J. 2015. Ice water content vertical profiles of high-level clouds: Classification and impact on radiative fluxes [J]. Atmos. Chem. Phys., 15(21): 12327–12344. doi: 10.5194/acp-15-12327-2015
- Ham S H, Sohn B J, Kato S, et al. 2013. Vertical structure of ice cloud layers from CloudSat and CALIPSO measurements and comparison to NICAM simulations [J]. J. Geophys. Res.: Atmos., 118(17): 9930– 9947. doi:10.1002/jgrd.50582
- Hartmann D L, Ockert-Bell M E, Michelsen M L. 1992. The effect of cloud type on Earth's energy balance: Global analysis [J]. J. Climate, 5(11): 1281–1304. doi:10.1175/1520-0442(1992)005<1281: TEOCTO>2.0.CO;2
- Heymsfield A J. 2003. Properties of tropical and midlatitude ice cloud particle ensembles. Part I: Median mass diameters and terminal velocities [J]. J. Atmos. Sci., 60(21): 2573–2591. doi:10.1175/1520-0469(2003)060<2573:POTAMI>2.0.CO;2
- 霍娟. 2015. 基于 CloudSat/CALIPSO 资料的海陆上空中云的物理属 性分析 [J]. 气候与环境研究, 20(1): 30-40. Huo Juan. 2015. Physical properties of mid-level clouds based on CloudSat/ CALIPSO data over land and sea [J]. Climatic and Environmental Research (in Chinese), 20(1): 30-40. doi: 10.3878/j.issn.1006-9585. 2014.13188

- Kahn B H, Yue Q, Lebsock M, et al. 2017. Extratropical trends in cloud amount, thermodynamic phase, liquid and ice water path [C]//AGU Fall Meeting Abstracts. New Orleans, Louisiana: AGU, 1pp.
- 李特,郑有飞,王立稳,等. 2017. 基于 MODIS 产品的中国陆地冰云 季节变化特征 [J]. 应用气象学报, 28(6): 724-736. Li Te, Zheng Youfei, Wang Liwen, et al. 2017. Ice cloud distribution and seasonal migration over land area of China based on MODIS data [J]. Journal of Applied Meteorological Science (in Chinese), 28(6): 724-736. doi: 10.11898/1001-7313.20170608
- 刘奇. 2007. 基于 ISCCP 及 TRMM 观测的热带降水云与非降水云差 异的研究 [D]. 中国科学技术大学博士学位论文, 192pp. Liu Qi. 2007. The property differences between precipitating clouds and nonprecipitating clouds over global tropics based on ISCCP and TRMM measurements [D]. Ph. D. dissertation (in Chinese), University of Science and Technology of China, 192pp.
- 刘玉洁,杨忠东. 2001. MODIS 遥感信息处理原理与算法 [M]. 北京: 科学出版社, 346. Liu Yujie, Yang Zhongdong. 2001. Principles and Algorithms to Process MODIS Remote Sensing Information (in Chinese) [M]. Beijing: Science Press, 346.
- 刘雪梅,张明军,王圣杰,等. 2016. 中国降水云云底高度的估算和分 析 [J]. 气象, 42(9): 1135-1145. Liu Xuemei, Zhang Mingjun, Wang Shengjie, et al. 2016. Estimation and analysis of precipitation cloud base height in China [J]. Meteorological Monthly (in Chinese), 42(9): 1135-1145. doi:10.7519/j.issn.1000-0526.2016.09.011
- 刘旸,赵姝慧,蔡波,等. 2017. 基于 CloudSat 资料的东北地区降水云 及非降水云垂直结构特征对比分析 [J]. 气象, 43(11): 1374-1382. Liu Yang, Zhao Shuhui, Cai Bo, et al. 2017. Comparison of vertical structure between precipitation cloud and non-precipitation cloud based on CloudSat data over Northeast China [J]. Meteorological Monthly (in Chinese), 43(11): 1374-1382. doi: 10. 7519/j.issn.1000-0526.2017.11.006
- 马占山, 刘奇俊, 秦琰琰, 等. 2008. 云探测卫星 CloudSat [J]. 气象, 34 (8): 104-111. Ma Zhanshan, Liu Qijun, Qin Yanyan, et al. 2008. Introductions to a new type cloud detecting satellite—CloudSat [J]. Meteorological Monthly (in Chinese), 34(8): 104-111. doi:10.7519/j. issn.1000-0526.2008.08.016
- 彭杰, 沈新勇, 王志立, 等. 2010. 中国地区云的观测研究进展 [J]. 安 徽农业科学, 38(24): 13070-13073. Peng Jie, Shen Xinyong, Wang Zhili, et al. 2010. Overview of observational researches on clouds over China [J]. Journal of Anhui Agricultural Sciences (in Chinese), 38(24): 13070-13073. doi:10.3969/j.issn.0517-6611.2010. 24.056
- Platnick S, King M D, Meyer K G, et al. 2015. MODIS cloud optical properties: User guide for the Collection 6 Level-2 MOD06/MYD06 product and associated Level-3 Datasets [Z]. Version 1, 145.
- 齐彦斌, 郭学良, 金德镇. 2007. 一次东北冷涡中对流云带的宏微物 理结构探测研究 [J]. 大气科学, 31(4): 621-634. Qi Yanbin, Guo Xueliang, Jin Dezhen. 2007. An observational study of macro/ microphysical structures of convective rainbands of a cold vortex over northeast China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31(4): 621-634. doi: 10.3878/j. issn. 1006-9895.2007.

04.07

1期

- Sassen K, Wang Z E. 2008. Classifying clouds around the globe with the CloudSat radar: 1-year of results [J]. Geophys. Res. Lett., 35(4): L04805. doi:10.1029/2007GL032591
- 尚博. 2011. 利用 Cloudsat 对华北、江淮云垂直结构及降水云特征 的研究 [D]. 南京信息工程大学硕士学位论文, 66pp. Shang Bo. 2011. Research on vertical structure of cloud and precipitation feature of Cloudsat data in Huabei and Jianghuai [D]. M. S. thesis (in Chinese), Nanjing University of Information Science and Technology, 66pp.
- 尚博,周毓荃,刘建朝,等. 2012. 基于 Cloudsat 的降水云和非降水云 垂 直 特征 [J]. 应用气象学报, 23(1): 1-9. Shang Bo, Zhou Yuquan, Liu Jianchao, et al. 2012. Comparing vertical structure of precipitation cloud and non-precipitation cloud using Cloudsat [J]. Journal of Applied Meteorological Science (in Chinese), 23(1): 1-9. doi:10.3969/j.issn.1001-7313.2012.01.001
- Stephens G L, Vane D G, Tanelli S, et al. 2008. CloudSat mission: Performance and early science after the first year of operation [J]. J. Geophys. Res.: Atmos., 113(D8): D00A18. doi: 10.1029/ 2008JD009982
- 王帅辉, 韩志刚, 姚志刚, 等. 2011. 基于 CloudSat 资料的中国及周边 地区云垂直结构统计分析 [J]. 高原气象, 30(1): 38-52. Wang Shuaihui, Han Zhigang, Yao Zhigang, et al. 2011. Analysis on cloud vertical structure over China and its neighborhood based on CloudSat data [J]. Plateau Meteorology (in Chinese), 30(1): 38-52.
- 王旭,张嘉伟,马禹,等. 2016. 天山山脉强降水云宏微观物理属性的空间分布特征 [J]. 干旱区地理, 39(6): 1153-1161. Wang Xu, Zhang Jiawei, Ma Yu, et al. 2016. Spacial distribution of macro and micro physical properties of Clouds during heavy rains over Tianshan Mountains [J]. Arid Land Geography (in Chinese), 39(6): 1153-1161. doi:10.13826/j.cnki.cn65-1103/x.2016.06.001
- Weisz E, Li J, Menzel W P, et al. 2007. Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals [J]. Geophys. Res. Lett., 34(17): L17811. doi:10.1029/2007GL030676
- 吴晓, 游然, 王旻燕, 等. 2016. 基于 MODIS 云宏微观特性的卫星云 分类方法 [J]. 应用气象学报, 27(2): 201-208. Wu Xiao, You Ran, Wang Minyan, et al. 2016. Cloud type identification based on macro and micro properties of clouds from MODIS [J]. Journal of Applied

Meteorological Science (in Chinese), 27(2): 201–208. doi:10.11898/ 1001-7313.20160208

89

- 谢磊, 刘奇. 2017. 基于卫星遥感的全球洋面降水暖云与非降水暖云 的云参数差异 [J]. 中国科学技术大学学报, 47(12): 1006-1014. Xie Lei, Liu Qi. 2017. Cloud property differences between precipitating and non-precipitating warm clouds over global oceans derived from satellite remote sensing [J]. Journal of University of Science and Technology of China (in Chinese), 47(12): 1006-1014. doi:10.3969/j.issn.0253-2778.2017.12.006
- Yang Y, Xie S P, Hafner J. 2008a. Cloud patterns lee of Hawaii Island: A synthesis of satellite observations and numerical simulation [J]. J. Geophys. Res.: Atmos., 113(D15): D15126. doi:10.1029/2008JD009889
- Yang Y, Xie S P, Hafner J. 2008b. The thermal wake of Kauai Island: Satellite observations and numerical simulations [J]. J. Climate, 21 (18): 4568–4586. doi:10.1175/2008JCLI1895.1
- 杨亦萍, 董晓刚, 戴聪明, 等. 2016. 利用 MODIS 数据对北极夏季卷 云特性的研究 [J]. 红外与激光工程, 45(4): 0432002 Yang Yiping, Dong Xiaogang, Dai Congming, et al. 2016. Cirrus clouds properties in the Arctic in summer based on MODIS data [J]. Infrared and Laser Engineering (in Chinese), 45(4): 0432002. doi:10. 3788/IRLA201645.0432002
- 张萍. 2012. 云卫星资料在天山山区降雨云研究中的应用 [D]. 东 华大学硕士学位论文, 85pp. Zhang Ping. 2012. Application of CloudSat data in the study of rainfall clouds over Tianshan mountains [D]. M. S. thesis (in Chinese), Donghua University, 85pp.
- 赵姝慧. 2008. 利用 TRMM 卫星和 CloudSat 卫星对不同类型云系的 中微尺度结构的研究分析 [D]. 南京信息工程大学硕士学位论文, 93pp. Zhao Shuhui. 2008. A study on the mesoscale and microscale structures in different types of clouds by TRMM satellite and CloudSat satellite [D]. M. S. thesis (in Chinese), Nanjing University of Information Science and Technology, 93pp.
- 周毓荃, 蔡淼, 欧建军, 等. 2011. 云特征参数与降水相关性的研究 [J]. 大气科学学报, 34(6): 641-652. Zhou Yuquan, Cai Miao, Ou Jianjun, et al. 2011. Correlation between cloud characteristic parameters and precipitation [J]. Transactions of Atmospheric Sciences (in Chinese), 34(6): 641-652. doi:10.3969/j.issn.1674-7097. 2011.06.002