周心河,熊喆. 2020. 不同行星边界层参数化方案对新疆降水模拟的影响研究 [J]. 气候与环境研究, 25(2): 211-224. ZHOU Xinhe, XIONG Zhe. 2020. Impact of Different Planetary Boundary Layer Parameterization Schemes in the Regional Climate Model on Precipitation Simulation for Xinjiang [J]. Climatic and Environmental Research (in Chinese), 25 (2): 211-224. doi:10.3878/j.issn.1006-9585.2019.19082

不同行星边界层参数化方案对新疆降水模拟的 影响研究

周心河^{1,2} 能喆²

1 成都信息工程大学大气科学学院,成都 610225 2 中国科学院大气物理研究所东亚区域气候—环境重点实验室,北京 100029

摘 要 使用 NCEP-FNL 全球分析资料作为 WRF 模式的初始场和边界场,利用该模式中 6 种行星边界层参数化 方案对新疆进行 2006 年 10 月 1 日至 2008 年 1 月 1 日的模拟积分试验,重点考察模式在 10 km 水平分辨率下不 同行星边界层参数化方案对新疆降水模拟的敏感性。结果表明: 1)采用 6 种行星边界层参数化方案的模式都能 较好地模拟出年、雨季总降水量的空间分布及月降水的季节循环。2)对于新疆整体来说,采用 Grenier-Bretherton-McCaa (GBM)方案模拟雨季降水更接近观测,偏差在±30% 以内。对于天山地区来说,采用 Bougeault-Lacarrere (BouLac)方案模拟年降水更接近观测,偏差为-19.13%;采用 GBM 方案模拟中雨和大雨的 TS 评分 最高分别为 0.37 和 0.33,并且能够较好地模拟 7 月 5 次较大降水日中不同下垫面类型的昼夜降水,偏差在 5 mm 以内。3)BouLac 方案能够较好地模拟天山地区年降水的时空分布特征,GBM 方案更适合模拟新疆整体雨季期 间降水。因此利用 WRF 模式开展新疆降水模拟研究时应考虑不同行星边界层参数化方案的适用范围。

关键词 WRF 模式 行星边界层参数化方案 降水 新疆
 文章编号 1006-9585(2020)02-0211-14 中图分类号 P435 文献标识码 A
 doi:10.3878/j.issn.1006-9585.2019.19082

Impact of Different Planetary Boundary Layer Parameterization Schemes in the Regional Climate Model on Precipitation Simulation for Xinjiang

ZHOU Xinhe^{1, 2} and XIONG Zhe²

1 College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225

2 Key Laboratory of Regional Climate–Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

Abstract NCEP-FNL datasets are used as the initial and boundary fields of the WRF model. Six planetary boundary layer parameterization schemes (PBLPS) are applied in the model for Xinjiang region with 10-km horizontal resolution. The spatial distribution and temporal evolution of the meteorological elements are analyzed. The analysis results show the following aspects: 1) The WRF model with six PBLPS can simulate the seasonal circulation of monthly precipitation and the spatial pattern of annual and rainy season precipitation. 2) For the Xinjiang region, the deviation of rainy season

收稿日期 2019-05-24; 网络预出版日期 2019-10-18

作者简介 周心河,女,1994年出生,硕士研究生,主要从事区域气候模式研究。E-mail: zhouxh@tea.ac.cn

通讯作者 熊喆, E-mail: xzh@tea.ac.cn

资助项目 国家自然科学基金项目 91425304

Funded by National Natural Science Foundation of China (Grant 91425304)

precipitation between the simulation conducted with the Grenier-Bretherton-McCaa (GBM) scheme and the observations is within $\pm 30\%$. For the Tianshan area, the deviation of annual precipitation between the simulation conducted with the Bougeault-Lacarrere (BouLac) scheme and the observations is -19.13%. The TS scores of moderate and heavy rains are 0.37 and 0.33, respectively, in the test results of daily precipitation simulated with the GBM scheme. For the different types of underlying surfaces in the Tianshan area, the day and night precipitation can be well simulated by the model with the GBM scheme with the deviation of precipitation within 5 mm during long precipitation days. 3) The WRF model with the BouLac scheme can simulate the annual spatial and temporal distribution characteristics of annual precipitation in the Tianshan area, and the rainy seasonal precipitation can be well simulated by the model with the GBM scheme in Xinjiang. Therefore, PLBS with the WRF model in the Xinjiang region should be considered.

Keywords WRF model, Planetary boundary layer parameterization scheme, Precipitation, Xinjiang

1 引言

行星边界层指自地面向上到高度约1~2km的 薄层,该层主要通过地表强迫和湍流运动等的相互 作用,引发地面水汽、热量与高层动量之间混合交 换,进而影响近地层气象要素场及大气污染物扩散 等。行星边界层的结构和变化可以直接反映地表热 状况的变化,并且随温度有显著的日变化特征。边 界层内热量及动量通量是通过湍流运动输送的,而 湍流运动作为一种在时空尺度上难以被模式分辨的 次网格尺度运动,需要引入行星边界层参数化方案 (简称边界层方案)来计算边界层内热量、动量等 物理量(Holt and Raman, 1988)。采用不同边界层 方案的区域气候模式模拟温度、湿度、低层风场及 边界层高度等差异显著,而造成这些差异的原因与 下垫面、边界层顶卷挟混合强度、边界层闭合方案 及湍流混合等有关(王颖等, 2010; Hu et al., 2010; 赵世强等,2012)。

新疆是中国西北干旱区主体,"三山夹两盆" 的地形地貌使其上覆盖的植被具有明显的纬向性分 布规律;新疆地理及气候类型复杂多样,以天山为 界的新疆南北区域气候差异显著;新疆降水呈北部 多于南部,西部多于东部的分布特征,降水空间异 质性很大且降水梯度较大;同时新疆仅有106个气 象站点,数目较少且分布不均匀。目前利用区域气 候模式中不同参数化方案开展模拟试验大部分主要 集中于中国东部季风区,而新疆属于西风带,研究 得相对较少,因此对新疆开展动力降尺度研究是非 常必要的,可以为干旱区模式及新疆研究的发展提 供参考。

边界层方案与降水关系密切(陈静等, 2003; Wisse and De Arellano, 2004; 陈炯和王建捷, 2006)。利用 WRF 模式开展边界层方案对降水的 模拟研究主要集中在中国东部及较单一下垫面地区 (邱贵强等,2013;徐慧燕等,2013;García-Díez et al.,2013;李斐等,2017),对新疆这样复杂下垫面 地区模拟试验开展得极少,并且模拟时间都非常 短,往往是对降水个例的模拟,时间在3d左右。 因此,本文将利用 WRF 模式在10km水平分辨率 条件下以及不同边界层方案下开展年循环的模拟研 究,重点考察边界层方案对新疆降水季节及日变化 的模拟影响。

2 模式介绍与数据

2.1 模式介绍与试验设计

WRF3.8.1 模式是新一代高分辨率、完全可压缩的非静力中尺度数值天气预报模式。WRF 模式的主模块可分为 ARW 和 NMM 两种形式,即研究用和业务用。ARW 模式研究空间跨度大且时间范围广,可以进行中小尺度系统到大气环流、天气个例到气候的研究。WRF 3.8 较之前版本改进了各种物理选项,提供了气溶胶—辐射相互作用的一个新选择等。

本次数值试验中采用 NCEP-FNL 全球分析资料(New et al., 2000)作为 WRF 模式初始场和边界场资料的驱动场,其水平分辨率为1°(纬度)×1°(经度),时间间隔为6h;地形和植被资料分别来自于美国地质勘探局(USGS)的GTOPO30地形资料(约1km分辨率)和 MODIS-30 土地利用数据集。

模式模拟积分时段为 2006年 10 月 1 日至 2008年 1 月 1 日,其中 2006年 10~12 月为模式 初始化(spin-up)时段;并在其余物理过程方案相 同的条件下利用 WRF 模式开展不同边界层方案对 新疆降水的模拟试验(表 1)。

表 1 数值试验方案设计

Table 1Numerical experimental design of planetaryboundary layer parameterization schemes

	参数设置
分辨率	10 km
网格中心	(42°N, 85°E)
网格数	216(经向)×186(纬向)
微物理方案	WSM3
积云对流方案	Kain-Fritsch (new Eta)
短波辐射方案	Dudhia
长波辐射方案	Rrtm
近地面层方案	Monin-Obukhov
陆面过程方案	Noah-MP
边界层方案	YSU、MYNN2.5、ACM2、BouLac、Bretherton- Park/UW、Grenier-Bretherton-McCaa (GBM)

为了考察 WRF 模式在新疆不同区域的模拟能力,根据自然地理特征及海拔高度差异,将新疆分为4个区域(周心河和熊喆,2019):天山(海拔高度≥1500 m)、新疆北部、新疆南部及新疆东部(图 1b)。

2.2 数据来源及处理

用于验证模式的地面数据有:1)中国国家级 地面气象站基本气象要素日值数据集(V3.0)中的 降水数据,该数据集包括2474个中国基本、基准 气象站、一般气象站的地面基本气象要素逐日观测 数据;2)中国科学院青藏高原研究所(ITPCAS) 开发的中国区域高时空分辨率地面气象要素驱动数 据集的降水数据(何杰和阳坤,2011),该数据集 以 Princeton 再分析资料、GLDAS 资料、GEWEX-

图 1 新疆(a) 气象观测站点空间分布及其地形、(b) 区域划分;(c) 模式下垫面类型(数字为 MODIS 植被类型)、(d) 主要两种下垫 面类型(10: 草原; 16: 裸地) 的空间分布

Fig. 1 (a) Spatial distributions of meteorological observation stations and topography in Xinjiang; (b) distribution of different subregions in Xinjiang; (c) different types of underlying surfaces in Xinjiang (numbers denote plant types of MODIS model); (d) spatial distribution of the main types of underlying surfaces in Xinjiang (10: Grasslands; 16: Bare lands)

SRB 辐射资料及 TRMM 降水资料为背景场,融合中国气象局常规气象观测数据制作而成,水平分辨率为 0.1°(纬度)×0.1°(经度),时间分辨率为 3 h。高空数据采用美国环境预报中心 NCEP-FNL 全球分析资料(简称 FNL)的相对湿度、位温等数据。

数据插值方法:1)考虑到格点资料与模式模 拟结果的分辨率差异,为了便于比较,将ITPCAS 资料通过双线性插值法插值到 WRF 模式网格点上 (马严枝等,2012;王子谦等,2014),用来对比分 析 ITPCAS 资料与模式模拟降水在空间分布上的差 异;2)考虑到新疆气象站点空间分布不均匀,将 格点资料及模式模拟结果通过反距离权重插值法插 值到观测站点上,对不同区域内的站点加权平均, 用于不同区域的比较研究。

降水评分检验:降水检验标准包括模拟正确 率、TS评分、漏报率和空报率(霍文等,2010;杜 娟等,2016),其计算公式如下:

模拟正确率 =
$$\frac{NA + ND}{NA + NB + NC + ND}$$
, (1)

TS评分 =
$$\frac{NA}{NA + NB + NC}$$
, (2)

漏报率 =
$$\frac{NC}{NA + NC}$$
, (3)

空报率 =
$$\frac{\text{NB}}{\text{NA} + \text{NB}}$$
, (4)

其中,NA、NB、NC、ND分别为区域平均全年有 降水模拟正确日数、无降水空报日数、有降水漏报 日数、无降水模拟正确日数(表 2)。

表 2 降水的检验分类表 Table 2 Test score classification of rainfall

0						
	模	模拟				
实况	有	无				
有	NA	NC				
无	NB	ND				

3 行星边界层参数化方案介绍

边界层方案可根据湍流闭合问题的处理方法分 为局地闭合方案和非局地闭合方案。局地闭合方案 指空间任一点未知量的值由空间某一点已知量的值 或梯度进行参数化得到;非局地闭合方案指空间任 一点未知量的值由空间许多点已知量的值或梯度进 行参数化得到。

YSU方案(Hong et al., 2006)是 MRF方案(Hong and Pan, 1996)的改进,是非局地 K 理论方案。该方案在控制方程中加入逆梯度项表示非局地梯度通量,增加了边界层顶部卷夹通量项。相比较 MRF 方案而言,该方案不会产生由于逆梯度项过大导致层结过稳定的问题,可以模拟出更合理的边界层结构及发展过程。

MYNN2.5(简称 MYNN)方案(Nakanishi and Niino, 2006)是局地闭合方案。该方案主要能够预报局部垂直混合强度和湍流动能,考虑浮力对气压相关项的作用,并引入凝结物理过程,能够模拟雾。

ACM2(简称 ACM)方案(Pleim, 2007)是 局地与非局地闭合的结合,向上混合过程为非局地 的过渡湍流混合,向下混合过程为局地 K 混合; 该方案能够描述对流边界层中对流层网格和次网格 尺度的湍流输送状况。

BouLac(简称BL)方案(Bougeault and Lacarrere, 1989)是局地闭合方案。该方案在 TKE预报方案的基础上加入多层城市模式,能够 预报不同类型下垫面如陡峭地形的晴空湍流强度和 具体位置,并能够持续预报湍流动能强度。

Bretherton-Park/UW(简称BP)方案(Bretherton and Park, 2009)是局地闭合方案。该方案引入一个 水汽守恒变量以及对流层的显式夹带闭合,并对湍 流动能传输引入一个新方程,通过诊断湍流动能计 算湍流扩散;提高了对边界风的模拟,并适用于干 对流边界层情况。

GBM 方案(Grenier and Bretherton, 2001)是 局地闭合方案。该方案在边界层顶运用卷夹闭合技 术确保浮力产生合理准确的廓线;能够在有限垂直 分辨率下模拟有准确有效云层覆盖的边界层。

4 结果分析与比较

图 2 为新疆年降水及其偏差的空间分布。从 图 2a 可见年降水集中在天山及阿尔泰山一带约 500 mm,新疆南部及东部年降水较少约 100 mm。 为了避免片面放大对少雨区的估量,通过设置阈值 (ITPCAS 资料年降水少于 100 mm 不计算偏差百 分率)计算模式与 ITPCAS 资料的偏差。无论采用 哪种边界层方案的模式都能较好地模拟新疆年降水 的空间分布;模式模拟年降水在天山、阿尔泰山及 昆仑山一带较 ITPCAS 资料偏多 20%~80%,其中 采用 GBM 方案较其他方案模拟年降水偏差最大约 80%;模式模拟年降水在新疆北部较 ITPCAS 资料 偏少 20%~80%,其中采用 GBM 方案较其他方案 模拟年降水偏差较小约 40%。

新疆降水主要集中在 5~9月,将 5~9月称为 新疆雨季。新疆雨季降水与年降水的空间分布基本 一致(图 2a),雨季降水集中在天山及阿尔泰山 一带,约 400 mm,新疆南部及东部降水较少,约 50 mm;模式模拟雨季降水与ITPCAS资料偏差的 空间分布与图 2b-2g一致,但整体偏差值有所减 小。表 3 给出图 2 中 ITPCAS 资料与采用不同边界 层方案模式模拟降水的空间相关系数和均方根误 差,可以清楚地看到,在新疆东部模式与 ITPCAS资料雨季降水的相关系数普遍高于全年, 而在其他地区则是全年降水的相关系数高于雨季, 且 4 个区域中天山地区全年和雨季降水的相关系数 最高,均在 0.7 左右;对于不同方案来说,在不同 区域模拟全年和雨季的降水与 ITPCAS 资料的相关 系数之间差异不大,其中 GBM 方案在天山地区模

215

图 2 (a) 新疆 ITPCAS 资料 2007 年年降水量及其(b) YSU 方案、(c) MYNN 方案、(d) ACM 方案、(e) BL 方案、(f) BP 方案、(g) GBM 方案与 ITPCAS 资料偏差的空间分布

Fig. 2 Spatial distributions of (a) annual precipitation in 2007 from ITPCAS data and their bias between ITPCAS data and simulated annual precipitation from schemes (b) YSU, (c) MYNN, (d) ACM, (e) BL, (f) BP, (g) GBM in Xinjiang region (Unit %)

拟降水的均方根误差较其他方案明显偏大 50 mm 以上,在新疆北部、南部及东部地区模拟降水的均 方根误差较其他方案明显偏小 50 mm 以内。

表4为ITPCAS资料、模式模拟降水与观测降水之间的偏差。从观测上来说天山、新疆北部、南部及东部的年降水分别为417.27 mm、249.32 mm、53.49 mm及27.10 mm; 雨季降水分别为342.01 mm、164.10 mm、46.55 mm及23.45 mm。ITPCAS资料与观测对比发现: ITPCAS资料在天山地区全年及雨季降水均较观测偏少,降水偏差分别为-15.71%和-22.03%; 在新疆北部、南部及东部地区全年及雨季降水均较观测偏多,其中新疆北部的降水偏差均在6%左右,新疆东部由于观测降水较少导致降水偏差均在100%以上。

模式模拟年降水与观测的对比发现:对于天山 地区来说,除 GBM 方案外模式模拟降水均较观测 偏少,偏差在-19.13%~40.58%之间,其中采用 BL方案降水偏差最小为-19.13%; 新疆北部模式 模拟降水较观测偏少,偏差在-47.22%~-2.82% 之间,其中采用 GBM 方案降水偏差最小为-2.82%; 对于新疆南部地区来说,除 GBM 方案外模式模拟 降水均较观测偏少,偏差在-63.09%~66.35%之 间,其中采用 BL方案模拟降水偏差最小为 -41.12%;对于新疆东部地区,除 GBM 方案外模 式模拟降水均较观测偏少,偏差在-67.62%~ 27.11%之间,其中采用 GBM 方案降水偏差最小 为 27.11%。

对于雨季降水量: 天山地区除 GBM 方案外模 式模拟降水均较观测偏少,偏差在-36.97%~ 15.84%之间,其中采用 GBM 方案降水偏差最小 为 15.84%;新疆北部模式模拟降水较观测偏少, 偏差在-61.75%~-29.22%之间,其中采用 GBM 方案降水偏差最小为-29.22%;新疆南部模式模拟 降水较观测偏少,偏差在-61.76%~-6.18%之间,

表 3 2007 年新疆不同区域模式模拟与 ITPCAS 资料降水量的空间相关系数和均方根误差

Table 3Spatial correlation coefficients and root-mean-square errors (RMSEs) of precipitation in 2007 between ITPCAS dataand the model in different areas of the Xinjiang region

		相关系数					均方根误差/mm						
		YSU	MYNN	ACM	BL	BP	GBM	YSU	MYNN	ACM	BL	BP	GBM
全年	天山	0.71	0.71	0.72	0.70	0.69	0.69	165.28	167.84	152.46	176.66	183.36	322.00
	新疆北部	0.45	0.45	0.48	0.46	0.45	0.47	127.92	141.26	129.63	126.19	129.39	76.30
	新疆南部	0.43	0.30	0.34	0.24	0.35	-0.14	50.72	56.98	53.78	47.31	48.74	45.53
	新疆东部	0.27	0.34	0.34	0.35	0.33	0.29	61.62	62.31	62.94	62.74	64.16	51.23
雨季	天山	0.67	0.66	0.68	0.66	0.65	0.68	143.71	145.60	127.91	149.91	155.55	212.17
	新疆北部	0.33	0.34	0.40	0.34	0.33	0.45	111.47	121.68	112.17	110.13	111.24	76.04
	新疆南部	0.32	0.13	0.18	0.12	0.23	0.05	33.76	39.75	37.05	32.57	34.31	28.14
	新疆东部	0.41	0.46	0.44	0.42	0.46	0.32	44.45	44.73	44.39	44.89	46.19	38.34

表 4 新疆不同区域 2007 年 ITPCAS 资料及不同行星边界层参数化方案模式与观测降水量的偏差

Table 4	Deviation percentages between ITPCAS data and observed precipitation in 2007 and those between simulations with
different	planetary boundary layer parameterization schemes and observations in different areas of the Xinjiang region

		与观测降水量的偏差							
		全	:年		雨季				
	天山	新疆北部	新疆南部	新疆东部	天山	新疆北部	新疆南部	新疆东部	
ITPCAS数据	-15.71%	6.39%	34.10%	155.78%	-22.03%	6.53%	6.39%	104.72%	
YSU	-23.81%	-41.91%	-51.17%	-57.54%	-29.07%	-55.39%	-48.45%	-76.18%	
MYNN	-30.41%	-47.22%	-63.09%	-62.76%	-36.97%	-61.75%	-61.76%	-78.16%	
ACM	-28.30%	-42.44%	-55.73%	-64.20%	-35.75%	-56.47%	-53.75%	-76.98%	
BL	-19.13%	-41.17%	-41.12%	-62.59%	-24.82%	-54.36%	-37.29%	-77.57%	
BP	-20.01%	-42.33%	-42.96%	-67.62%	-25.14%	-54.82%	-39.49%	-83.06%	
GBM	40.58%	-2.82%	66.35%	27.11%	15.84%	-29.22%	-6.18%	-11.57%	

其中采用 GBM 方案降水偏差最小为-6.18%; 新疆东部模式模拟降水较观测偏少,偏差在 -83.06%~-11.57%之间,其中采用 GBM 方案 降水偏差最小为-11.57%。

ITPCAS 格点资料能够较好地再现新疆不同区 域降水的季节循环,并且与观测基本一致(图 略)。天山观测降水在7月出现明显峰值约100 mm, ITPCAS的5~9月降水较观测偏少2.14~38.02 mm, 全年与观测的均方根误差为12.71 mm;新疆北部 观测降水在5、7月为两个明显峰值约50 mm,全 年与观测的均方根误差为2.09 mm;新疆南部观测 降水在6、7月最多约15 mm,ITPCAS月降水除 在6月较观测偏少7.15 mm外均较观测偏多在3 mm 以内,全年与观测的均方根误差为3.13 mm;新疆 东部观测降水在7月最多达13 mm,ITPCAS月降 水均较观测偏多0.19~10.77 mm,全年与观测的均 方根误差为4.41 mm。

除 GBM 方案外,采用其他边界层方案模式模 拟月降水普遍较观测偏少(图略)。对于天山地区 来说,模式模拟全年月降水与观测的均方根误差 在 14.26~19.67 mm 之间,其中采用 BL 方案均方 根误差最小为 14.26 mm;新疆北部模式模拟降水 与观测的均方根误差在 9.24~15.04 mm 之间,其 中采用 GBM 方案均方根误差最小为 9.24 mm;新 疆南部模式模拟降水与观测的均方根误差在 3.54~6.87 mm 之间,其中采用 BP 方案均方根误 差最小为 3.54 mm;新疆东部模式模拟降水与观测 的均方根误差在 2.13~3.72 mm 之间,其中采用 GBM 方案均方根误差最小为 2.13 mm。

根据新疆 24 h 的降水量级标准将 0.1~6 mm 称为小雨、6.1~12 mm 称为中雨、12.1~24 mm 称为大雨(肖开提·多莱特, 2005)。表 5 为不同区域日降水模拟检验结果:对于 4 个区域来说采用不同边界层方案的模式模拟降水正确率较 ITPCAS 资料均偏高。对于 ITPCAS 资料来说:天山小雨、中雨及大雨的 TS 评分分别为 0.69、0.31 及 1.00;新疆市部小雨的 TS 评分分别为 0.69、0.31 及 1.00;新疆南部小雨的 TS 评分为 0.46;新疆东部小雨和中雨的 TS 评分分别为 0.23 和 1.00。对于不同边界层方案来说,采用不同边界层方案模式模拟小雨的 TS 评分最高为 0.73,采用 GBM 方案模拟中雨及大雨的 TS 评分最高分别为 0.37 和 0.33;新疆北部

采用 GBM 方案模式模拟小雨的 TS 评分最高为 0.61,采用 ACM 方案模拟中雨的 TS 评分最高为 0.33;新疆南部采用 GBM 方案模式模拟小雨的 TS 评分最高为 0.27;在新疆东部采用 ACM 方案 模拟小雨的 TS 评分最高为 0.27,且模式均未模拟 出中雨。

4.1 天山地区不同下垫面类型的降水

图 1c 为新疆 WRF 模式下垫面类型的空间分 布,从图中可清楚看到天山及新疆北部地区下垫面 类型较复杂,其中以草原和裸地为主。考虑到边界 层方案中的具体设定与下垫面类型相关,并且天山 降水是新疆整体降水的主要来源,因此在下文中主 要分析天山地区在草原和裸地这两种下垫面类型 下,采用不同边界层方案模式对降水的模拟情况。

选取天山降水最多的7月分析日变化特征。 图3为天山不同下垫面类型的7月日降水随时间演 变。整体来看7月几次较大降水出现在9日、 14日、16日、17日、28日。对比不同下垫面类型 发现裸地的几次较大日降水强度普遍明显高于草 原,其中裸地最大观测日降水达26.35 mm, ITPCAS资料在草原和裸地降水与观测的相关系数 分别为0.94和0.89,通过99%置信度检验,均方 根误差分别为1.18 mm和3.26 mm。对于不同边界 层方案来说,植被为草原地区采用BL方案模式模 拟日降水更接近观测,与观测的相关系数为0.82, 通过99%置信度检验,均方根误差为2.41 mm; 裸地地区采用ACM方案模拟日降水更接近观测, 与观测的相关系数为0.63,通过99%置信度检 验,均方根误差为5.82 mm(图4)。

选取7月9日、14日、16日、17日、28日 这5天平均考察模式对昼夜降水变化的模拟效果, 夜间为20:00至08:00(北京时间,下同),白昼 为08:00至20:00。表6为7月5天平均昼夜降水 量,对比不同下垫面类型发现裸地昼夜观测降水均 接近10mm,草原昼夜观测降水分别为5.18 mm和3.82mm;模式模拟降水在草原和裸地地区 均较观测偏多,且在草原的降水偏差大于裸地,草 原地区昼夜降水偏差分别为1.40mm和0.60mm。 对于不同边界层方案来说,模式在草原地区模拟昼 夜降水均较观测偏少约2mm,且采用不同边界层 方案模式模拟白昼降水差异较夜间偏大,其中采 用GBM方案模拟夜间降水更接近观测,降水偏差 为-1.82mm,采用 MYNN 方案模拟白昼降水更接

气 候 与 环 境 研 究		
---------------	--	--

								Sion in 2007	
•	the tax and the No.]	TPCAS数据	YSU	MYNN	ACM	BL	BP	GBM
天山	模拟正确率		0.68	0.83	0.83	0.83	0.82	0.82	0.71
	TS评分	小雨	0.69	0.70	0.71	0.69	0.73	0.72	0.52
		中雨	0.31	0.12	0.18	0.19	0.19	0.13	0.37
		大雨	1.00	0.00	0.00	0.33	0.33	0.00	0.33
	漏报率	小雨	0.05	0.13	0.15	0.17	0.10	0.11	0.12
		中雨	0.69	0.85	0.77	0.77	0.77	0.85	0.46
		大雨	0.00	1.00	1.00	0.50	0.50	1.00	0.00
	空报率	小雨	0.28	0.21	0.19	0.21	0.21	0.21	0.44
		中雨	0.00	0.67	0.57	0.50	0.50	0.60	0.46
		大雨	0.00	1.00	1.00	0.50	0.50	1.00	0.67
新疆北部	模拟正确率		0.60	0.82	0.81	0.81	0.83	0.84	0.80
	TS评分	小雨	0.73	0.56	0.53	0.55	0.57	0.55	0.61
		中雨	1.00	0.20	0.17	0.33	0.20	0.20	0.25
		大雨							
	漏报率	小雨	0.05	0.37	0.40	0.40	0.37	0.38	0.23
		中雨	0.00	0.80	0.80	0.60	0.80	0.80	0.60
		大雨							
	空报率	小雨	0.23	0.16	0.17	0.15	0.16	0.16	0.26
		中雨	0.00	0.00	0.50	0.33	0.00	0.00	0.60
		大雨							
新疆南部			0.42	0.83	0.84	0.83	0.85	0.84	0.69
491300113114	TS评分	小雨	0.46	0.05	0.22	0.19	0.00	0.23	0.05
	101113	中雨	0.10	0.20	0.22	0.17	0.20	0.20	0.27
		大雨							
	漏招索	人雨	0.26	0.70	0.74	0.78	0.74	0.72	0.44
		山雨	0.20	0.70	0.74	0.76	0.74	0.72	0.44
		一一兩							
	穴坦來	八兩	0.45	0.40	0.42	0.45	0.54	0.44	0.66
	工业中	小雨	0.45	0.40	0.43	0.43	0.34	0.44	0.00
		中国							
호디 그프 수 수요	·····································	人的	0.40	0.00	0.00	0.00	0.01	0.00	0.05
新疆东部	楔拟止 佣率	.1 ==	0.48	0.90	0.88	0.89	0.91	0.90	0.85
	18评分	小雨	0.23	0.25	0.24	0.27	0.23	0.24	0.23
		中雨	1.00	0.00	0.00	0.00	0.00	0.00	0.00
		大雨	0.00	0.55	0 ==	0.77	o ==	0 ==	o = 0
	漏报举	小雨	0.28	0.72	0.72	0.67	0.72	0.72	0.50
		中雨	0.00	1.00	1.00	1.00	1.00	1.00	1.00
		大雨							
	空报率	小雨	0.75	0.29	0.38	0.40	0.44	0.38	0.71
		中雨	0.00						
		大雨							

表 5 2007 年新疆不同区域日降水量模拟检验结果

近观测,降水偏差为-1.01 mm;在裸地模式模拟 昼夜降水均较观测偏少2.12~8.25 mm,采用不同 边界层方案模式模拟昼夜降水差异明显,且模拟夜 间降水较观测的偏差大于白昼,夜间降水平均偏差 约-7.12 mm,采用 GBM 方案模拟昼夜降水更接近 观测,昼夜降水偏差分别为-2.12 mm 和-4.99 mm。

图 3 天山不同下垫面类型的 2007 年 7 月日降水随时间演变: (a) 草地; (b) 裸地

Fig. 3 Time series of daily precipitation in Jul 2007 of the different types of underlying surfaces in the Tianshan area: (a) Grassland; (b) bare land

表 6 天山不同下垫面类型 2007 年 7 月 5 天 (9 日、14 日、 16 日、17 日、28 日)平均昼夜降水量

Table 65-day (9 Jul, 14 Jul, 16 Jul, 17 Jul, and 28 Jul2007) average day and night precipitation of the differenttypes of underlying surfaces in the Tianshan areamm

	草原陶	峰水量	裸地网	洚水 量
	夜间	白昼	夜间	白昼
观测	3.82	5.18	9.78	9.66
ITPCAS数据	4.42	6.58	9.77	10.32
YSU	1.28	2.58	3.11	6.08
MYNN	1.35	4.17	1.75	4.76
ACM	1.60	3.04	2.21	5.58
BL	1.25	3.73	1.53	5.66
BP	1.33	3.03	2.58	3.35
GBM	2.00	3.75	4.79	7.54

对于边界层高度(表 7)来说:草原和裸地的 边界层高度昼夜变化显著,且裸地的边界层高度较 草原略偏低,FNL资料的裸地昼夜边界层高度分别为535.59m和351.36m,草原昼夜边界层高度分别为663.27m和408.64m。模式模拟的边界层高度与FNL资料对比发现:在不同下垫面类型上模式除采用BP和GBM方案模拟昼夜边界层高度较FNL偏低外,均较FNL偏高在9.59~427.09m。其中采用BL和ACM方案模式模拟昼夜边界层高度差异最为显著,可能与ACM方案考虑局地切变过程有关;草原地区采用YSU方案综合来看,模拟昼夜边界层高度较接近FNL资料,昼夜偏差分别为83.40m和9.59m;在裸地采用BP方案综合来看模拟昼夜边界层高度较接近FNL资料,昼夜偏差分别为16.82m和-61.44m。

对于 10 m 高度风速(表 7)来说:草原和裸地的昼夜近地面风速差异不大,FNL 资料的夜间 裸地区域风速略大于草原,风速分别为 2.84 m/s 和 2.63 m/s; 白昼草原风速略大于裸地,风速

Fig. 4 Taylor diagram of the daily precipitation in Jul 2007 of the different types of underlying surfaces in the Tianshan area

表 7 天山不同下垫面类型的 7月 5天平均昼夜边界层高 度、10 m 高度风速

Table 7As in Table 5, but for boundary layer height andwind speed at 10-m height

		边界层高度/m		10 m风	速/m s ⁻¹
		夜间	白昼	夜间	白昼
天山草原	FNL数据	408.64	663.27	2.63	2.68
	YSU	418.23	746.67	2.03	2.24
	MYNN	677.42	1003.66	2.29	2.21
	ACM	428.76	900.61	2.22	2.21
	BL	464.61	922.49	2.38	1.97
	BP	230.15	578.65	2.16	2.17
	GBM	181.57	426.81	2.12	2.50
天山裸地	FNL数据	351.36	535.59	2.84	2.51
	YSU	409.33	722.27	2.82	2.75
	MYNN	702.28	962.68	2.72	3.39
	ACM	464.60	879.66	3.00	2.91
	BL	463.50	883.29	2.76	3.40
	BP	289.92	518.77	2.73	2.74
	GBM	181.63	343.18	3.47	4.08

分别为 2.68 m/s 和 2.51 m/s。在草原模式模拟昼夜 低层风速均较 FNL 资料偏小,偏差在-0.71~-0.18 m/s;在裸地模式模拟昼夜风速普遍较 FNL 资料偏 大,且白昼期间方案之间差异明显,偏差在 -0.12~1.57 m/s,其中采用 GBM 方案模拟裸地昼 夜风速较其他方案偏大从而加强对流活动导致降水 表 8 天山不同下垫面类型的 7 月 5 天平均昼夜感热及潜热 通量

Table 8	As in Table 5, but for sensible heat and latent heat
flux	W/m ²

		感热	通量	潜热	通量
	-	夜间	白昼	夜间	白昼
天山草原	YSU	9.07	99.84	23.76	61.65
	MYNN	7.31	97.60	22.30	59.81
	ACM	5.92	88.06	21.90	61.22
	BL	10.56	103.08	22.97	61.41
	BP	10.90	105.02	22.88	58.92
	GBM	7.27	76.57	36.91	97.07
天山裸地	YSU	8.15	98.97	7.27	22.65
	MYNN	6.34	109.02	7.78	27.42
	ACM	9.63	103.41	6.68	20.98
	BL	10.90	108.46	5.97	23.34
	BP	10.21	103.40	7.69	24.60
	GBM	6.14	65.25	23.69	58.97

偏多,昼夜风速分别为4.08 m/s 和 3.47 m/s。

对于感热及潜热通量(表 8)来说:模式模拟 草原和裸地的白昼感热通量明显较夜间偏大,均为 正值,加热大气,且不同边界层方案之间差异明 显;草原和裸地的昼夜感热通量差异不大,昼夜平 均分别为 97 W/m² 和 9 W/m²,其中采用 GBM 方 案模拟昼夜感热通量均较其他方案偏小。模式模拟 草原和裸地的潜热通量同样白昼高于夜间,且草原 昼夜潜热通量明显较裸地偏大,其中除了采用 GBM 方案外其余方案模拟昼夜潜热通量差异均很 小;采用 GBM 方案模拟昼夜潜热通量较其余方案 偏大,说明由于水汽相变向大气传输的热量较大, 在草原昼夜分别为 97.07 W/m² 和 36.91 W/m²,在 裸地昼夜分别为 58.97 W/m² 和 23.69 W/m²。

4.2 天山地区不同下垫面类型的昼夜位温、相对 湿度和垂直速度廓线

图 5 为 7 月 5 天平均昼夜位温的垂直廓线:采 用不同边界层方案模拟草原和裸地的昼夜位温随高 度的变化基本一致,白昼位温高于夜间,昼夜位温 在 200~400 m 为不稳定层结,其余高度均为稳定 层结,1400 m 以上层结趋于中性;采用不同方案 模拟低层白昼位温的差异较夜间明显,其中采用 BL 方案模拟昼夜位温整体较其余方案偏高,采用 GBM 方案则明显较其余边界层方案偏低。对比不 同下垫面类型发现裸地昼夜位温在 1000~2000 m

图 5 天山不同下垫面类型的 2007 年 7 月 5 天平均昼(左列)夜(右列)位温的垂直廓线: (a、b)草地; (c、d)裸地 Fig. 5 Vertical profiles of the 5-d average day (left panel) and night (right panel) potential temperature in Jul 2007 of the different types of underlying surfaces in the Tianshan area: (a, b) Grassland; (c, d) bare land

较草原偏高,中性层结较偏向稳定,200~400 m 的不稳定层结较草原区域偏向稳定;采用 GBM 方案模拟裸地昼夜位温在 400~600 m 近乎中性层 结(混合层)。

对于相对湿度(图 6)来说:采用不同边界层 方案模拟草原和裸地的昼夜相对湿度均较 FNL 资 料偏小且昼夜偏差基本一致,其中低层偏差最大约 -46%;随着高度增加模式与 FNL 的偏差减小,在 600 hPa 处最小在-10% 以内,600 hPa 以上相对湿度偏差随高度增大,在300 hPa 偏差达到-20% 左右;采用 GBM 方案模拟相对湿度在中低层较其他方案偏大 20% 以内,在 300 hPa 则较其他方案偏小 15% 以内。对比不同下垫面类型发现在裸地除采用 GBM 方案外模式模拟夜间相对湿度的偏差整体较草原略偏大,其中在 700 hPa 二者差异约 10%; 白昼裸地相对湿度的偏差在 700 hPa 以下较

图 6 (a-d) 天山不同下垫面类型的 2007 年 7 月 5 天平均(a、c) 昼(b、d) 夜相对湿度偏差的垂直廓线:(a、b) 草地;(c、d) 裸 地。(e-h) 同(a-d), 但为垂直速度

Fig. 6 Vertical profiles of the 5-d average (a, c) day and (b, d) night deviations of (a-d) relative humidity in Jul 2007 of the different types of underlying surfaces in the Tianshan area: (a, b) Grassland; (c, d) bare land. (e-h) same as (a-d), but for vertical speed

草原略偏大,在400 hPa则较草原明显偏小约5%。 对于垂直速度(图6)来说:采用不同边界层 方案模式模拟草原和裸地的昼夜垂直速度在 850 hPa 以下较为一致,在 850 hPa 以上则差异明显。在草原 850 hPa 以下模式模拟白昼垂直速度较 FNL 偏小,夜间则较 FNL 偏大,昼夜偏差在±0.02 m/s

以内;在 600 hPa 以上采用 GBM 方案模拟垂直速 度较 FNL 偏大在 0.06 m/s 以内。在裸地 700 hPa 以下,模式模拟夜间垂直速度较 FNL 偏大在 0.02 m/s 以内,而模式模拟白昼垂直速度除在 800 hPa 明显 较 FNL 偏大约 0.03 m/s 外,与 FNL 基本一致;在 600 hPa 采用 GBM 方案模拟昼夜垂直速度较其他 方案偏小 0.05 m/s 以内。

5 结论

本文主要考察 WRF 模式中不同行星边界层参数化方案对新疆降水模拟的影响。通过以上分析和 比较可以得出以下结论:

(1) 采用不同行星边界层参数化方案的模式 都能较好地模拟新疆年、雨季总降水量的空间分布 及月降水的季节循环,且在不同区域模拟年、雨季 总降水与观测的偏差分别在-67.62%~66.35%和 -83.06%~15.84%,其中采用 Grenier-Bretherton-McCaa (GBM)方案模拟新疆不同区域雨季降水 与观测的偏差最小在-29.22%~15.84%。

(2) 对天山地区来说,采用 Bougeault-Lacarrere (BouLac)方案模拟年降水更接近观测, 降水偏差为-19.13%,且模拟逐月降水与观测的均 方根误差最小为14.26 mm,同时模拟小雨的TS评 分最高为0.73;采用 GBM 方案模拟中雨和大雨的 TS评分最高分别为0.37和0.33。对于天山不同下 垫面类型来说,模式模拟7月5天平均昼夜降水均 较观测偏少,且夜间偏差大于白昼;GBM 方案模 拟草原和裸地的昼夜降水更接近观测,降水偏差 在5 mm 以内。

(3)总体来看,BouLac 方案对天山年降水时 空分布特征的模拟效果较好,BouLac 方案感热通 量较大,湍流运动带来较高的混合效应,导致降水 较其他方案偏多;GBM 方案更适合模拟新疆雨季 期间降水,GBM 方案模拟低层湿度较大,大的潜 热通量使水汽相变向大气传输更多热量;且模拟边 界层高度最低,感热通量最小说明由湍流运动从地 面加热大气较小,水汽无法上升到更高层,因此高 层湿度偏低,使更多水汽停留在近地面,导致降水 较其他方案偏多。

致谢 感谢审稿人对本文提出的宝贵建议和意见。同时, 此研究中使用的部分降水数据是由中国科学院青藏高原研 究所青藏高原多圈层数据同化与模拟中心开发的,在此一 并感谢。

参考文献(References)

- Bougeault P, Lacarrere P. 1989. Parameterization of orography-induced turbulence in a meso-beta scale model [J]. Mon. Wea. Rev., 117(8): 1872–1890. doi:10.1175/1520-0493(1989)117<1872:POOITI>2.0. CO;2
- Bretherton C S, Park S. 2009. A new moist turbulence parameterization in the community atmosphere model [J]. J. Climate, 22(12): 3422-2448. doi:10.1175/2008JCLI2556.1
- 陈静, 薛纪善, 颜宏. 2003. 物理过程参数化方案对中尺度暴雨数值 模拟影响的研究 [J]. 气象学报, 61(2): 203-218. Chen Jing, Xue Jishan, Yan Hong. 2003. The impact of physics parameterization schemes on mesoscale heavy rainfall simulation [J]. Acta Meteor. Sinica, 61(2): 203-218. doi:10.11676/qxxb2003.019
- 陈炯, 王建捷. 2006. 边界层参数化方案对降水预报的影响 [J]. 应用 气象学报, 17(S1): 11-17. Chen Jiong, Wang Jianjie. 2006. Mesoscale precipitation simulation sensitivity to PBL parameterization [J]. Journal of Applied Meteorological Science, 17(S1): 11-17. doi:10.3969/j.issn.1001-7313.2006.z1.002
- 杜娟, 于晓晶, 辛渝, 等. 2016. 乌鲁木齐区域数值预报业务系统降水 预报检验与评估分析 [J]. 沙漠与绿洲气象, 10(6): 31-40. Du Juan, Yu Xiaojing, Xin Yu, et al. 2016. Evaluation and analysis of precipitation predictability of desert oasis Gobi regional assimilation and forecast system [J]. Desert and Oasis Meteorology, 10(6): 31-40. doi:10.3969/j.issn.1002-0799.2016.06.005
- García-Díez M, Fernández J, Fita L, et al. 2013. Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe [J]. Quart. J. Roy. Meteor. Soc., 139(671): 501–514. doi:10.1002/ qj.1976
- Grenier H, Bretherton C S. 2001. A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers [J]. Mon. Wea. Rev., 129(3): 357–377. doi:10.1175/1520-0493(2001)129<0357:AMPPFL>2.0.CO;2
- 何杰,阳坤.2011.中国区域高时空分辨率地面气象要素驱动数据集 [Z].中国科学院寒区旱区科学数据中心. He Jie, Yang Kun. 2011. China Meteorological Forcing Dataset (in Chinese) [Z]. Cold and Arid Regions Science Data Center at Lanzhou. doi: 10.3972/westdc.002.2014.db
- Holt T, Raman S. 1988. A review and comparative evaluation of multilevel boundary layer parameterizations for first-order and turbulent kinetic energy closure schemes [J]. Rev. Geophys., 26(4): 761–780. doi:10.1029/RG026i004p00761
- Hong S Y, Pan H L. 1996. Nonlocal boundary layer vertical diffusion in a medium-range forecast model [J]. Mon. Wea. Rev., 124(10): 2322–2339. doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0. CO;2
- Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes [J]. Mon. Wea. Rev., 134(9): 2318–2341. doi:10.1175/MWR3199.1

- Hu X M, Nielsen-Gammon J W, Zhang F Q. 2010. Evaluation of three planetary boundary layer schemes in the WRF model [J]. J. Appl. Meteor. Climatol., 49(9): 1831–1844. doi:10.1175/2010JAMC 2432.1
- 霍文,秦贺,杨莲梅. 2010. 新疆 T213 数值预报降水评价 [J]. 沙漠与 绿洲气象, 4(3): 12-16. Huo Wen, Qin He, Yang Lianmei. 2010.
 Analysis and verification of T213 rainfall forecast in Xinjiang [J].
 Desert and Oasis Meteorology, 4(3): 12-16. doi:10.3969/j.issn.1002-0799.2010.03.003
- 李斐, 邹捍, 周立波, 等. 2017. WRF 模式中边界层参数化方案在藏东 南复杂下垫面适用性研究 [J]. 高原气象, 36(2): 340-357. Li Fei, Zou Han, Zhou Libo, et al. 2017. Study of boundary layer parameterization schemes' applicability of WRF model over complex underlying surfaces in southeast Tibet [J]. Plateau Meteorology, 36(2): 340-357. doi:10.7522/j.issn.1000-0534.2016.00084
- 马严枝, 陆昌根, 高守亭. 2012. 8.19 华北暴雨模拟中微物理方案的 对比试验 [J]. 大气科学, 36(4): 836-850. Ma Yanzhi, Lu Changgen, Gao Shouting. 2012. The effects of different microphysical schemes in WRF on a heavy rainfall in North China during 18-19 August 2010 [J]. Chinese Journal of Atmospheric Sciences, 36(4): 836-850. doi:10.3878/j.issn.1006-9895.2011.11159
- Nakanishi M, Niino H. 2006. An improved Mellor-Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog [J]. Bound. -Layer Meteor., 119(2): 397–407. doi:10.1007/s10546-005-9030-8
- New M, Hulme M, Jones P. 2000. Representing twentieth-century space-time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate [J]. J. Climate, 13(13): 2217–2238. doi:10.1175/1520-0442(2000)013<2217:RTCSTC>2.0. CO;2
- Pleim J E. 2007. A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing [J].
 J. Appl. Meteor. Climatol., 46(9): 1383–1395. doi:10.1175/JAM 2539.1
- 邱贵强, 李华, 张宇, 等. 2013. 高寒草原地区边界层参数化方案的适 用性评估 [J]. 高原气象, 32(1): 46-55. Qiu Guiqiang, Li Hua, Zhang Yu, et al. 2013. Applicability research of planetary boundary layer parameterization scheme in WRF model over the alpine grassland area [J]. Plateau Meteorology, 32(1): 46-55. doi:10.7522/ j.issn.1000-0534.2012.00006

- 王颖,张镭,胡菊,等. 2010. WRF 模式对山谷城市边界层模拟能力的 检验及地面气象特征分析 [J]. 高原气象, 29(6): 1397-1407. Wang Ying, Zhang Lei, Hu Ju, et al. 2010. Verification of WRF simulation capacity on PBL characteristic and analysis of surface meteorological characteristic over complex terrain [J]. Plateau Meteorology, 29(6): 1397-1407.
- 王子谦, 段安民, 吴国雄. 2014. 边界层参数化方案及海气耦合对 WRF 模拟东亚夏季风的影响 [J]. 中国科学: 地球科学, 57(7): 1480-1493. Wang Ziqian, Duan Anmin, Wu Guoxiong. 2014. Impacts of boundary layer parameterization schemes and air-sea coupling on WRF simulation of the East Asian summer monsoon [J]. Science China Earth Sciences, 57(7): 1480-1493. doi:10.1007/ s11430-013-4801-4
- Wisse J S P, De Arellano J V G. 2004. Analysis of the role of the planetary boundary layer schemes during a severe convective storm [J]. Annales Geophysicae, 22(6): 1861–1874. doi:10.5194/angeo-22-1861-2004
- 肖开提·多莱特. 2005. 新疆降水量级标准的划分 [J]. 新疆气象, 28(3): 7-8. Xiaokaiti Duolaite. 2005. Formulation of precipitation intensity standard of Xinjiang [J]. Bimonthly of Xinjiang Meteorology, 28(3): 7-8. doi:10.3969/j.issn.1002-0799.2005.03.003
- 徐慧燕,朱业,刘瑞,等. 2013. 长江下游地区不同边界层参数化方案 的试验研究 [J]. 大气科学, 37(1): 149–159. Xu Huiyan, Zhu Ye, Liu Rui, et al. 2013. Simulation experiments with different planetary boundary layer schemes in the lower reaches of the Yangtze River [J]. Chinese Journal of Atmospheric Sciences, 37(1): 149–159. doi:10.3878/j.issn.1006-9895.2012.12021
- 赵世强, 张镭, 王治厅, 等. 2012. 利用激光雷达结合数值模式估算兰 州远郊榆中地区夏季边界层高度 [J]. 气候与环境研究, 17(5): 523-531. Zhao Shiqiang, Zhang Lei, Wang Zhiting, et al. 2012. Boundary layer height estimate in summer over the Lanzhou suburb in the Yuzhong area using Lidar measurement and numerical model [J]. Climatic and Environmental Research, 17(5): 523-531. doi:10.3878/j.issn.1006-9585.2011.10170
- 周心河, 熊喆. 2019. 区域气候模式不同积云对流参数化方案对新疆 气候模拟的影响研究 [J]. 气候与环境研究, 24(2): 169-185.
- Zhou Xinhe, Xiong Zhe. 2019. Impacts of different cumulus convective parameterization schemes on regional climate model simulation over Xinjiang [J]. Climatic and Environmental Research, 24(2): 169–185. doi:10.3878/j.issn.1006-9585.2018.18075