doi:  10.3878/j.issn.1006-9585.2019.18110
利用人工神经网络模型预测西北太平洋热带气旋生成频数

Prediction of Frequency of Tropical Cyclones Forming over the Western North Pacific Using An Artificial Neural Network Model
摘要点击 428  全文点击 432  投稿时间:2018-08-11  
查看HTML全文   下载PDF   查看/发表评论  下载PDF阅读器
基金:  国家自然科学基金项目 41775063、41475074,国家重点研发计划项目2017YFC1501901
中文关键词:  人工神经网络  热带气旋  西北太平洋  频数
英文关键词:  Artificial neural network  Tropical cyclone  Western North Pacific  Frequency
     
作者中文名作者英文名单位
海滢成都信息工程大学大气科学学院,成都 610225; 中国科学院大气物理研究所季风系统研究中心,北京 100029
陈光华中国科学院大气物理研究所季风系统研究中心,北京 100029
引用:海滢,陈光华.2019.利用人工神经网络模型预测西北太平洋热带气旋生成频数[J].气候与环境研究,24(3):324-332,doi:10.3878/j.issn.1006-9585.2019.18110.
Citation:.2019.Prediction of Frequency of Tropical Cyclones Forming over the Western North Pacific Using An Artificial Neural Network Model[J].Climatic and Environmental Research(in Chinese),24(3):324-332,doi:10.3878/j.issn.1006-9585.2019.18110.
中文摘要:
      通过对60年(1950~2009年)北半球夏、秋季(6~10月)热带气旋(TC)频数与春季(3~5月)大尺度环境变量的相关分析,挑选出8个相关性较高的前期预报因子建立人工神经网络(ANN)模型,对2010~2017年8年夏、秋季TC频数进行回报,并将回报结果与传统多元线性回归(MLR)方法所得结果进行对比分析。结果表明,ANN模型对60年历史数据的拟合精度高,相关系数高达0.99,平均绝对误差低至0.77。在8年回报中,ANN模型相关系数为0.80,平均绝对误差为1.97;而MLR模型相关系数仅为0.46,平均绝对误差为3.30。ANN模型在历史数据拟合和回报中的表现都明显优于MLR模型,未来可考虑应用于实际的业务预测中。
Abstract:
      In this study, artificial neural network (ANN) model and the multiple linear regression (MLR) model are used to predict the numbers of tropical cyclones (TCs) forming over the western North Pacific from June to October. The correlations between the frequency of TCs and the large-scale environmental variables during boreal spring (March-May) were analyzed for a period of approximately six decades 1950-2009; subsequently eight highly correlated predictors were selected to predict the TC frequency from 2010 to 2017. A comparison between ANN and MLR models shows that ANN model exhibits better performance as compared to MLR model. Specifically, the correlation coefficient (R) reached 0.99 and the mean absolute error (MAE) was 0.77 during the historical data simulation. During the prediction period, R values of ANN and MLR models were 0.80 and 0.46, respectively. MAE values of ANN and MLR models were1.97 and 3.30, respectively, which further confirms that ANN model significantly outperforms MLR model in both simulation and prediction and has potential for application in operational forecast.
主办单位:中国科学院大气物理研究所/中国气象学会 单位地址:北京市9804信箱
联系电话: 010-82995048,010-82995413传真:010-82995048 邮编:100029 Email:qhhj@mail.iap.ac.cn
本系统由北京勤云科技发展有限公司设计
京ICP备09060247号