双月刊

ISSN 1006-9585

CN 11-3693/P

+高级检索 English
基于多重网格策略的NLS-3DVar资料融合方法及其在气温数据融合中的应用
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

公益性行业(气象)科研专项重大项目GYHY201506002,国家重点研发计划项目2016YFA0600203


NLS-3DVar Data Fusion Method Based on Multigrid Implementation Strategy and Its Application in Temperature Data Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    将多重网格策略引入NLS-3DVar(Non-linear Least Squares-based on Three-dimensional Variational DataAssimilation,非线性最小二乘三维变分同化)方法,进而应用于2400 多个国家级气象观测站逐时气温数据和NCEP再分析气温数据的融合,得到中国区域空间分辨率1°×1°,时间分辨率为6 小时的气温融合产品。分别从单重网格(分辨率1°×1°)和双重网格(分辨率由2°×2°到1°×1°)利用2014 年1~12 月(4、5 月除外)的独立检验数据考察NLS-3DVar 气温融合产品质量,验证基于多重网格策略的NLS-3DVar 方法的优越性。在单重网格下,与广泛应用于气象行业的Cressman 插值产品(均方根误差和相关系数的年平均值分别为1.961℃ d-1 和0.924)相比,NLS-3DVar 产品全年始终具有最小的均方根误差和最大的相关系数,年平均值分别为1.915℃ d-1 和0.929;站点间误差分析进一步表明,NLS-3DVar 产品在大多数检验站点精度更高,在新疆、甘肃、云南、陕西等地区尤为突出;加入双重网格策略的NLS-3DVar 产品与单重网格的NLS-3DVar 产品误差对比显示,均方根误差年平均值分别为1.649℃ d-1 和1.711℃ d-1,相关系数年平均值分别为0.970 和0.968,二者在均方根误差和相关系数的表现上都极为相似,即双重网格NLS-3DVar 气温产品尽管对观测数据采取了稀疏化处理,但依旧维持了原有的产品精度,并且在计算效率上提高了1 倍多。而与同样在双重网格下基于多尺度的STMAS(Space-Time MultiscaleAnalysis System)算法相比,双重网格的NLS-3DVar 产品在产品精度上同样占据优势,在计算效率上单位时次耗时与STMAS 算法几乎相当。

    Abstract:

    In this study, the authors first incorporate the multigrid implementation strategy into the non-linear least squares-based three-dimensional variational data assimilation system (NLS-3DVar), which is applied for temperature data fusion. A merged temperature dataset at 1° resolution and 6-hour interval is produced based on in situ observations at 2400 observational sites over China and NCEP (National Centers for Environmental Prediction) final global tropospheric analyses. Another set of independent validation data (from January to December except April and May in 2014) is used to evaluate the merged dataset. The dataset of NLS-3DVar is compared with the gridded data at 1° resolution produced by the widely used Cressman interpolation method. NLS-3DVar product always has lower RMSE (Root Mean Square Errors) of 1.961℃ d-1 and higher correlation coefficient of 0.924 compared to the dataset produced by Cressman interpolation. The precision of merged temperature product of NLS-3DVar is higher in most stations and independent of validation data, especially at those stations in Xinjiang, Gansu, Yunnan, Shanxi, and so on. The performances of NLS-3DVar based on both the single grid and multigrid strategies are also compared. Both RMSE and correlation coefficient have little differences. Although multigrid-based NLS-3DVar uses the sparse process, the precision is almost the same as that of single-grid based NLS-3DVar. However, its computational costs are greatly reduced due to the sparse process. Compared with the STMAS algorithm (Space-Time Multiscale Analysis System), multigrid-based NLS-3DVar performs better regarding the precision of product with almost the same computational efficiency.

    参考文献
    相似文献
    引证文献
引用本文

张璐,田向军,刘宣飞,师春香.2017.基于多重网格策略的NLS-3DVar资料融合方法及其在气温数据融合中的应用[J].气候与环境研究,22(3):271-288. ZHANG Lu, TIAN Xiangjun, LIU Xuanfei, SHI Chunxiang.2017. NLS-3DVar Data Fusion Method Based on Multigrid Implementation Strategy and Its Application in Temperature Data Fusion[J]. Climatic and Environmental Research (in Chinese],22(3):271-288.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-07-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-05-26
  • 出版日期: