封秋娟, 李义宇, 李培仁, 等. 2012. 山西云微物理特征的地面观测 [J]. 气候与环境研究, 17 (6): 727-739, doi: 10.3878/j.issn.1006-9585.2012.06.10. Feng Qiujuan, Li Yiyu, Li Peiren, et al. 2012. Ground observation of microphysical properties in Shanxi Province [J]. Climatic and Environmental Research (in Chinese), 17 (6): 727-739.

山西云微物理特征的地面观测

封秋娟 李义宇 李培仁 申东东 晋立军 杨俊梅 孙鸿娉

山西省人工降雨防雹办公室,太原030032

摘 要 利用连续气流纵向热梯度云凝结核仪和激光降水粒子谱测量仪对山西地面的云凝结核和雨滴谱进行了观测研究。研究结果表明,云凝结核(CCN)数浓度具有明显的日变化特征,1天出现了两次峰值,数浓度日变化与 气象因子、人类活动有关。降水对CCN具有冲刷作用。利用关系式N_{CCN}=CS⁶ 拟合得到的地面CCN活化谱参数C 值明显较大,k 值较高,属于典型的大陆型核谱。对层状云、层积云降水雨滴微物理特征参量分析发现:3次层状 云、层积云降水雨滴数密度变化范围分别为74~229 m⁻³、305~743 m⁻³,平均含水量量级分别为10⁻² g/m³、10⁻¹ g/m³,最大雨滴直径分别为1.78 mm、4.7 mm。对层状云降水雨滴的数密度和雨强贡献较大的分别是小于1 mm、 0.2~2 mm的雨滴;对层积云降水雨滴的数密度和雨强贡献较大的分别是 0.2~2 mm、1~3 mm的雨滴。层积云出 现稳定谱的比例高于层状云。从瞬时谱型分布看,层状云出现单、双、三峰多,第四、五峰值的频率比较少,层 积云雨滴谱分布没有出现指数型,常有多峰。从平均谱分布看,层状云谱宽窄于层积云,层状云雨滴平均谱服从 指数分布,层积云曲线呈向下弯曲的趋势。对汾阳 2008 年 7 月 17 日一次积层混合云降水雨滴谱资料分析发现积 层混合云降水雨滴微物理量起伏大,降水雨强主要由雨滴数密度决定。相同雨强下,若有相对更多的大雨滴,雷 达反射率会更大一些。随着强回波云块的过境,雨滴数浓度、雨滴谱峰值个数、谱宽均明显增大。 关键词 山西 云凝结核 雨滴谱 文章编号 1006-9585 (2012) 06-0727-13 中图分类号 P426.6 文献标识码 A

文章编号 1006-9585 (2012) 06-0727-13 doi:10.3878/j.issn.1006-9585.2012.06.10

Ground Observation of Microphysical Properties in Shanxi Province

FENG Qiujuan, LI Yiyu, LI Peiren, SHEN Dongdong, JIN Lijun, YANG Junmei, and SUN Hongping

Weather Modification Office of Shanxi Province, Taiyuan 030032

Abstract Using a DMT(Droplet Measurement Technologies) continuous flow streamwise thermal gradient cloud condensation nuclei(CCN) counter and the precipitation particle spectrometer, ground measurements of CCN and raindrop size distribution in Shanxi were conducted. According to the observation, affected by meteorological factors and human activities, the CCN concentration variations had a distinctive diurnal cycle with two apparent peaks. Precipitation had an scavenging effect on CCN particles. According to the expression $N_{\rm CCN}=CS^k$, the CCN spectra can be derived. The fitting spectra parameters *C* (more than 2000) and *k* (less than 1) show the continental characteristic of CCN in Taiyuan. Microstructure parameters for stratiform and stratocumulus cloud precipitation were analyzed. It was found that the number concentrations of raindrop were 74–229 m⁻³ and 305–743 m⁻³, the average of liquid water magnitudes were 10^{-2} g/m³ and 10^{-1} g/m³ and the maximum raindrop diameters were 1.78 mm and 4.7 mm of three stratiform and stratocumulus cloud

收稿日期 2012-08-28 收到, 2012-09-29 收到修定稿

资助项目 山西省基础研究计划(青年科学研究基金)2011021034,中国气象局云雾物理环境重点开放实验室开放科研课题 2009002,公益性行业(气象)科研专项 GYHY201206025,中国气象局业务项目云水资源评估 1220200108

作者简介 封秋娟,女,1982年出生,硕士,工程师,主要从事云物理降水与人工影响天气方面研究。E-mail: fqj119818@163.com

precipitation, respectively. Less than 1 mm and 0.2–2 mm raindrops made a bigger contribution to the number concentration and rainfall intensity of stratiform cloud precipitation. 0.2–2 mm and 1–3 mm raindrops made a bigger contribution to the number concentration and rainfall intensity of stratocumulus cloud precipitation. Stable spectra appeared in stratiform cloud were more than that of stratocumulus cloud. From the instantaneous spectrum distribution, most of stratiform raindrop size distribution had single, double, and three peaks and less stratiform raindrop size distribution had four and five peaks. Stratocumulus raindrop size distribution exhibited the multi-peak distribution mainly and no exponential distribution. From the average spectrum distribution, spectral width of stratiform cloud was narrower than that of stratocumulus cloud. Stratiform raindrop size distribution showed the exponential distribution. Stratocumulus raindrop size distribution displayed downward trend. The characteristics of raindrop spectra of convective–stratiform mixed cloud precipitation in Fenyang on 17 July 2008 were analyzed. The fluctuation of microphysical parameters was strong. The rainfall intensity was largely determined by the number concentration of raindrops. Under the same rainfall intensity, if there were more big size raindrops, radar reflectivity was even more. Through the strong echo, the number concentration, number of peaks, and spectral width were increased.

Keywords Shanxi Province, Cloud condensation nuclei, Raindrop size distribution

1 引言

凝结核的存在是大气中发生凝结现象的一个 必要条件,而对于大气中过冷却水滴的冻结来说成冰 核则起着很重要的作用。因此,凝结核和成冰核的研 究与成云、降雨等物理问题有密切关系。Squires (1993) 指出高浓度的云凝结核 (CCN) 可以抑制碰 并降水过程的发生,而冷云过程也会受到 CCN 的影 响。Snider and Brenguier (2000) 在西班牙无污染和 中度污染的地区上空进行 CCN、气溶胶和云滴的观 测; Hitzenberger et al. (2000) 在欧洲阿尔卑斯山利 用 CCN 仪研究了 CCN 的分布规律。Heymsfield and McFarquhar (2001)、Yum and Hudson (2002) 的研 究也表明,海洋性云中含有较多的可降水粒子,而 在污染的情况下降水粒子较少。云凝结核不仅对云 和降水有重要作用,而且通过影响云的微结构进而 影响辐射特性,最终对气候产生影响(刘毅等, 1999; 王明星和张仁健, 2001; 杨慧玲等, 2011)。 我国从 20 世纪 80 年代开展对 CCN 观测研究, 樊 曙先和安夏兰(2000)利用 MEE-130 型云凝结核 计数器在贺兰山地区进行地面和空中云凝结核观 测。黄庚等(2002)分析了黄河上游玛曲-河南县 凝结核的谱型,浓度随饱和度、天气状况及一些气 象要素变化的关系。石立新和段英(2007)、赵永 欣等(2010)利用美国 DMT (Droplet Measurement Technologies) 公司的 CCN 计数器分别对我国华 北、西北地区空中和地面的 CCN 进行了观测研究。 为了研究山西 CCN 分布及对云和降水影响, 2008 年9月至2009年4月利用DMT公司生产的连续气 流单过饱和度云凝结核计数器(DMT-CCN 仪)在 太原进行 CCN 地面观测,本文是对观测资料的分 析。

降水是云微物理过程、云动力学过程以及影响 降水形成和发展诸因素综合作用的结果。由于云中 微观资料的获取,受探测仪器及其它因素的制约, 而利用地面自动雨滴谱仪观测雨滴谱简单易行,本 文就是利用这种地面观测资料进行统计分析的。目 前,国内外对雨滴谱特征参量的研究都取得了一些 成果。宫福久等(1997)利用 GBPP-100 型地面雨 滴谱仪观测并分析了沈阳夏季积云、层状云和积层 混合云降水云系雨滴谱的谱型、微结构参量及其短 时变化特征。樊玲等(2001a, 2001b)利用 GBPP-100 型地面雨滴谱仪资料分析了哈尔滨地区春夏季 层云、积云降水的雨滴谱分布特征。周毓荃等 (2001)利用唐河站 17 次降水资料分析了河南省 干旱年的地面雨滴谱特征。牛生杰等(2005)利用 1982~1984年在7个气象站200次观测获取的6053 份雨滴谱资料,分析了宁夏雨滴谱及有关物理量的 特征。石爱丽等(2004)采用滤纸色斑法对 2002 年10月17~20日河南省层状云降水过程在6个观 测点进行雨滴谱取样,分析了层状云降水的特点。 张云峰等(2001)采用美国 GBPP-100 型地面雨滴 谱仪对 1999 年 5~7 月哈尔滨地区几次降水过程进 行了观测。李娟等(2009)通过对玛曲地区雨滴谱 的分析,推测出玛曲当地的雨滴尺度普遍比较大。 林文和牛生杰(2009)利用 1982 年 7 月在宁夏银 川机场地面4次观测获取滴谱资料,分析了宁夏夏 季层状云降水雨滴谱特征。张昊等(2011)对庐山 地区不同海拔高度的降水微物理参量进行比较分

析,探讨了降水微物理特征在垂直高度上的差异。 2008年山西在3个气象站分别布设德国OTT公司 生产的 Parsivel 激光降水粒子谱仪开展对雨滴谱观 测工作,本文选取3次层状云和3次层积云降水雨 滴谱资料,对雨滴微物理参量进行比较分析,并对 2008年7月17日一次积层混合云降水的云滴谱特 征进行了分析。

2 仪器和观测

2.1 CCN 观测仪器及方法

采用 DMT-CCN 仪进行地面观测。DMT-CCN 仪的设计是基于 Greg Robert 的海洋学理论研制,核 心部分是一个高 50 cm、内径 2.3 cm 的圆柱形连续 气流纵向热梯度云室,云室上、中、下部分分别安 装了热敏元件以精确测量温度,通过上、中、下部 的3组热电制热器分别控制上、中、下部温度,使 云室温度上低下高,形成一定的温度梯度。云室内 壁维持一定量的水流以保持湿润。由于从云室内壁 向云室内部的水汽扩散比热扩散快,环境气溶胶从 顶部垂直进入仪器,当它穿过仪器圆柱状部分时由 于水蒸气气流逐渐变得过饱和,样本气溶胶处于圆 柱中心线区域最大过饱和度位置。环境空气进入仪 器后被分为采样气流和鞘气两部分,经过过滤和加 湿,没有气溶胶粒子的鞘流环绕在采样气流周围进 入云室,可以把采样粒子限制在云室垂直中心线区 域。采样粒子在设定的过饱和度下活化增长,活化 后的粒子进入云室下的光学粒子计数器腔体记录 尺度和数目,滤去样本附近潮湿的空气。CCN 仪在 飞机和地面均可使用,主要参数见表1。CCN 仪的 量程是 0.75~10 μm, 分 20 档, 测量出每档粒子个 数和每秒数浓度。过饱和度 S 设置的范围为 0.1%~ 2.0%, 过饱和度可以设置单一的进行连续测量, 也 可以设置最多5个不同的过饱和度进行连续循环观 测。

表1 DMT-CCN 仪主要技术参数 Table 1 Main parameters for DMT-CCN Counter

0.1%~2.0%	500 cm ³ /min	10:1	1 Hz	$0.75{\sim}10\mu m$	20
范围	流率	气流率比例	频率	尺度	数量
过饱和度	云室总气	最佳鞘气采样	采样	测量粒子	通道
	•				

2008年9月至2009年4月,使用DMT的CCN 仪对太原地面的CCN分布特征进行了固定点观测。

在地面观测时把采样气口固定在山西省人工降雨防雹办公室四层楼顶部的平台上,距地高度约 16 m,周围环境空旷,北邻工业生产区,东南主要是 企事业单位和部分居民生活区,西面紧靠着公路。 采用 S 循环测量(S 为 0.2%、0.4%、0.6%、0.8%和 1%)的方式,一个循环观测定义为一组,每组观测 所用的时间为 25 min。

2.2 雨滴谱资料的收集

雨滴谱观测使用的是德国 OTT 公司生产的 Parsivel 激光降水粒子谱测量仪,该仪器是用以激 光测量为基础的光学传感器,通过测量降水中所有 液体和固体粒子对激光强度的衰减程度和通过时 间来计算降水粒子的尺度和速度。激光降水粒子谱 仪测量的数据共有 32 个尺度测量通道和 32 个速度 测量通道,测量粒子尺度范围为 0.2~25 mm,落 速范围为 0.2~20 m/s,雨滴谱仪取样间隔设定为 1 min。表 2 列出各站观测情况。

表2 雨滴谱观测样本概况

Table 2	Survey	01 ra	marop spectrum data	
	降雨	观测		
日期	类型	站点	观测时段(北京时间,下同)	样本数
20080419至0420	层状云	汾阳	19日19:50至20日02:00	371
2009-05-14	层状云	汾阳	02:07-06:13	247
		祁县	02:19-06:32	254
		太谷	02:06-06:34	269
2009-05-28	层状云	汾阳	05:01-10:00	254
		太谷	04:53-11:00	368
2009-07-08	层积云	汾阳	08:48-12:13	206
		祁县	09:43-11:49	127
		太谷	09:43-12:00	138
2009-07-17	层积云	汾阳	05:56-08:15	91
		太谷	07:08-09:18	131
2009-09-06	层积云	汾阳	06:08-08:19	132
		祁县	08:20-10:35	135

3 太原市地面 CCN 特征

3.1 CCN 的变化范围

通过对 2008 年 9 月至 2009 年 4 月太原地面 CCN 数浓度(见表 3) 观测资料分析发现,同一过 饱和度下 CCN 的数浓度差异很大,CCN 数浓度在 *S* 为 0.2%、0.4%、0.6%、0.8%和 1%下的平均值分 别为 2688 cm⁻³、10848 cm⁻³、16151 cm⁻³、20198 cm⁻³ 和 23093 cm⁻³,最大值分别为 9999 cm⁻³、23954 cm⁻³、 36238 cm⁻³、45847 cm⁻³和 54849 cm⁻³。CCN 数浓 度最大值、平均值均随过饱和度的增加而增大。与 河北 CCN 观测数值进行对比,均明显高于 2005 年 石家庄夏季地面 CCN 数浓度,这可能与太原严重 的污染状况有关。

表 3 太原地面 CCN 在不同过饱和度下的浓度值

Table 3 Surface CCN concentration at different super-saturation in Taiyuan

S	平均值 (cm ⁻³)	最大值 (cm ⁻³)
0.2%	2688	9999
0.4%	10848	23954
0.6%	16151	36238
0.8%	20198	45847
1.0%	23093	54849

3.2 CCN 日变化特征分析

CCN 数浓度具有明显的日变化特征,且不同过 饱和度下浓度变化趋势相同。图 1 选取 2008 年 11 月 19 日, S 为 0.2%、0.4%、0.6%、0.8%、1.0%时观 测资料进行分析。从图 1 可以看出,CCN 在不同过 饱和度下,数浓度日变化趋势一致。CCN 数浓度一 天中出现了两次峰值,从 04:00 开始上升,09:00 左 右达到极值。09:00 至 15:00 一直呈下降趋势,15:00 以后浓度开始上升,20:00 左右第二次达到峰值后又 开始呈现下降趋势。过饱和度越大,峰值变化越明显。

结合湿度、风速分析 CCN 日变化特征,从图 2 可看出,清晨人类生产与生活活动开始,相对湿度

较高,地面湍流活动较弱,有利于气溶胶粒子的积 聚,核的浓度达到极大。中午前后太阳辐射强,向 上的垂直输送作用加强,风速最大,近地面气溶胶 粒子向高空传输引起 CCN 数浓度的降低。傍晚对 流活动减弱向上的垂直输送也减弱,核的浓度再次 增大。分析 2008 年 12 月 17 日 08:00 和 20:00 探空 资料,发现存在低空逆温且逆温接地,逆温层限制 了大气中的气溶胶粒子向高空传输,造成云凝结核 浓度相对较多。

3.3 降水对 CCN 的影响

降水对地面 CCN 具有冲刷作用。从图 3 可以看 到,2008 年 10 月 20 日太原 11:00、13:00、15:00 至 18:00、20:00 分别有降水,降水初期 CCN 数浓度很 高,随着降雨量的逐渐增大,CCN 数浓度随之减少, 小时降水量与 CCN 粒子数浓度呈反相关,小时降水 量越大 CCN 数浓度越小,降水对地面 CCN 具有清 除作用;降水结束后,CCN 的数浓度略有上升。

3.4 活化谱

利用 $N_{CCN}=CS^{*}$ 对太原地面 CCN 活化谱进行拟 合,其中 C、k 为系数。Hobbs et al. (1985) 根据 C、 k 值把核谱分为大陆型 ($C \ge 2200 \text{ cm}^{-3}$, k < 1)、过 渡型 (1000 cm⁻³ < $C < 2200 \text{ cm}^{-3}$, k > 1)和海洋型 ($C < 1000 \text{ cm}^{-3}$, k < 1)3种。表 4 给出了太原地 面 CCN 的拟合特征参数,从表中可以看出,太 原地区 $C > 2200 \text{ cm}^{-3}$, k < 1,属于典型的大陆型核 谱。

图2 2008年12月17日太原地面 CCN 数浓度、湿度、风速的日变化

图3 2008年10月20日太原地面 CCN 数浓度与逐小时降水量随时间的变化

Fig.3 Temporal evolution of near surface CCN number concentration and hourly precipitation in Taiyuan on 20 Oct 2008

表4 太原地面 CCN 特征参数

Table 4 Characteristic parameters for surface CCN in Taiyuan

	天气		不同的	时的最小洋	农度(cm ⁻	3)		不同。	时的最大洋	农度(cm	3)		
日期	状况	0.2%	0.4%	0.6%	0.8%	1.0%	0.2%	0.4%	0.6%	0.8%	1.0%	$C(cm^{-3})$	k
2008-11-03	晴	852	5096	6686	8556	10849	3808	13271	19765	28539	29455	20594	0.88
2008-11-05	烟雾	846	8897	13302	14865	16718	5164	21642	36710	42872	57894	32413	0.91
2008-10-20	小雨	2721	7009	9967	12353	13348	5145	12575	17907	22902	26731	20542	0.82
2009-02-03	轻雾	1231	4118	5386	6284	6595	3349	11229	15205	17274	20695	12742	0.78

4 雨滴谱分析

4.1 微物理特征参量平均值

表5给出了层状云、层积云降水微物理特征参

量平均值分布,其中 N、I 分别为空间数密度及雨 强, Q 为平均含水量, D₁、D₂、D₃、D_{max} 分别为雨 滴平均直径、均方根直径、均立方根直径、最大直 径。层状云降水 N、I、Q 和各类特征直径明显小于 层积云。3 次层状云降水最大雨滴数密度为 229 m⁻³,

最小雨滴数密度为 74 m⁻³,平均含水量量级 10⁻² g/m³,雨滴平均直径、均方根直径、均立方根直径 均小于 1 mm,雨滴最大直径为 1.78 mm。3 次层积 云降水雨滴平均数密度变化范围为 305~743 m⁻³, 平均含水量量级为 10⁻¹ g/m³,雨滴平均直径、均方 根直径、均立方根直径在 1 mm 左右,最大雨滴直 径为 4.7 mm。

4.2 各档雨滴所占比例及其对雨强的贡献

表 6 计算了各档雨滴所占比例以及它们对总数 密度和总雨强的贡献,其中小于 1 mm、1~2 mm、2~ 3 mm、大于 3 mm 的雨滴数密度为 N_{<1mm}、 N_{1-2mm}、 N_{2-3mm}、 N_{>3mm} 及小于 1 mm、1~2 mm、2~3 mm、 大于 3 mm 的雨强为 I_{<1mm}、 I_{1-2mm}、 I_{2-3mm}、 I_{>3mm}。 由表 6 可见,对层状云降水雨强贡献较大的是 0.2~ 2 mm 的雨滴,雨滴的数密度主要是大量小于 1 mm 的小雨滴造成的;对层积云降水强度贡献较大的是 1~3 mm的雨滴,大于3 mm雨滴对雨强贡献与小 于1 mm雨滴对雨强贡献接近,这与哈尔滨地区观 测类似(樊玲等,2001a,2001b)。

4.3 雨滴稳定谱与非稳定谱分布

对雨滴谱取 1 min 平均,根据谱分布形状随时间的变化,将雨滴谱分为稳定谱和非稳定谱。其中稳定谱是指在一段时间内雨滴谱的分布形式没有发生突出的变化,同时一个明显的特征是雨滴谱的最大值变化不是非常明显,没有超过一个量级以上,而且谱的形状以及谱宽基本保持不变(如图4a)。而非稳定谱是指在一段时间内雨滴谱的分布形状变化差异大,雨滴谱的最大值差异明显(如图4b)。从雨滴谱的谱分布形状随时间的变化可以看出,稳定雨滴谱的谱形状随时间变化明显比非稳定

Tabla	5 1	Miore	estructure perameters for stratiform and strategumulus gloud provinitation
表5	层状	云、	层积云降水雨滴谱观测的微物理特征参量分布

						参量			
日期	降水类型	观测地点	<i>N</i> (m ⁻³)	<i>I</i> (mm/h)	$Q(g/m^3)$	$D_1(mm)$	$D_2(mm)$	$D_3(mm)$	$D_{\max}(mm)$
2008-04-19至04-20	层状云	汾阳	135	0.38	0.026	0.63	0.68	0.72	1.46
2009-05-14	层状云	汾阳	85	0.38	0.023	0.72	0.77	0.82	1.61
		祁县	229	0.44	0.028	0.59	0.64	0.69	1.54
		太谷	224	0.62	0.038	0.59	0.65	0.71	1.78
2009-05-28	层状云	汾阳	143	0.52	0.032	0.65	0.69	0.73	1.49
		太谷	74	0.30	0.018	0.67	0.72	0.78	1.62
2009-07-08	层积云	汾阳	464	4.44	0.238	0.89	0.98	1.05	2.52
		祁县	556	11.2	0.506	1.01	1.14	1.26	3.44
		太谷	467	10.3	0.494	1.10	1.23	1.35	3.42
2009-07-17	层积云	汾阳	551	14.2	0.618	1.10	1.24	1.38	3.93
		太谷	305	6.27	0.287	1.07	1.20	1.32	3.51
2009-09-06	层积云	汾阳	743	6.98	0.359	0.86	0.96	1.05	2.89
		祁县	470	6.81	0.337	0.98	1.08	1.17	4.70

表6 各档雨滴对数密度和雨强的贡献

Table 6	Contributions to number	density and	rainfall intensity	v of raindrop	s in different	diameter ranges

日期	降水类型	观测地点	$N_{<1\mathrm{mm}}/N$	N_{1-2mm}/N	$N_{2-3\rm{mm}}/N$	$N_{>3mm}/N$	$I_{<1\rm mm}/I$	I_{1-2mm}/I	$I_{2-3\mathrm{mm}}/I$	$I_{>3mm}/I$
20080419至0420	层状云	汾阳	91.7%	8.2%	0.1%	0.0%	47.3%	50.3%	2.4%	0.0%
2009-05-14	层状云	汾阳	87.4%	12.3%	0.2%	0.1%	36.5%	56.0%	6.7%	0.8%
		祁县	95.6%	4.2%	0.2%	0.0%	51.4%	43.9%	4.7%	0.0%
		太谷	93.3%	6.2%	0.3%	0.2%	31.7%	49.1%	17.6%	1.6%
2009-05-28	层状云	汾阳	90.9%	8.8%	0.2%	0.1%	37.5%	48.7%	12.7%	1.1%
		太谷	89.3%	10.4%	0.2%	0.1%	42.0%	50.3%	7.2%	0.5%
2009-07-08	层积云	汾阳	73.5%	25.4%	1.0%	0.1%	20.3%	61.3%	17.3%	1.1%
		祁县	63.8%	32.2%	3.7%	0.3%	9.7%	44.7%	35.4%	11.2%
		太谷	59.7%	35.1%	4.9%	0.3%	6.5%	44.8%	38.5%	10.2%
2009-07-17	层积云	汾阳	61.0%	33.2%	5.2%	0.6%	5.6%	37.8%	37.5%	19.1%
		太谷	60.6%	37.1%	2.2%	0.1%	8.0%	47.6%	35.4%	9.0%
2009-09-06	层积云	汾阳	78.3%	20.3%	1.3%	0.1%	16.0%	52.6%	25.4%	6.0%
		祁县	63.4%	34.7%	1.8%	0.1%	13.5%	60.5%	21.7%	4.3%

图4 2009年5月14日 (a) 祁县稳定雨滴谱和 (b) 汾阳非稳定雨滴谱

Fig. 4 (a) Stable raindrop size distribution at Qixian and (b) non-stable raindrop size distribution at Fenyang on 14 May 2009

谱的小。表 7 列出了不同过程的层状云、层积云降 水云的总雨滴谱个数、稳定谱个数以及稳定谱的百 分比。由于层状云降水时间长,所以选择的总雨滴 谱数目较层积云多,但从稳定谱数目所占总的雨滴 谱数目上来看,层积云出现稳定谱的比例高于层状 云,层积云中出现稳定谱的比例基本在 50%附近, 而层状云的低于 50%。

4.4 雨滴谱瞬时谱型分布

按谱型特征分布将雨滴谱瞬时谱型分为指数 型、单峰型、多峰型(典型的雨滴谱分布见图 5)。 多峰型按照峰值的数目分为双峰、三峰、四峰、五 峰雨滴谱,统计这几种谱型的雨滴谱占总雨滴谱的 比例。在分析中所选定的瞬时谱都是连续谱。表 8

表7 稳定雨滴谱数目及稳定谱百分比

	Table 7	Number and	l ratio of stable	raindrop s	ize distribution
--	---------	------------	-------------------	------------	------------------

Table /	i tumber and ratio of	stabit	a null op siz	a uisu ibuuon
降水云系	降水日期	站点	稳定谱数目	稳定谱百分比
层状云	2008-04-19至04-20	汾阳	126	34.0%
	2009-05-14	汾阳	91	37.8%
		祁县	96	37.8%
		太谷	89	33.2%
	2009-05-28	汾阳	109	42.9%
		太谷	90	24.5%
层积云	2009-07-08	汾阳	103	50.0%
		祁县	50	56.2%
		太谷	66	47.8%
	2009-07-17	汾阳	44	48.6%
		太谷	52	40.0%
	2009-09-06	汾阳	65	52.8%
		祁县	60	44.4%

图5 3类典型雨滴谱分布:(a)指数型;(b)单峰型;(c)多峰型

Fig. 5 Three typical raindrop size distributions: (a) Exponential distribution; (b) single-peak distribution; (c) multi-peak distribution

表8 雨滴谱中各谱型出现比例

Table 8 The percentage of three typical raindrop size distribution

		8	V 1					
降水日期	降水云系/样本数	站点	指数谱	单峰谱	双峰谱	三峰谱	四峰谱	五峰谱
2008-04-19 至 04-20	层状云/371	汾阳	13.2%	24.5%	32.4%	21.2%	8.6%	0.1%
2009-05-14	层状云/243	汾阳	3.3%	17.3%	38.7%	26.3%	12.3%	2.1%
	/246	祁县	13.4%	9.3%	50.4%	19.5%	6.9%	0.5%
	/267	太谷	10.9%	8.2%	44.6%	25.1%	10.1%	1.1%
2009-05-28	层状云/254	汾阳	16.7%	25.4%	37.2%	15.5%	5.1%	0.1%
	/366	太谷	3.3%	13.9%	36.8%	29.8%	12.8%	3.4%
2009-07-08	层积云/204	汾阳	0	27.5%	42.2%	21.1%	9.2%	0.0%
	/97	祁县	0	24.1%	43.7%	21.8%	9.2%	1.2%
	/138	太谷	0	8.7%	35.5%	39.9%	11.6%	4.3%
2009-07-17	层积云/91	汾阳	0	5.5%	38.5%	38.5%	16.5%	1.0%
	/131	太谷	0	5.4%	29.0%	40.5%	18.3%	6.8%
2009-09-06	层积云/123	汾阳	0	25.4%	46.5%	22.3%	5.8%	0
	/135	祁县	0	23.0%	49.6%	19.3%	7.4%	0.7%

列出了3次层状云、3次层积云降水过程中各谱型 出现的频率数。对于两种不同类型的降水云系,由 表8可以看出层状云雨滴谱出现单个、双峰、三个 峰值的频率比较高,第四、五峰值的频率比较少。 层积云降水,雨滴谱分布没有出现指数型,以多峰 型为主。

4.5 平均雨滴谱分布

由图 6 可以看出,层状云降水雨滴谱分布比较 窄,最大雨滴直径分别为 2.75 mm、3.25 mm,层积 云降水谱较宽,最大雨滴直径分别为 4.25 mm、4.75 mm、6.5 mm。从谱型来看,层状云谱基本服从指 数分布。层积云降水不仅大水滴多,小于1 mm 的 小水滴也很多,曲线呈向下弯曲的趋势,一部分特 大雨滴落地,大部分在下落途中破碎,从而造成特 大滴的增多,也会使特小雨滴大量增多。

5 积层混合云降水雨滴谱特征的个 例分析

5.1 降水云系的宏观特征

受高空 500 hPa 及 700 hPa 河套低槽影响,山 西省产生了一次大范围的降水过程。由雷达回波图 7b 可以看出,整个云系结构是不均匀的,在大面积 的层状云回波中镶嵌有对流泡,强度达 30 dBZ 或 其以上,降水范围大,降水持续时间长。7 月 17 日 00:00 至 23:00,除大同外山西其他地方普降小到中 雨,全省降水量为 2.0~55.1 mm。汾阳从 04:23 开 始降水, 18:03 降水结束, 12:00、14:00、15:00 雨

量较大,分别为1.3 mm/h、1.6 mm/h和2.2 mm/h, 其余时段雨量都小于1 mm/h。利用德国OTT公司 生产的 Parsivel 激光降水粒子谱仪对汾阳进行了取 样,数据采集间隔为1 min,共获取820 份雨滴谱 资料。

5.2 微物理参量的演变特征

从雨强(图 8a)随时间演变可看出,降水峰区 有几个,这反映积层混合云由多个强降水中心组 成,每个强降水中心持续时间从几十分钟到数小时 不等,其中平均数浓度、雨强起伏变化大且变化一 致,它们的峰值、谷值位置基本相同,而雨滴平均 直径小于 1.5 mm 且变化不大,这说明本次降水雨 强的大小主要由雨滴数密度决定。

5.3 雨强相同的两个时刻雨滴谱对比分析

图 9a 是雨强同为 2.03 mm/h 时 12:08 和 14:03 两个时刻的雨滴谱分布。从图 9a 中可看出,12:08 雨滴谱型呈双峰分布,14:03 雨滴谱呈单峰分布,两时刻雨滴谱谱宽基本相同,最大直径都为 3.3 mm。在直径 *D*<1.6 mm 范围内 14:03 时刻的雨滴数浓度比较大,并且 14:03 时刻的峰值浓度要大于12:08 时刻,在 *D*>1.6 mm 范围内 12:08 时刻雨滴数浓度比较大。因为雷达反射率因子和雨强分别与粒子直径的六次方和三次方成正比,也就是说,在相同雨强下,若有相对更多的大雨滴,雷达反射率

会更大一些,因此 12:08 时刻的回波强度应该大于 14:03 时刻,从图 9b 降水过程中汾阳雷达强度随时 间变化看 12:08 时刻的回波强度大于 14:03 时刻, 与上面的分析结果是一致的。

5.4 强回波云块过境雨滴谱对比分析

06:10 回波强度大于 35 dBZ 的云块位于汾阳西 边(如图 10a 所示),06:22 回波强度大于 35 dBZ 的云块位于汾阳上空(如图 10b 所示),06:30 回波 强度大于 35 dBZ 的云块位于汾阳东边(图 10c), 强回波移过汾阳,但此刻汾阳的回波强度要大于 06:10 时。从图 10d 中对比这 3 个时刻的雨滴谱可 以看出,06:10 时刻的雨滴谱出现了两个峰值,06:22 时刻的雨滴谱出现了 3 个峰值,而 06:30 时刻的雨 滴谱只有一个峰值;06:10、06:30 两个时刻雨滴谱 都比较窄,最大雨滴直径都在 1 mm 左右,06:22 时雨滴谱较宽,最大直径接近 2.7 mm,数浓度明显 大于 06:10、06:30。由此可以看出,随着强回波云 块的过境,数浓度、峰值个数、雨滴谱谱宽都明显 增大。

6 结论

本文利用美国 DMT 公司生产的 CCN 仪和德国 OTT 公司生产的 Parsivel 激光降水粒子谱仪分别对

图7 2008年7月17日(a) 08:00 500 hPa 高空图、(b) 11:36太原站雷达平面回波显示图(PPI)(仰角1.5°) Fig. 7 (a) 500-hPa weather system at 0800 LST and (b) Doppler radar (Plane Position Indicator) at Taiyuan station at 1136 LST under 1.5° angle on 17 Jul 2008

山西地面 CCN 和雨滴谱特征进行了研究。主要结论如下:

(1) 同一过饱和度下 CCN 的数浓度差异很大, CCN 数浓度的最大值、平均值均随过饱和度的增加 而增大。太原 CCN 数浓度明显高于 2005 年石家庄 夏季地面 CCN 数浓度。CCN 数浓度具有明显的日 变化特征,且一天中出现了两次峰值,分别为 09:00 和 20:00 左右,过饱和度越大,峰值变化越明显。降水对地面 CCN 具有冲刷作用。根据关系式 $N_{CCN} = CS^k$ 拟合得到的地面 CCN 活化谱参数,由于污染物 较多,太原地区 $C \ge 2200$ cm⁻³, k < 1, C、k 值很高,属于典型的大陆型核谱。

(2)对 3 次层状云、层积云降水雨滴谱资料 观测发现:层状云降水微物理特征参量平均值明

图8 2008年7月17日积层混合云降水雨滴(a)雨强、(b)平均直径、(c)平均数浓度随时间变化

图9 2008年7月17日(a) 12:08、14:03两时刻雨强相同时雨滴谱分布和(b) 汾阳雷达回波强度随时间变化 Fig. 9 (a) Raindrop size distribution at 1208 LST and 1403 LST when rainfall intensity are the same and (b) the variation of radar reflectivity in Fenyang on 17 Jul 2008

显小于层积云,层状云、层积云降水雨滴数密度 变化范围分别为 74~229 m⁻³、305~743 m⁻³,平 均含水量量级分别为 10⁻² g/m³、10⁻¹ g/m³,最大 雨滴直径分别为 1.78 mm、4.7 mm。对层状云降 水贡献较大的是 0.2~2 mm 的雨滴,雨滴的数密 度大主要是有大量小于 1 mm 的小雨滴造成的;对 层积云降水强度贡献较大的是 1~3 mm 的雨滴, 大于 3 mm 雨滴对雨强贡献与小于 1 mm 雨滴对雨 强贡献接近。层积云出现稳定谱的比例高于层状 云。从瞬时谱型分布看,层状云出现单、双、三 峰多,第四、五峰值的频率比较少,层积云雨滴 谱分布没有出现指数型,常有多峰。从雨滴谱平 均谱分布看,层状云平均雨滴谱分布比较窄,层 积云谱较宽,层状云服从指数分布,层积云曲线 呈向下弯曲的趋势。

(3) 对汾阳 2008 年 7 月 17 日一次积层混合云

图10 2008年7月17日 (a) 06:10、(b) 06:22、(c) 06:30太原站雷达 PPI 回波图 (仰角1.5°) 和 (d) 强回波过境前后3个时刻的雨滴谱分布 Fig. 10 Doppler radar PPI at Taiyuan station (1.5° elevation angle) at (a) 0610 LST, (b) 0622 LST, and (c) 0630 LST and (d) raindrop size distribution through the strong echo on 17 Jul 2008

降水雨滴谱资料分析发现:本次积层混合云降水由 几个强降水中心组成,雨滴微物理量起伏大,降水 雨强主要由雨滴数密度决定。相同雨强下,若有相 对更多的大雨滴,雷达反射率会更大一些。随着强 回波云块的过境,雨滴数浓度、雨滴谱峰值个数、 谱宽均明显增大。

参考文献(References)

樊玲, 袁成, 张云峰. 2001a. 哈尔滨地区层状云降水微物理特征 [J]. 气象, 27 (12): 42–46. Fan Ling, Yuan Cheng, Zhang Yunfeng. 2001a. Microphysical features of stratiform precipitation in Harbin [J]. Meteorological Monthly (in Chinese), 27 (12): 42–46.

- 樊玲,张新玲,张云峰,等. 2001b. 哈尔滨地区积雨云降水微结构特征 [J]. 气象科学, 21 (4): 399–408. Fan Ling, Zhang Xinling, Zhang Yunfeng, et al. 2001b. Microphysical features of cumulonimbus precipitation in Harbin [J]. Scientia Meteorologica Sinica (in Chinese), 21 (4): 399–408.
- 樊曙先, 安夏兰. 2000. 贺兰山地区云凝结核浓度的观测及分析 [J]. 中 国沙漠, 20 (3): 338–340. Fan Shuxian, An Xialan. 2000. Measurement and analysis of the concentration of cloud condensation nuclei in MT. Helanshan area [J]. Journal of Desert Research (in Chinese), 20 (3): 338– 340.
- 宫福久, 李子华, 刘吉成. 1997. 三类降水云雨滴谱特征研究 [J]. 大气 科学, 21 (5): 607–614. Gong Fujiu, Li Zihua, Liu Jicheng. 1997. Study of the raindrop size distribution for three types of precipitation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 21 (5): 607–614.
- Heymsfield A J, McFarquhar G M. 2001. Microphysics of NDOEX clean and polluted trade cumulus clouds [J]. J. Geophys. Res., 106 (D22):

- Hitzenberger R, Giebl H, Berner A, et al. 2000. Measurements of CCN-concentrations in the European alpine aerosol using a newly developed static thermal diffusion counter [J]. AIP Conference Proceedings, 534 (1): 861–864.
- Hobbs P V, Bowdle D A, Radke L F. 1985. Particles in the lower troposphere over the high plains of the united states, Part 2: Cloud condensation nuclei and deliquescent particles [J]. J. Climate Appl. Meteor., 42: 1358–1369.
- 黄庚, 李淑日, 德力格尔, 等. 2002. 黄河上游云凝结核观测研究 [J]. 气象, 28 (10): 45–49. Huang Geng, Li Shuri, De Ligeer, et al. 2002. Observational analysis of content of condensation nuclei in the atmosphere in the upper reaches of Huanghe River [J]. Meteorological Monthly (in Chinese), 28 (10): 45–49.
- 李娟, 游来光, 胡志晋, 等. 2009. 黄河上游玛曲地区雨滴谱特征的观测 研究 [J]. 高原气象, 25 (5): 942–949. Li Juan, You Laiguang, Hu Zhijin, et al. 2009. Analysis on raindrop size distribution characteristics of Maqu region in upper reach of Yellow River [J]. Plateau Meteorology (in Chinese), 25 (5): 942–949.
- 林文, 牛生杰. 2009. 宁夏盛夏层状云降水雨滴谱特征分析 [J]. 气象科 学, 29 (1): 97–101. Lin Wen, Niu Shengjie. 2009. Characteristics of the surface raindrop size distribution of summer stratiform precipitation in Ningxia province [J]. Scientia Meteorologica Sinica (in Chinese), 29 (1): 97–101.
- 刘毅, 王明星, 张仁健. 1999. 中国气溶胶研究进展 [J]. 气候与环境研 究, 4 (4): 406–414. Liu Yi, Wang Mingxing, Zhang Renjian. 1999. Research progress on aerosol in China [J]. Climatic and Environmental Research (in Chinese), 4 (4): 406–414.
- 牛生杰, 安夏兰, 桑建人. 2005. 不同天气系统宁夏夏季降雨谱分布参 量特征的观测研究 [J]. 高原气象, 21 (1): 37–44. Niu Shengjie, An Xialan, San Jianren. 2005. Observational research on physical feature of summer raindrop size distribution under synoptic systems in Ningxia [J]. Plateau Meteorology (in Chinese), 21 (1): 37–44.
- Squires P. 1993. Cloud condensation nuclei [J]. J. Appl. Meteor., 32: 596–607.
- Snider J R, Brenguier J L. 2000. Cloud condensation nuclei and cloud droplet measurements during ACE-2 [J]. Tellus, 52 (2): 828–842.
- 石爱丽,郑国光,黄庚,等. 2004. 2002年秋季河南省层状云降水的雨滴

谱特征 [J]. 气象, 30 (8): 12–17. Shi Aili, Zheng Guoguang, Huang Geng, et al. 2004. Characteristics of raindrop spectra of stratiform cloud precipitation in autumn 2002 in Henan Province [J]. Meteorological Monthly (in Chinese), 30 (8): 12–17.

- 石立新, 段英. 2007. 华北地区云凝结核的观测研究 [J]. 气象学报, 65 (4): 644–652. Shi Lixin, Duan Ying. 2007. Observations of cloud condensation nuclei in North China [J]. Acta Meteorologica Sinica (in Chinese), 65 (4): 644–652.
- 王明星, 张仁健. 2001. 大气气溶胶研究的前沿问题 [J]. 气候与环境研 究, 6 (1): 119–124. Wang Mingxing, Zhang Renjian. 2001. Research on the atmospheric aerosol [J]. Climatic and Environmental Research (in Chinese), 6 (1): 119–124.
- 杨慧玲,肖辉,洪延超. 2011. 气溶胶对云宏微观特性和降水影响的研究进展 [J]. 气候与环境研究, 16 (4): 525–542. Yang Huiling, Xiao Hui, Hong Yanchao. 2011. Progress in impacts of aerosol on cloud properties and precipitation [J]. Climatic and Environmental Research (in Chinese), 16 (4): 525–542.
- Yum S S, Hudson J G. 2002. Maritime/Continental microphysical contrasts in stratus [J]. Tellus B, 54 (1): 61–73.
- 赵永欣, 牛生杰, 吕晶晶, 等. 2010. 2007年夏季我国西北地区云凝结核 的观测研究 [J]. 高原气象, 29 (4): 1043–1049. Zhao Yongxin, Niu Shengjie, Lü Jingjing, et al. 2010. Observational analyses on cloud condensation nuclei in Northwestern China in summer of 2007 [J]. Plateau Meteorology (in Chinese), 29 (4): 1043–1049.
- 张云峰,黄建平,朱彬. 2001. 哈尔滨地区雨滴直径分布函数 [J]. 南京 气象学院学报, 24 (4): 505–512. Zhang Yunfeng, Huang Jianping, Zhu Bin. 2001. Raindrops spectrum in Harbin [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 4 (4): 505–512.
- 张昊, 濮江平, 李靖, 等. 2011. 庐山地区不同海拔高度降水雨滴谱特征 分析 [J]. 气象与减灾研究, 34 (2): 43–50. Zhang Hao, Pu Jiangping, Li Jing, et al. 2011. Analysis of characteristics of raindrop size distribution at different altitudes in Lushan [J]. Meteorology and Disaster Reduction Research (in Chinese), 34 (2): 43–50.
- 周毓荃, 刘小天, 周非非, 等. 2001. 河南干旱地面雨滴谱特征 [J]. 应 用气象学报, 12 (增刊): 39–47. Zhou Yuquan, Liu Xiaotian, Zhou Feifei, et al. 2001. Characteristics of surface raindrop spectra in drought years in Henan Province [J]. Quarterly Journal of Applied Meteorology (in Chinese), 12 (Suppl.): 39–47.

^{28653-28674.}