曹丽娟, 董文杰, 张勇, 等. 2013. 未来气候变化对黄河流域水文过程的影响 [J]. 气候与环境研究, 18 (6): 746–756, doi:10.3878/j.issn.1006-9585.2013. 12071. Cao Lijuan, Dong Wenjie, Zhang Yong, et al. 2013. Impacts of climate change on hydrological processes over the Yellow River basin [J]. Climatic and Environmental Research (in Chinese), 18 (6): 746–756.

未来气候变化对黄河流域水文过程的影响

曹丽娟1 董文杰2 张勇3 冯锦明4

1国家气象信息中心,北京100081

2 北京师范大学地表过程与资源生态国家重点实验室,北京 100875

3 国家气候中心,北京 100081

4 中国科学院大气物理研究所东亚区域气候一环境重点实验室,北京 100029

摘 要 使用 NASA/NCAR 有限区域大气环流模型 FvGCM 结果驱动高分辨率区域气候模式 RegCM3 (20 km),进行 1961~1990 年当代气候模拟(控制试验)和 2071~2100 年 IPCC A2 排放情景下未来气候模拟(A2 情景模拟试验)。将 RegCM3 径流模拟结果同大尺度汇流模型 LRM [分辨率 0.25°(纬度)×0.25°(经度)]相连接,模拟预 估未来气候变化对我国黄河流域水文过程的影响。结果表明:相对于当代气候,未来黄河流域呈现气温升高、降 水增加(夏季 7~8 月降水减少)和蒸发增大的趋势,且空间分布极不均匀,造成河川径流在 5~10 月减少,加剧 流域夏季的水资源短缺;未来气温升高使得融雪径流增加,可能导致更早和更大的春季径流,使径流过程发生季 节性迁移,引起黄河流域水资源年内分配发生变化。

关键词 气候变化 A2 情景 黄河流域 径流

文章编号1006-9585 (2013) 06-0746-11中图分类号P461文献标识码Adoi:10.3878/j.issn.1006-9585.2013.12071

Impacts of Climate Change on Hydrological Processes over the Yellow River Basin

CAO Lijuan¹, DONG Wenjie², ZHANG Yong³, and FENG Jinming⁴

1 National Meteorological Information Center, Beijing 100081

2 State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875

Abstract To investigate the hydrological processes in the Yellow River basin that may be affected by climate change in the future, the regional climate model (RegCM3) is nested in one-way mode within a NASA/NCAR finite volume element AGCM (FvGCM) to carry out two 30-year simulations (with a resolution of 20 km) for present day (1961–1990) and the future (2071–2100) under the IPCC SRES A2 scenario. In this scenario, runoff outputs are used to drive a large-scale routing model [0.25° (latitude) $\times 0.25^{\circ}$ (longitude)] to project changes in future climate and hydrological processes and extreme hydrological events over the Yellow River basin. The results show that on average the temperature will increase when precipitation is augmented (decreasing in July and August) and evapotranspiration will also increase in the future, with a highly nonuniform spatial distribution over the whole basin in summer. Streamflow will also decrease, especially in

³ National Climate Center, Beijing 100081

⁴ Key Laboratory of Regional Climate–Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029

收稿日期 2012-04-19 收到, 2012-07-03 收到修定稿

资助项目 国家重点基础研究发展计划项目 2010CB950501,国家高技术研究发展计划项目 2010AA012305,国家自然科学基金项目 40805060、 40975048

作者简介 曹丽娟,女,1980年出生,博士,高工,主要从事气候变化影响及资料均一化研究。E-mail: caolj@cma.gov.cn

flood season from May to October, which may aggravate a crisis of water resources shortages throughout the basin. The increased temperature will also augment snow melt runoff, which may lead to more and earlier spring runoff, and ultimately give rise to changes in the seasonal rainfall-runoff processes and the allocation of intra-annual water resources. Keywords Climate change, A2 scenario, Yellow River basin, Streamflow

1 引言

气候变化国家评估报告(《气候变化国家评估 报告》编写委员会,2007)指出:在全球增暖背景 下,近百年来中国年平均地面气温明显增加,升温 幅度约为 0.5~0.8°C,比同期全球平均值略高。20 世纪 80 年代以来,随着全球气候观测系统的不断 完善和高性能计算机的飞速发展, 气候数值模拟得 到了迅猛的发展,并广泛应用于气候变化研究。由 于区域气候模式(RCMs)比全球气候模式(GCMs) 有更高精度的空间分辨率,能够更加细致地描述地 形和海陆分布以及地表植被分布特征,更好地刻画 气候的区域特征,使得区域气候模式的模拟能够更 加接近于观测(Gao et al., 2008; 徐璇等, 2011)。

大部分 RCMs 模拟的是流域的表面径流,而不 是河川径流,因此,有必要利用水文汇流模型把每 个RCMs网格上模拟的径流深转化成流域出口断面 的流量(Lohmann et al., 1998),从而可以用来将 RCMs 模拟的径流结果同观测进行直接对比来评估 RCMs 对径流的模拟能力。假设 RCMs 估计的降水 和其他变量是真实的,对径流的估计可以用来评估 陆面参数化过程的完善性(Liston et al., 1994; Nijssen et al., 1997; Wood et al., 1998)。国外已有许 多工作利用简单汇流机制来预报全球某些主要河 流长期平均径流(Russell and Miller, 1990; Miller et al., 1994; Sausen et al., 1994; Hagemann and Dümenil, 1998; Arora et al., 1999; Ducharne et al., 2003), 这些 研究中,气候模拟的径流被用来驱动汇流模型。目 前利用 RCMs 同大尺度汇流模型连接,进行大尺度 流域的模拟研究相对较少,如 Zhang et al. (2003) 和 Cao et al. (2007) 开展了区域气候模式 RIEMS 及 RegCM3 中径流模拟的检验, Li et al. (2012) 通 过对区域气候模式 PRECIS 降尺度,研究了黄河源 区径流对气候变化的响应。随着计算机水平的提 高,利用区域气候模式进行长期积分试验已成为可 能,因此,利用 RCMs 同大尺度汇流模型连接来计 算和评估未来全球气候变暖引起的河流量变化就 显得尤为重要。

黄河是中国第二大河,流域的河川径流主要由 大气降水补给。由于受大气环流及季风影响,流域 降水量少而蒸发能力很强。流域年径流量的地区分 布不均匀,径流深由流域的南部向北部逐渐递减。黄 河流域由于流域面积大、含沙量高、洪水频发,独特 的下游"悬河"以及有限的水资源而受到科学家 的广泛关注(Fu et al., 2004; 黄荣辉等, 2006; 周德 刚和黄荣辉, 2006; 赵芳芳和徐宗学, 2009)。近年 来,受气候变化和人类活动的影响,特别是20世纪 70 年代以来发生的黄河下游断流现象对黄河中、下 游地区生态环境及工农业生产造成了深远的影响(徐 宗学和张楠, 2006)。大量研究集中于分析观测数据 或者降尺度气候模式变量的变化趋势,并使用大尺度 水文模型(VIC)等研究长期气候变化及其它原因引 起水文变化(郑红星和刘昌明, 2003; Liu and Zheng, 2004; Xia et al., 2004; Xu, 2005; Xu et al., 2007)。根据 黄河流域的水文特征,采用统计降尺度模型将 GCMs 的气候情景模拟结果同水文模型连接预估黄 河流域在未来气候情景下的气候及水文过程的研 究大多重点关注黄河上游或源区流域(郝振纯等, 2006;赵芳芳和徐宗学,2009;唐芳芳等,2012)。

为了将高分辨率的区域模式模拟结果用于黄 河流域的气候水文研究,曹丽娟等(2008)利用区 域气候模式(RegCM3)和大尺度汇流模型(LRM) 连接,研究了中国土地利用/植被覆盖变化对黄河流 域降雨径流过程的影响。在此基础上,本文使用更 高分辨率的区域气候模式(RegCM3)并延长模拟 时段,对未来气候变化在 SRES A2 高排放情景下引 起的黄河流域气候及水文要素的影响进行了数值 模拟和分析。重点分析气候变化引起的黄河流域 年、冬季、夏季平均气温、降水、蒸散发等的变化, 随后将区域气候模式 RegCM3 与大尺度汇流模型 LRM 连接,分析黄河流域水文站月平均径流的变 化,研究气候变化对河川径流的影响。

2 试验设计

全球气候模式的强迫通过边界提供给区域气 候模式,形成区域气候模式大尺度大气结构,区域

气候模式在内部又将产生和发展自己的天气尺度 和中尺度系统。一般来说,全球气候模式和区域气 候模式水平分辨率之间的差距,以 3~5 倍比较合 适,通常不能超过 10 倍。此外全球模式所进行的 气候变化试验,需要保存有每隔6h一次的输出场 才能够驱动区域模式。因此,目前能够用来嵌套20 km 分辨率的区域气候模式进行气候变化试验的选 择并不是很多。本研究应用意大利国际理论物理中 心(ICTP)使用 NASA/NCAR 的全球环流模式 FvGCM 所进行的气候变化试验得到的结果作为区 域气候模式 RegCM3 的大尺度强迫场。FvGCM 的 动力框架采用有限体积元方法,物理过程除云辐射方 案外,其它主要环节和 NCAR CCM3 (Kiehl et al., 1996)相同,如晴空辐射传输方案以 Kiehl 参数化 方案为基础,考虑了温室气体、大气气溶胶和云的 相互作用的影响;边界过程采用非局地的 Holtslag 方案;陆面过程则通过 Bonan (1996)的陆面模型 来描述等。FvGCM 使用了一个新的云方案 McRAS, 它是基于松弛的 Arakawa-Schubert 方案上的一种预 测方法,并耦合更新了的 Chou et al (1999) 云辐射 方案; FvGCM 模式水平分辨率为 1°(纬度)×1.25° (经度),垂直方向分为18层,模拟试验分为两个 时间段,一是从 1961~1990 年,即控制试验阶段 (RF试验); 另一时间段是 21 世纪末 (2071~2100 年),在 IPCC SRES A2 温室气体和气溶胶排放情景 下的试验阶段(A2试验),采用模式两个时段模拟 结果作为区域气候模式 RegCM3 的驱动场。SRES 排放情景于 2000 年提出 (IPCC, 2001), 本研究选 择的 A2 情景是排放情景中区域经济发展引起温室 气体浓度高排放的情景,至 2100 年 CO₂的含量达 到 850×10⁻⁶ (工业革命前约为 280×10⁻⁶, 1990 年 为 355×10⁻⁶, 2005 年为 379×10⁻⁶)。区域气候模 式的中心点取(35°N, 107°E),南北方向的格点数 为 275, 东西方向为 360, 水平分辨率取为 20 km, 范围覆盖包括整个中国大陆及周边地区; 模式垂 直方向分 18 层,顶层高度为 100 hPa;模式中的辐 射过程采用 NCAR CCM3 方案,海表通量参数化方 案使用 Zeng 方案、行星边界层使用 Holtslag 方案、 积云对流参数化方案选择基于 Fritsch and Chappell 闭合假设的 Grell 方案、大尺度降水采用 SUBEX 方 案;模式使用的地形由美国地质勘探局(USGS) 制作的10°(纬度)×10°(经度)地形资料插值得 到。植被覆盖资料在中国区域内使用中国农业科学 院遥感中心提供的实测资料,中国区域外使用 USGS 基于卫星观测反演的全球陆地覆盖特征 (Global Land Cover Characterization, GLCC)数据 库资料;初始场和侧边界值均由全球环流模式 FvGCM 得到,其中侧边界场采用指数松弛边界方

案,每6h输入模式一次。 首先对控制试验结果采用同期(1961~1990年) 气候资料进行分析验证,随后应用 RegCM3 模拟的 控制试验和 A2 情景模拟试验的日地表径流和次表 层径流结果驱动大尺度汇流模型 LRM,研究未来气 候变化对黄河流域河川径流的影响。为与 RegCM3 的分辨率(20 km)相匹配,本研究中使用的 LRM 的水平分辨率为 0.25°(纬度)×0.25°(经度)。LRM 模型来自于美国亚利桑那州大学水文水资源系,模 型假设某一网格中的径流只能从指向临近 8 个网格 的其中一个方向流出,然后流入河流,并汇入下游。 该河网是对自然状态的水流方向的极大概括,认为 网格的产流是点源(即网格中心点),河道则用一维 的线来描述。无论在某一网格还是河道汇流过程中, 模型都是线性的和时不变的。模型用基流分离技术 来表示地面径流和地下径流对时间的不同响应。对 于地面径流的坡面汇流主要采用无因次单位线 方法计算,一旦水流出网格将通过河网进一步汇 流,河道汇流计算采用圣维南方程(曹丽娟,2007; 曹丽娟等, 2008), 将 RegCM3 模拟结果中日平均 地表和次表层径流采用克里金插值方法插值 到 0.25°(纬度) × 0.25°(经度) 网格来驱动 LRM。 汇流模型使用的 0.25°(纬度) ×0.25°(经度)流 向数据是采用中国 1:100 万数字高程模型(Digital Elevation Model, DEM) 高程数据根据 D8 算法 (O'Callaghan and Mark, 1984; 李翀和杨大文, 2004) 提取得到, 该模型已应用于对未来黄河和长 江流域极端径流影响的模拟(曹丽娟等, 2013)。

已有研究结果表明:高分辨率的 RegCM3 (20 km)能够更好地模拟黄河流域的气温局地分布特 征,对气温由南向北、由东向西的递减趋势等细节 也模拟较好,模式模拟的系统性冷偏差误差较小 (曹丽娟,2007)。高分辨率的 RegCM3 (20 km) 对黄河流域降水的模拟更为细致,能够反映较多小 尺度地形对降水产生的影响,模拟值同观测值的偏 差也较小,但高原山区的大值降水中心依然存在。 详细的模式和试验介绍及区域模式对中国地区地 面气温和降水的模拟能力的验证分析等参见文献

749

(曹丽娟,2007;石英和高学杰,2008),本文重 点研究未来气候变化对黄河流域气温、降水、蒸散 发及河川径流等水文过程的影响。

3 SRES A2 情景下未来气候变化对黄 河流域的影响

3.1 黄河流域气温的变化

未来气候变化引起黄河流域年平均气温总体

表现为增温趋势(图 1a),年平均增温幅度在 3~ 3.8 ℃,呈现梯度增温分布,由流域东南向西北增 温幅度逐渐增大,以上游地区的增温最为明显。在 SRES A2 情景下,黄河流域夏季增温幅度大于冬季 增温幅度,夏季最大增温幅度可以超过 5 ℃。夏季, 兰州及以下上游干流沿线主要以干旱区气候为 主,包括沙漠和半沙漠地区,呈现出极大的增温趋 势,表明未来 SRES A2 温室气体和气溶胶排放情景 引起的气候变化将会加剧黄河流域的高温事件,可

图 1 黄河流域在 SRES A2 排放情景下相对于当代气候的(a) 年平均气温、(b) 冬季平均气温、(c) 夏季平均气温变化

Fig. 1 Effects of climate change on (a) annual, (b) winter, and (c) summer mean temperature under A2 scenario in the Yellow River basin

能出现越来越多的酷暑天气。

3.2 黄河流域降水的变化

未来气候变化引起黄河流域年平均降水在流 域大部分地区表现为增加趋势(图 2a),增加的幅 度一般在 5%~10%左右,在流域下游湿润区,降 水增加可以达到 15%。而在以兰州为中心的上游地 区,降水则呈现减少趋势,减少幅度相对较小,在 兰州以东六盘山区为 5%。冬季,黄河流域上中游 地区降水均为增加趋势,增加幅度在大部分地区可 以达到 20%,且在兰州以上的半湿润地区以及兰州 以下西北部的干旱区,降水增加可以达到 40%。流 域下游湿润区降水呈现减少趋势。夏季,黄河流域 降水变化趋势与冬季呈现反向变化,上中游地区降 水以减少为主,而下游地区降水则有增加趋势,但 增加幅度较小,约为 10%。未来 SRES A2 情景下, 冬季降水的增加,并不能抵消夏季降水减少带来的 水资源短缺,由于夏季人畜等需水量远远大于冬 季,夏季降水的减少势必恶化当地的生存环境,带

来一系列生存危机。

3.3 黄河流域蒸散发的变化

蒸散发是水文循环、水量转化中的一个关键环 节,黄河流域由于光照充足,太阳辐射较强,整个 流域湿度较小,蒸发能力很强。年平均蒸散发的变 化以流域中部地区的减少和流域总体蒸散发的增 加为主(图 3a)。蒸散发增加最大的地区位于黄河 源区、祁连山区、河套地区以及流域东南部的湿润 地区。冬季,气候变化引起黄河流域大部分地区蒸 散发量增加,增加最大的地区位于银川盆地、河套地区,以及流域南部秦岭山脉北坡地区,这些地区蒸散发增加幅度均超过40%。夏季,气候变化引起黄河流域蒸散发变化在黄河源区、祁连山区以及下游湿润区呈现增加趋势,增加幅度在10%~20%,其余地区蒸散发变化为减少趋势,在兰州以下干旱区减少幅度最大,超过30%。

751

3.4 黄河流域河川径流的变化

为了验证 RegCM3 同 LRM 连接对黄河流域河

Fig. 3 Same as Fig. 1, but for evapotranspiration

川径流的模拟能力,选取兰州以上资料完整 (1961~1990年),且受人类活动影响相对较小的 4 个水文站:玛曲、唐乃亥、贵德、小川站,对比 了实测值同 30 a 月平均径流量模拟值的年内过程 曲线(图 4)。由图中可以看出,模式对黄河流域径 流的模拟能力较好,模拟值同观测值比较接近,径 流年内分配模拟与观测基本一致,但模拟峰值较观 测峰值提前出现。总体来说,4 站观测值同模拟值 相关系数较高,分别为:0.64、0.67、0.57 和 0.69, 均通过 95%的信度检验。这说明高分辨率的区域气 候模式 RegCM3 (20 km)对于描述黄河流域的径 流水文过程较为合理,由于黄河流域水库调节,也 使得用于验证模式的径流资料存在人为影响的可 能,如采用天然径流量应该能够获得更好的验证效 果。

选取黄河流域花园口以上代表性水文站循 化、兰州、石嘴山、头道拐站,对当代气候(RF) 与未来气候情景(A2)下月平均径流量的年内变化 进行比较(图5)。由图中可以看出,未来A2情景 下,各站河川径流量相对于当代气候表现出一致的 变化趋势,即冬、春季节径流有所增加,而夏季径 流量则呈现减少趋势。6月进入夏季,各站河川径

Fig. 5 Differences of monthly mean streamflow between A2 scenario (2071–2100 + 7 + 7) + 2010 + 1990) simulations in the Yellow River basin

流量迅速减少,至8月减少最大,如兰州站径流量 由1112.6 m³/s减少成为608.0 m³/s,夏季正是用水 量较大的季节,预示着未来夏季水资源的短缺。

为分析未来河川径流相对于当代气候变化的 原因,分别计算了流域平均的气温、降水、蒸散发 等气候因子在未来气候情景(A2)相对于当代气候 (RF)的变化。图6为黄河流域A2情景相对于当 代气候月平均气温、降水、蒸散发量的绝对值的变 化。可以看出,未来A2情景下,黄河整个流域气 候变化表现出气温升高,降水增加(7~8月降水减 少)和蒸发增大的趋势。未来黄河流域全年气温出 现升高趋势,升温范围在2.6~5.0℃之间,升温幅 度最大位于8月。降水量同蒸散发量的变化较为一 致,夏季7~8月减少,其它季节均增加,其中降 水量在8月减少最多,流域平均减少量达到17mm。

许多研究表明黄河流域在未来气候情景下较 当代气候出现气温升高、蒸发增大、降水增加的现 象,但因气温上升所导致的径流蒸散发损耗超过降 水量的补给而使流域特别是源区流量呈现减少趋 势(郝振纯等,2006;刘彩红等,2012;王金花等, 2012)。随着未来社会经济的进一步发展,黄河流 域用水量将进一步增长,黄河源区乃至整个黄河流 域的水资源供需形势不容乐观。本研究也得到相似 的结论,但未来径流量在各个季节的变化存在差 异。图 7 为黄河流域上游主要水文站兰州、石嘴 山、头道拐站径流量的变化率。由图中可以看

出,黄河流域河川径流量在夏半年(5~9月)呈现 减少趋势,而在冬半年表现为增加趋势。在 A2 情 景下,黄河流域全年温度都可能增加,且夏季增 温幅度略大于冬季。冬、春季节的增温使得黄河流 域源区高原冰川积雪融化加快,造成春季河川径流 的急剧增加,在3月增加值达到最大。此外,整个 流域冬季降水相对于当代气候增加的绝对值并不 大,但由于冬季较为干旱,未来气候情景下,降水 增加相对于当代气候所占百分比较大,蒸散发虽然 在冬季也有所增加,但无法抵消降水对径流的影 响,整个流域表面径流深在冬季也呈现增加趋势。 综合各种因素,最终导致冬季河川径流的增加。春、 秋季节整个流域降水增加绝对值较大, 而蒸散发增 加量相对较少,引起河川径流增加,将有利于人们 的生产、生活。夏季黄河流域河川径流主要受降水 补给的影响,A2 情景下,夏季整个流域都可能出 现较大的增温,意味着流域夏季高温的加剧。夏季 降水在流域产流区以减少为主,蒸散发略有减小, 但幅度不大,引起流域表面径流深的减小,最终导 致河川径流的减少。

黄河上游径流量在整个黄河河川径流中占有 举足轻重的地位,上游径流量的多寡,直接影响到 下游的断流与否。王国庆等(2002)研究表明,对 于黄河上中游地区,径流随降水的增加而增大,随 气温的升高而减小;径流对降水变化的响应较对气 温变化的响应更为显著;气温对径流的影响随降水

图 6 黄河流域 A2 情景相对于当代气候月平均气温、降水、蒸散发量的变化

Fig. 6 Effects of climate change on monthly mean temperature, precipitation, and evapotranspiration under A2 scenario in the Yellow River basin

Fig. 7 Effects of climate change on monthly mean streamflow in the Yellow River basin

的增加而更为明显,随降水减少,气温对径流的影 响不明显。本研究得到相似的结论,冬季和春季, 径流随降水的增加而显著增大,夏季随降水减少而 减少,夏季气温升高加剧了径流的减少。黄河流域 在当代气候条件下蒸散发量已经很大,未来由于气 温升高引起蒸散发量的增加对于径流的影响处于 次要地位,而降水量的变化是影响未来径流变化的 主要因子。

4 结论和讨论

使用区域气候模式 RegCM3 进行了中国区域 1961~1990 年当代气候模拟(控制试验)和2071~ 2100 年 IPCC A2 排放情景下未来气候模拟(A2 情 景模拟试验)。对人类活动引起的未来气候变化在 A2 高排放情景下引起的黄河流域气候及水文要素 的影响进行了数值模拟和分析,随后将区域气候模 式 RegCM3 与大尺度汇流模型 LRM 连接,重点分 析气候变化引起黄河流域年、冬季、夏季平均气 温、降水、蒸散发、河川径流等的变化。

研究结果表明:未来气候变化引起黄河流域冬季降水增加,夏季降水减少,降水减少地区位于流域上中游,降水减少最大地区位于流域西北部干旱区。气温升高会加速蒸发,黄河流域年平均蒸散发相对于当代气候有所增加,其变化趋势同年降水变化较为一致。夏季,流域降水的减少导致流域大范

围地区蒸散发的减少,减弱了夏季水循环,同时,夏季高温的出现更加剧了黄河流域的干旱。黄河流域未来气候变化的主要特征是整个流域的增暖,冬季气温升高,引起流域源区高山积雪和冰川融化,使得未来黄河流域冬季径流深有大幅度的增加。夏季降水减少,虽然蒸散发也有所减少,但仍然导致黄河流域夏季地表径流深的减少,预示着未来黄河流域水资源短时用水量的变化,未来黄河流域的气候变化,将引起流域5~10月径流的减少,夏季高温使人类用水量加大,而径流的减少使人类可利用水资源减少,势必恶化当地的生态环境。

参考文献(References)

- Arora V K, Chiew F H S, Grayson R B. 1999. A river flow routing scheme for general circulation models [J]. J. Geophys. Res., 104 (D12): 14374– 14357.
- Bonan G B. 1996. A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user's guide. NCAR Technical Note NCAR=TN-417þSTR, 150pp.
- 曹丽娟. 2007. 气候变化对黄河和长江流域水文过程影响研究 [D]. 中 国科学院研究生院博士学位论文, 158pp. Cao Lijuan. 2007. Climate change impacts on the hydrological processes of the Yellow River and the Yangtze River basins [D]. Ph. D. dissertation (in Chinese), Graduate School of Chinese Academy of Sciences, 158pp.
- Cao L J, Dong W J, Xu Y L, et al. 2007. Validating the runoff from the PRECIS model using a large-scale routing model [J]. Advances in

Atmospheric Sciences, 24 (5): 855-862.

- 曹丽娟, 张冬峰, 张勇, 等. 2008. 中国当代土地利用变化对黄河流域径 流影响 [J]. 大气科学, 32 (2): 300–308. Cao Lijuan, Zhang Dongfeng, Zhang Yong, et al. 2008. The effects of current land use in China on streamflow in the Yellow River basin [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32 (2): 300–308.
- 曹丽娟, 董文杰, 张勇. 2013. 未来气候变化对黄河和长江流域极端径 流影响的预估研究 [J]. 大气科学, 37 (3): 634–644. Cao Lijuan, Dong Wenjie, Zhang Yong. 2013. Estimation of the effect of climate change on extreme streamflow over the Yellow River and Yangtze River basins [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37 (3): 634–644.
- Chou M D, Lee K T, Tsay S C, et al. 1999. Parameterization for cloud longwave scattering for use in atmospheric models [J]. J. Climate, 12 (1): 159–169.
- Ducharne A, Golaz C, Leblois E, et al. 2003. Development of a high resolution runoff routing model, calibration and application to assess runoff from the LMD GCM [J]. J. Hydrol., 280 (1–4): 207–228.
- Fu G B, Chen S L, Liu C M, et al. 2004. Hydro-climatic trends of the Yellow River basin for the last 50 years [J]. Climatic Change, 65 (1–2): 149–178.
- Gao X J, Shi Y, Song R Y, et al. 2008. Reduction of future monsoon precipitation over China: Comparison between a high resolution RCM simulation and the driving GCM [J]. Meteor. Atmos. Phys., 100 (1–4): 73–86.
- Hagemann S, Dümenil L. 1998. A parametrization of the lateral waterflow for the global scale [J]. Climate Dyn., 14 (1): 17–31.
- 郝振纯, 王加虎, 李丽, 等. 2006. 气候变化对黄河源区水资源的影响 [J]. 冰川冻土, 28 (1): 1–7. Hao Zhenchun, Wang Jiahu, Li Li, et al. 2006. Impact of climate change on runoff in source region of Yellow River [J]. Journal of Glaciology and Geocryology (in Chinese), 28 (1): 1–7.
- 黄荣辉, 韦志刚, 李锁锁, 等. 2006. 黄河上游和源区气候、水文的年代 际变化及其对华北水资源的影响 [J]. 气候与环境研究, 11 (3): 245–258. Huang Ronghui, Wei Zhigang, Li Suosuo, et al. 2006. The interdecadal variations of climate and hydrology in the upper reach and source area of the Yellow River and their impact on water resources in North China [J]. Climatic and Environmental Research (in Chinese), 11 (3): 245–258.
- IPCC. 2001. Climate Change 2001: The Scientific Basis [M]. Houghton J T, Ding Y, Griggs D G, Eds. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
- Kiehl J T, Hack J J, Bonan G B, et al. 1996. TN-420 description of the NCAR community climate model (CCM3) [R]. NCAR Technical Note NCAR=TN-420pSTR, 152pp.
- 李翀,杨大文. 2004. 基于栅格数字高程模型 DEM 的河网提取及实现 [J]. 中国水利水电科学研究院学报, 2 (3): 208-214. Li Chong, Yang Dawen. 2004. Deriving drainage networks and catchment boundaries from Grid Digital Elevation Model [J]. Journal of China Institute of Water Resources and Hydropower Research (in Chinese), 2 (3): 208-214.
- Li L, Shen H Y, Dai S, et al. 2012. Response of runoff to climate change and its future tendency in the source region of Yellow River [J]. Journal of Geographical Sciences, 22 (3): 431–440.

Liston G E, Sud Y C, Wood E F. 1994. Evaluating GCM land surface

hydrology parameterizations by computing river discharges using a runoff routing model: Application to the Mississippi basin [J]. J. Appl. Meteor., 33 (3): 394–405.

- Liu C M, Zheng H X. 2004. Changes in components of the hydrological cycle in the Yellow River basin during the second half of the 20th Century [J]. Hydrological Processes, 18 (12): 2337–2345.
- 刘彩红, 苏文将, 杨延华. 2012. 气候变化对黄河源区水资源的影响及 未来趋势预估 [J]. 干旱区资源与环境, 26 (4): 97–101. Liu Caihong, Su Wenjiang, Yang Yanhua. 2012. Impacts of climate change on the runoff and estimation on the future climatic trends in the headwater regions of the Yellow River [J]. Journal of Arid Land Resources and Environment (in Chinese), 26 (4): 97–101.
- Lohmann D, Lettenmaier D P, Liang X, et al. 1998. The project for intercomparison of land-surface parameterization schemes (PILPS) phase 2(c) Red–Arkansas River basin experiment: 3. Spatial and temporal analysis of water fluxes [J]. Global and Planetary Change, 19 (1–4): 161–179.
- Miller J R, Russell G L, Caliri G. 1994. Continental-scale river flow in climate models [J]. J. Climate, 7: 914–928.
- Nijssen B, Lettenmaier D P, Liang X, et al. 1997. Streamflow simulation for continental-scale river basins [J]. Water Resour. Res., 33 (4): 711–724.
- O'Callaghan J F, Mark D M. 1984. The extraction of drainage networks from digital elevation data [J]. Computer Vision, Graphics, and Image Processing, 28 (3): 323–344.
- 《气候变化国家评估报告》编写委员会. 2007. 气候变化国家评估报告 [R]. 北京:科学出版社. Compiling Committee of China's National Assessment Report on Climate Change. 2007. China's national assessment report on climate change [R]. Beijing: Science Press.
- Russell G L, Miller J R. 1990. Global river runoff calculated from a global atmospheric general circulation model [J]. J. Hydrol., 117 (1–4): 241– 254.
- Sausen R, Schubert S, Dümenil L. 1994. A model of river runoff for use in coupled atmosphere–ocean models [J]. J. Hydrol., 155 (3–4): 337–352.
- 石英, 高学杰. 2008. 温室效应对我国东部地区气候影响的高分辨率数 值试验 [J]. 大气科学, 32 (5): 1006–1018. Shi Ying, Gao Xuejie. 2008. Influence of greenhouse effect on eastern China climate simulated by a high resolution regional climate model [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32 (5): 1006–1018.
- 唐芳芳, 徐宗学, 左德鹏. 2012. 黄河上游流域气候变化对径流的影响 [J]. 资源科学, 34 (6): 1079–1088. Tang Fangfang, Xu Zongxue, Zuo Depeng. 2012. Response of runoff to climate change in the upper Yellow River basin [J]. Resources Science (in Chinese), 34 (6): 1079–1088.
- 王国庆, 王云璋, 康玲玲. 2002. 黄河上中游径流对气候变化的敏感性 分析 [J]. 应用气象学报, 13 (1): 117–121. Wang Guoqing, Wang Yunzhang, Kang Lingling. 2002. Analysis on the sensitivity of runoff in Yellow River to climate change [J]. Journal of Applied Meteorological Science (in Chinese), 13 (1): 117–121.
- 王金花,刘吉峰,张荣刚. 2012. 黄河源区未来气候变化情景预测 [J]. 人民黄河, 34 (6): 35–37. Wang Jinhua, Liu Jifeng, Zhang Ronggang. 2012. Generation method of climate scene based in the headwater regions of the Yellow River [J]. Yellow River (in Chinese), 34 (6): 35–37.
- Wood E F, Lettenmaier D P, Liang X, et al. 1998. The Project for

intercomparison of land-surface parameterization schemes (PILPS) phase 2(c) Red–Arkansas River basin experiment: 1. Experiment description and summary intercomparisons [J]. Global and Planetary Change, 19 (1–4): 115–135.

- Xia J, Wang Z G, Wang G S, et al. 2004. The renewability of water resources and its quantification in the Yellow River basin, China [J]. Hydrological Processes, 18 (12): 2327–2336.
- Xu J X. 2005. Temporal variation of river flow renewability in the middle Yellow River and the influencing factors [J]. Hydrological Processes, 19 (9): 1871–1882.
- 徐璇, 陆日宇, 石英. 2011. 全球和区域气候模式对中国东部夏季降水 季节演变模拟的比较 [J]. 大气科学, 35 (6): 1177-1186, doi: 10.3878/j.issn.1006-9895.2011.06.16. Xu Xuan, Lu Riyu, Shi Ying. 2011. Comparison between the results on seasonal evolution of summer precipitation over eastern China simulated by a regional climate model and the driving GCM [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35 (6): 1177-1186.
- 徐宗学,张楠. 2006. 黄河流域近 50 年降水变化趋势分析 [J]. 地理研究, 25 (1): 27-34. Xu Zongxue, Zhang Nan. 2006. Long-term trend of precipitation in the Yellow River basin during the past 50 years [J].

Geographical Research (in Chinese), 25 (1): 27-34.

- Xu Z X, Li J Y, Liu C M. 2007. Long-term trend analysis for major climate variables in the Yellow River basin [J]. Hydrological Processes, 21 (14): 1935–1948.
- Zhang J Y, Dong W J, Fu C B, et al. 2003. Streamflow simulation for the Yellow River basin using RIEMS and LRM [J]. Advances in Atmospheric Sciences, 20 (3): 415–424.
- 赵芳芳, 徐宗学. 2009. 黄河源区未来气候变化的水文响应 [J]. 资源科 学, 31 (5): 722–730. Zhao Fangfang, Xu Zongxue. 2009. Hydrological response to climate change in headwater catchment of the Yellow River basin [J]. Resources Science (in Chinese), 31 (5): 722–730.
- 郑红星, 刘昌明. 2003. 黄河源区径流年内分配变化规律分析 [J]. 地理 科学进展, 22 (6): 585–590. Zheng Hongxing, Liu Changming. 2003. Changes of annual runoff distribution in the headwater of the Yellow River basin [J]. Progress in Geography (in Chinese), 22 (6): 585– 590.
- 周德刚, 黄荣辉. 2006. 黄河源区径流减少的原因探讨 [J]. 气候与环境 研究, 11 (3): 302–309. Zhou Degang, Huang Ronghui. 2006. Exploration of reason of runoff decrease in the source regions of the Yellow River [J]. Climatic and Environmental Research (in Chinese), 11 (3): 302–309.