田亮, 江志红, 陈威霖. 2016. CMIP5 气候模式对东亚夏季平均环流场模拟能力的评估 [J]. 气候与环境研究, 21 (4): 380-392. Tian Liang, Jiang Zhihong, Chen Weilin. 2016. Evaluation of summer average circulation simulation over East Asia by CMIP5 climate models [J]. Climatic and Environmental Research (in Chinese), 21 (4): 380-392, doi:10.3878/j.issn.1006-9585.2016.13089.

CMIP5 气候模式对东亚夏季平均环流场 模拟能力的评估

田亮^{1,2} 江志红¹ 陈威霖¹

1 南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心,南京 210044 2 陕西省气候中心, 西安 710014

摘 要 利用第五次耦合模式比较计划 (Phase 5 of Coupled Model Intercomparison Project, CMIP5) 提供的 30 个全球气候模式模拟的 1961~2005 年的夏季逐月环流场资料及同期 NCEP 再分析资料,引入泰勒图及各种评 估指标,探讨全球气候模式对东亚夏季平均大气环流场的模拟能力,寻求具有较好东亚夏季环流场模拟能力的 气候模式。结果表明:1)全球气候模式能够模拟出东亚夏季平均大气环流的基本特征,CMIP5 模式的总体模 拟能力较第三次耦合模式比较计划 (CMIP3) 有较大程度的提高,如 CMIP5 模式对东亚大部分地区夏季海平面 气压(Sea Level Pressure, SLP)场的模拟偏差在6hPa以内。2)模式对不同层次环流场的模拟能力存在差异, 500 hPa 高度场的模拟能力最强,其次为 100 hPa 高度场、850 hPa 风场, SLP 场最弱,对东亚夏季主要环流系 统的模拟对比发现,模式对印度热低压及东伸槽强度指数的模拟能力最好。3)综合 CMIP5 模式对东亚夏季各 层次平均环流场以及主要环流系统的模拟能力,发现模拟较好的5个模式为CESM1-CAM5、MPI-ESM-MR、 MPI-ESM-LR、MPI-ESM-P 和 CanESM2。4)相对于单一模式,多模式集合平均(MME)模拟能力较强,但 较优选的前5个模式集合平均的模拟能力弱。

关键词 CMIP5 模式模拟 东亚大气环流 模式评估 气候模式 文章编号 1006-9585 (2016) 04-0380-13 doi:10.3878/j.issn.1006-9585.2016.13089

中图分类号 P467

文献编识码 A

Evaluation of Summer Average Circulation Simulation over East Asia by CMIP5 Climate Models

TIAN Liang^{1, 2}, JIANG Zhihong¹, and CHEN Weilin¹

2 Shaanxi Climate Center, Xi'an 710014

Abstract Based on 1961–2005 monthly reanalysis data of atmospheric general circulation from the NCEP data, this paper evaluates the summer atmospheric general circulations in East Asia (EA) simulated by 30 climate models in the

¹ Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/ Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044

收稿日期 2013-05-16; 网络预出版日期 2016-01-25

作者简介 田亮, 男, 1987年出生, 硕士, 研究方向为气候学。E-mail: tianliang666@126.com

通讯作者 江志红, E-mail: zhjiang@nuist.edu.cn

资助项目 国家自然科学基金重点项目 41230528、41205062,国家重点基础研究发展计划项目 2012CB955200

Funded by National Natural Science Foundation of China (NSFC, Grants 41230528 and 41205062), National Basic Research Program of China (973 Program, Grant 2012CB955200)

Phase 5 of Coupled Model Intercomparison Project (CMIP5) historical simulation experiments. Taylor figures and various assessment indicators have been used to find the models which are better in simulating summer atmospheric general circulation in EA. Results show that: 1) Global climate models are able to simulate the basic features of summer average atmospheric general circulation over EA. Compared with CMIP3 models, the simulation ability of CMIP5 models have made a great improvement. Taking sea level pressure (SLP) for example, the simulated deviations are less than 6 hPa over most areas of EA. 2) Modeling abilities of general circulation for different levels are different. The simulation of 500 hPa geopotential height is the best, followed by 100 hPa geopotential height and 850 hPa wind, however, SLP is relatively poor. Compared with simulated. 3) According to the performance of 30 climate models, the authors find five models which simulate the average atmospheric general circulation and the main circulation system better. They are CESM1-CAM5, MPI-ESM-MR, MPI-ESM-LR, MPI-ESM-P, and CanESM2. 4) The performance of multi-model ensemble is better than any single one, however, it is weaker than the best five models ensemble mean. **Keywords** Phase 5 of Coupled Model Intercomparison Project (CMIP5), Atmospheric general circulation over East

Asia, Model evaluation, Climate model

1 引言

全球气候模式是气候模拟和未来气候变化情 景预估的重要工具和主要手段,利用全球气候模式 开展未来气候的情景预估,首先必须评估模式对现 代气候的模拟能力(刘敏和江志红,2009)。大气 环流场基本特征的模拟能力是气候模式模拟能力 最重要的参考依据;另一方面,由于全球模式的分 辨率不高,在区域尺度的细化特征必须通过动力或 统计降尺度途径获取,而它们都需要以大尺度环流 场作为背景。因此,气候模式大气环流模拟能力的 评估不仅可为优选气候模式进行未来东亚(中国) 区域气候变化的预估和相应的影响评估提供基础, 也将为两类降尺度选择合适的大尺度背景场提供 有效依据。

东亚地区属于典型的季风气候,受海陆分布及 青藏高原大地形影响该地气候较为复杂,准确地模 拟东亚地区的环流特征是我国气象学者非常关注 的问题。近年来,众多学者利用 CMIP3 (Coupled Model Intercomparison Project Phase 3, CMIP3) 提 供的模式试验结果对东亚(中国)区域进行模式评 估和未来预估已取得了有意义的结果。综合前人 (孙颖,2005; Hori and Ueda,2006; Zhou and Yu, 2006; 许崇海等,2007; Zhou et al.,2009a,2009b; 张宏芳和陈海山,2011a,2011b; 郭岩等,2012; 姜大膀和田芝平,2013)研究 CMIP3 气候模式对 东亚区域大气环流的模拟能力发现: CMIP3 气候模 式对东亚区域气候有一定的模拟能力,模式能够模 拟出中、低层环流场气候态的空间分布特征,整体 上对 500 hPa 高度场的模拟最好,海平面气压场次 之;但模式间模拟差异较大,仍存在一些问题,如: 模式对东亚环流场的模拟偏弱,在青藏高原地区存 在偏差的大值中心,且对于西太平洋副热带高压、 蒙古高压等主要环流系统的模拟能力偏弱;整体上 对东亚季风的刻画能力较弱等。需要指出的是,上 述评估主要针对 CMIP3 气候模式。最近,最新的 CMIP5 提供了超过 50 个模式的模拟结果,大部分 模式结构、分辨率以及物理过程等方面较之 CMIP3 模式有了显著的改进 (Taylor et al., 2012),有关 CMIP5 模式模拟能力的评估引起了全球众多气象 学者的高度关注,如 Sperber et al.(2013)和 Kitoh et al.(2013)研究了 CMIP5 模式在季风区的性能,因此, 模式对东亚大气环流的模拟能力急待评估。

本文主要从气候态的角度评估了 CMIP5 提供的 30 个模式对东亚夏季主要环流系统以及海平面 气压场(SLP)、850 hPa 风场(v850、u850)、500 hPa 和 100 hPa 位势高度场(ZG500、ZG100)的模拟能 力,寻求具有较好东亚夏季环流场模拟能力的气候 模式,以便为未来东亚(中国)区域气候变化情景 预估和降尺度研究提供模式选择依据。

2 资料和方法

2.1 资料

本文采用的模式资料来自于 CMIP5 的 30 个全 球气候模式模拟结果,选取的环流场包括海平面气 压场、850 hPa 风场、500 hPa 和 100 hPa 位势高度 场资料,时间范围为 1961~2005 年。表 1 给出了 所选取的模式的基本信息。此外,采用 1961~2005 年 NCEP2.5°(纬度)×2.5°(经度)月平均再分析 资料作为观测资料对模拟结果进行评估。为了便于 比较,所有模式结果均采用线性插值方法转换到 2.5°(纬度)×2.5°(经度)分辨率的网格点上。

2.2 方法

2.2.1 环流指数定义

为定量考察各模式对东亚夏季主要环流系统的模拟能力,引入表征东亚夏季主要环流系统的特征量,相关定义如下:

(1)西太平洋副高面积指数(简记为WSHsi)
(张宏芳和陈海山, 2011a):取夏季110°E~180°、
10°N以北范围内大于5870 gpm的网络点数累加。

(2) 西太平洋副高强度指数(简记为 WSHpi) (张宏芳和陈海山, 2011a): 在夏季定义 5870 gpm 记为 1、5880 gpm 记为 2、5890 gpm 记为 3、5900 gpm 记为 4,取 110°E~180°、10°N 以北范围内上述值 的累加值定义为副高强度指数。

(3) 印度热低压强度指数(简记为 ILpi)(郭 岩等, 2012): 取夏季 30°N、50°E~70°E 的平均海 平面气压代表。

(4)印度热低压东伸槽的强度(简记为ILTpi) (郭岩等, 2012):取夏季 30°N、110°E~120°E的 平均海平面气压代表。

(5)南亚高压面积指数(简记为 SAHsi)(张琼

表 1 本文使用的 30 个 CMIP5 模式信息

序号	模式名称	研究机构	大气模式分辨率		
1	ACCESS1-0	澳大利亚 CSIRO (Commonwealth Scientific and Industrial Research	1.25°(纬度)×1.875°(经度)		
		Organisation) and BOM (Bureau of Meteorology)			
2	ACCESS1-3	澳大利亚 CSIRO (Commonwealth Scientific and Industrial Research	1.25°(纬度)×1.875°(经度)		
		Organisation) and BOM (Bureau of Meteorology)			
3	CanESM2	加拿大 Centre for Climate Modelling and Analysis	2.7906°(纬度)×2.8125°(经度)		
4	CESM1-BGC	NCAR	0.94246°(纬度)×1.25°(经度)		
5	CESM1-CAM5	NCAR	0.94246°(纬度)×1.25°(经度)		
6	CESM1-FASTCHEM	NCAR	0.94246°(纬度)×1.25°(经度)		
7	CESM1-WACCM	NCAR	1.89474°(纬度)×2.5°(经度)		
8	EC-EARTH	EC-EARTH consortium	1.125°(纬度)×1.125°(经度)		
9	FGOALS-g2	中国科学院大气物理研究所 LASG	3.0°(纬度)×2.8125°(经度)		
10	FGOALS-s2	中国科学院大气物理研究所 LASG	1.4116°(纬度)×2.8125°(经度)		
11	GFDLCM3	美国 Geophysical Fluid Dynamics Laboratory (GFDL)	2.0°(纬度)×2.5°(经度)		
12	GISS-E2-H	NASA	2.0°(纬度)×2.5°(经度)		
13	GISS-E2-R	NASA	2.0°(纬度)×2.5°(经度)		
14	GFDL-ESM2G	美国 Geophysical Fluid Dynamics Laboratory (GFDL)	~2.0°(纬度)×2.5°(经度)		
15	GFDL-ESM2M	美国 Geophysical Fluid Dynamics Laboratory (GFDL)	~2.0°(纬度)×2.5°(经度)		
16	HadGEM2-CC	英国 Hadley Centre for Climate Prediction and Research, Met Office	1.25°(纬度)×1.875°(经度)		
17	HadGEM2-ES	英国 Hadley Centre for Climate Prediction and Research, Met Office	1.25°(纬度)×1.875°(经度)		
18	HadGEM2-AO	英国 Hadley Centre for Climate Prediction and Research, Met Office	1.25°(纬度)×1.875°(经度)		
19	inmcm4	俄罗斯 Institute for Numerical Mathematics	1.5°(纬度)×2.0°(经度)		
20	IPSL-CM5A-MR	法国 L'Institut Pierre-Simon Laplace (IPSL)	1.26761°(纬度)×2.5°(经度)		
21	IPSL-CM5A-LR	法国 L'Institut Pierre-Simon Laplace (IPSL)	1.89474°(纬度)×3.75°(经度)		
22	IPSL-CM5B-LR	法国 L'Institut Pierre-Simon Laplace (IPSL)	1.89474°(纬度)×3.75°(经度)		
23	MIROC4h	$\exists \texttt{A} \text{ Center for Climate System Research}, \text{ National Institute for Environmental}$	0.5616°(纬度)×0.5625°(经度)		
		Studies, and Frontier Research Center for Global Change (FRCGC)			
24	MIROC5	$\exists \texttt{A} \text{ Center for Climate System Research}$, National Institute for Environmental	1.4004°(纬度)×1.4063°(经度)		
		Studies, and Frontier Research Center for Global Change (FRCGC)			
25	MIROC-ESM	$\exists \texttt{A} \texttt{ Agency for Marine-Earth Science and Technology, Atmosphere and Ocean}$	2.7893°(纬度)×2.8125°(经度)		
		Research Institute, and National Institute for Environmental Studies			
26	MIROC-ESM-CHEM	$\exists \texttt{A} \texttt{ Agency for Marine-Earth Science and Technology, Atmosphere and Ocean}$	2.7893°(纬度)×2.8125°(经度)		
		Research Institute, and National Institute for Environmental Studies			
27	MPI-ESM-P	德国 Max Planck Institute for Meteorology (MPI)	1.8652°(纬度)×1.875°(经度)		
28	MPI-ESM-MR	德国 Max Planck Institute for Meteorology (MPI)	1.8652°(纬度)×1.875°(经度)		
29	MPI-ESM-LR	德国 Max Planck Institute for Meteorology (MPI)	1.8652°(纬度)×1.875°(经度)		
30	MRI-CGCM3	日本 Meteorological Research Institute	1.1213°(纬度)×1.125°(经度)		

 Table 1
 Information of the 30 CMIP5 models used in the present study

和钱永甫,2004): 将夏季 100 hPa 南亚高压活动区 域内(10°N~70°N,60°E~160°E)大于 1665 dagpm 的总格点数定义为南亚高压面积指数。

(6)南亚高压强度指数(简记为 SAHpi)(张 琼和钱永甫,2004):夏季100 hPa 南亚高压活动区 域内(10°N~70°N,60°E~160°E)大于1660 dagpm 的格点值与1660 dagpm 之差的总和记为南亚高压 强度指数。

同时注意到,这些指标为研究季风环流的通用 指标,其中一些已被广泛用于气候模式的评估之中 (Zhou and Li, 2002; Chen et al., 2010)。

2.2.2 泰勒图法

为全面、直观地比较各模式模拟环流系统气候 场能力,引入用于模式评估的泰勒图分析方法 (Taylor, 2001)。它是由模拟与观测气候场空间分布 的相关系数、相对标准差及其均方误差组成的极坐 标图。图 1 为泰勒图方法的示意图,图中 A 为观测 场在泰勒图中位置,设 B 和 C 为被比较的两个模式 场在泰勒图中位置。对标准化观测场,OB 的长度 为模拟场与观测场的标准差之比, ∠AOB 的余弦值 就是模拟场和观测场的相关系数,且 AB 的长度为 模拟场和观测场中心化的均方根误差,可见越靠近 参考点 A,则与观测资料的相关系数越高,中心化 的均方根误差越小,标准差越接近,表示模式对气 候场的模拟能力较高。如图 1 中模式 B 的模拟能力 要高于模式 C。

2.2.3 空间技巧指标

进一步引入 Pierce et al. (2009) 提出的空间技

Fig. 1 The schematic diagram of Taylor method

巧评分指标(记为 *S*_s),考察各模式对东亚夏季环流气候场的模拟技巧。根据均方根误差(*M*_{SE})定义为:

$$M_{\rm SE}(m,o) = \frac{1}{N} \sum_{k=1}^{N} (m_k - o_k)^2, \qquad (1)$$

其中, *m_k、o_k* 分别代表模拟和观测场格点资料, *k* 代表所研究区域格点数, 取 *k* = 1, …, *N*。对其标准 化,得到空间技巧评分指标 *S*s 为:

$$S_{\rm S} = 1 - \frac{M_{\rm SE}(m,o)}{M_{\rm SE}(\bar{o},o)} = r_{m,o}^2 - \left[r_{m,o} - (s_m / s_o)\right]^2 - \left[(\bar{m} - \bar{o}) / s_o\right]^2,$$
(2)

其中, $M_{se}(\bar{o},o)$ 表示观测场空间均方根误差,进一步展开 S_s 定义式可得公式(2)的右式,发现无量 纲的空间技巧评分指标 S_s 由 3 项组成:第一项 $r_{m,o}^2$ 表示两个场的相关系数;第二、第三项中 s_m 和 s_o 分别表示模式和观测的空间场均方根误差; \bar{m} 和 \bar{o} 分别为模式和观测场的区域平均值。故后两项分别 为模拟场和观测场之间的相对误差、绝对误差。可 见 S_s 指标综合考虑模拟场与观测场的空间相关程 度及其偏差程度。模拟场与观测场空间相关系数越 大,偏差值越小, S_s 指标值越接近 1,表明模式与 观测场越接近。

2.2.4 综合评级指标

根据前面 Taylor 图、Ss 指标可得到各层次的模式 排名,引入综合评级指标 (Schuenemann and Cassano, 2009):

$$M_{R} = 1 - \frac{1}{1 \times n \times k} \sum_{i=1}^{k} R_{i} , \qquad (3)$$

其中, n 为模式个数; k 为用于评估的系统个数; R_i为基于第 i 个评估系统模式的模拟能力排名。可 见 M_R小于 1, 且 M_R数值越接近于 1,说明模式模 拟该评估系统整体的气候场能力越强,即 M_R给出 了基于不同方法的模式综合排名。

3 模式对东亚环流模拟的评估

3.1 对主要环流系统的模拟能力

为了考察模式对东亚主要环流系统的模拟能力,我们利用表1中30个模式1961~2005年逐月的海平面气压场(SLP)、850 hPa风场(u850、v850)、500 hPa和100 hPa高度场(ZG500和ZG100)模拟资料及相应层次的NCEP资料,计算了东亚夏季的南亚高压、西太平洋副热带高压、印度热低压和东

伸槽的平均环流特征量;同时,为了探讨多模式的 平均模拟能力,我们利用 30 个模式集合平均的模 拟结果(简记为 MME)得到多模式集合平均环流 特征量。表 2 给出了各模式及 MME 模拟的平均环 流特征量与 NCEP 的差值。

由表 2 可知,大多模式对于表征同一系统的面积指数和强度指数表现具有一致性。各个模式对于印度热低压和东伸槽强度指数的模拟具有相对较小的偏差,多数模式的误差均小于 30 hPa,其中有12 个模式模拟偏强,其余偏弱,较低分辨率模式IPSL-CM5A-LR和IPSL-CM5B-LR及GISS-E2-H具有较大负偏差,GISS-E2-H的负偏差最大达 152 hPa,根据模式对印度热低压和东伸槽强度指数刻 画能力,可得模拟能力由强到弱的模式排名(见图 2),排名最前的模式为ACCESS1-3、MIROC-ESM-CHEM、MIROC-ESM。对于西太平洋副高而言, 尽管用5870gpm线作为副高特征等值线,只有12 个模式模拟出了该等值线,多模式集合平均也未能 刻画出该特征,其中有6个模式模拟的副高面积和 强度指数偏强,其余均偏弱,表明模式对于副高的 模拟整体偏弱,总体对西太平洋副高指数模拟能力 较强模式为FGOALS-s2、MIROC-ESM-CHEM、 MIROC-ESM(见图2)。对南亚高压而言,有6个 模式未能刻画出该系统特征等值线,除CanESM2 模拟偏强外其余偏弱,类似地,可得对南亚高压的 环流特征量模拟较好的模式为ACCESS1-3、 MIROC4h、CESM1-FASTCHEM(见图2)。

根据模式对以上各环流特征量的模拟排名,计

表 2 模式模拟的东亚平均大气环流特征量(1961~2005年)与 NCEP 的差值

Table 2Differences in average atmospheric circulation system indices between simulations of the 30 models and the NCEPreanalysis during 1961–2005

模式名称	副高面积 (点数)	副高强度	印度低压/hPa	印度低压槽/hPa	南亚高压面积(点数)	南亚高压强度/hPa
ACCESS1-0	—	_	-4.8	-32.2	-288	-2584
ACCESS1-3	90	120	-0.1	-7.6	-57	-273
CanESM2	-62	-97	11	-6.5	242	3099
CESM1BGC	204	515	35.7	33.8	-89	-1079
CESM1CAM5	70	120	18.7	16.1	-433	-3909
CESM1FASTCHEM	221	616	35.9	38.7	-71	-884
CESM1WACCM	151	311	39.4	17.8	-148	-1108
EC-EARTH	—	—	-29.6	-24.3	—	—
FGOALSG2	—	—	-21.4	-14.7	—	—
FGOALSS2	-9	-32	12.2	6	-314	-3332
GFDLCM3	-97	-132	-12.2	-14.4	-565	-4438
GFDLESM2G	—	—	-20.8	-22.7	0	0
GFDLESM2M	—	—	-4.9	-19	-606	-4478
GISSE2H	—	—	-152.2	-180.3	—	—
GISSE2R	—	—	-18.5	-52	—	—
HadGEM2AO	—	—	-6.4	-28.8	-157	-1251
HadGEM2CC	—	—	-29.3	-52.8	-375	-3393
HadGEM2ES	—	—	-22.3	-41.8	-295	-2650
inmcm4	—	—	-16.4	-24.5	-142	-2368
IPSLCM5AMR	—	—	-18.4	-27.5	-140	-1992
IPSLCM5ALR	—	—	-45.8	-52.2	-572	-4450
IPSLCM5BLR	—	—	-66.3	-80.3	—	—
MIROC4h	—	348	55.3	11.1	-64	-848
MIROC5	—	—	22.3	-9.1	-558	-4419
MIROCESM	-38	-73	6	9.1	—	—
MIROCESMCHEM	-38	-73	6	9.1	-442	-3951
MPIESMP	—	—	5.6	-19.3	-521	-4329
MPIESMMR	-82	—	9.3	-13.4	-533	-4337
MPIESMLR	-108	-143	11.3	-13	-527	-4331
MRICGCM3	—	—	-11.6	-33.4	-528	-4337
多模式集合平均	_	_	-7.1	-20.9	_	_

注: 一代表没有模拟出该系统特征线。

算综合评估指标 *M*_R,得到模式对东亚夏季主要环流系统平均态模拟的综合排名(见图 2),可见 ACCESS1-3、CanESM2、FGOALS-s2、MIROC-ESM-CHEM、MPI-ESM-MR 模式对东亚夏季主要环流系 统指数有较好的模拟能力;需要指出的是,MME 的排名为 22,表明多模式集合平均对主要环流系统 没有表现出较好的模拟能力。

3.2 对各层次环流场的模拟评估

3.2.1 基于 Taylor 图的评估

为考察模式对东亚地区(15°N~60°N, 60°E~

160°E)环流场的模拟能力,图 3 给出了各模式和 多模式集合平均(MME)模拟的东亚夏季 SLP、850 hPa 风场、500 hPa 和 100 hPa 高度场气候态与相应 NCEP 资料对比的泰勒图。可以看到,各模式对 SLP 场模拟的相对标准差均大于 1,表明模式模拟偏强, 模拟场与观测场的相关系数基本在 0.6 以上,模拟 场与观测场中心化的均方根误差基本在 0.5 以上。 结合模拟与 NCEP 的差值场,发现误差的大值中心 均集中于青藏高原地区,部分模式在中国东北至日 本地区有误差的次大值中心;除青藏高原地区外,

图 2 基于环流特征量的模式排名曲线(WSHpi、ILpi、ILTpi和 SAHpi分别表示西太平洋副高强度指数、印度热低压强度指数、东伸槽强度指数和 南亚高压强度指数,M表示模式对环流特征量的平均模拟能力)

Fig. 2 Ranking lines of models based on the circulation system indices (WSHpi, Ilpi, ILTpi, and SAHpi stands for the western Pacific subtropical high intensity index, the Indian low intensity index, the Indian eastward trough intensity index, and the South Asia high intensity index, respectively; M indicates the average model capability for the simulation of various circulation system indices)

Fig. 3 Taylor diagram of the average summer circulation simulated by the models compared to the NCEP reanalysis (the reference point is for the NCEP data and the numbers denote each model's order number in Table 1)

大多数模式模拟的海平面气压误差在 6 hPa 之内, 较 CMIP3 模式的 10 hPa 误差有所减小(张宏芳和 陈海山, 2011b),且在海洋上误差基本在 3 hPa 之 内,表明尽管不同模式对海平面气压的模拟有差 异,但除了青藏高原地区外,模式对 SLP 场气候态 具有较好的模拟能力。根据上述 SLP 场的泰勒图分 析,可得到 30 个模式对东亚夏季 SLP 场模拟能力由 强到弱的模式排名(如图 4),模拟能力最强的模式为 EC-EARTH、CESM1-CAM5、MRI-CGCM3。值得注 意的是,MME 对夏季 SLP 场具有较高的模拟技巧。

由 850 hPa 风场的泰勒图(图 3)可以看到, 多数模式模拟的东亚夏季经、纬向风场与观测场的 相关系数在 0.7~0.9 之间,中心化的均方根误差在 0.3~0.8 之间;纬向风场相对标准差在 0.82~1.25 之间,有 12 个模式模拟偏强,经向风场的相对标 准差在 0.65~1.4 之间,有 7 个模式偏强,模式间 模拟差异较大。东亚夏季 850 hPa 平均风场,主要 表现为强的西南季风环流和西北太平洋上强大的 反气旋环流,而多数模式在夏季的差值场表现为东 亚东北风异常和西北太平洋上弱的气旋性环流异 常,这说明多数模式模拟的风场偏弱,而 CESM1-CAM5、CESM1-BGC、CESM1-WACCM 和 CESM1-FAST-CHEM 模式模拟的 850 hPa 风场偏强。

根据上述 850 hPa 风场的泰勒图分析,可得到 30 个模式对 850 hPa 风场模拟能力由强到弱的模式 排名(见图 4),对 850 hPa 纬向风场模拟能力较好 的模式是 CanESM2、ACCESS1-0、CESM1-FAST-CHEM;对 850 hPa 经向风场模拟能力较好的模式 是 MPI-ESM-P、MPI-ESM-MR、MPI-ESM-LR;总 体而言, MPI-ESM-LR、CanESM2 和 ACCESS1-0 模式对 850 hPa 风场具有较好的模拟能力。

由 500 hPa 高度场的泰勒图(图 3)可以看到: 模拟场与观测场的相关系数多在 0.98 以上,模拟场 与观测场中心化的均方根误差基本在 0.25 以内,而 多数模式的相对标准差在 0.98~1.1 之间,其中有 13 个模式模拟偏弱,但结合之前对副高环流特征量 的分析可以注意到,有多数的模式模拟不出副高特 征等值线(5870 gpm线),说明模式对夏季副高区 域以偏弱为主,但在副高区之外区域的模拟值很接 近甚至大于观测值。结合差值场分析,各模式模拟 的 500 hPa 高度场没有一致性的偏差区域,大多数 模式的偏差基本在 40 gpm 之内,GISSE-2R、 GISSE-2H 模式具有最大负偏差 210 gpm,中心位于 日本偏北地区,同时也具有最大正偏差 60 gpm,中 心位于青藏高原地区。相对其他要素场,模式对 500 hPa 高度场的模拟具有最高的相关系数和最小的偏 差以及最小的均方根误差,表明模式对该层具有较 高的模拟技巧。根据上述 500 hPa 高度场的泰勒图 分析,可得到 30 个模式对 500 hPa 高度场模拟能力 由强到弱的模式排名 (见图 4),模拟能力较好的模 式是 MIROC5、CESM1-CAM5 和 MIROC4h,值得 注意的是,MME 对 500 hPa 高度场模拟能力排在第 二位,表现出较高的模拟技巧。

由 100 hPa 高度场的泰勒图(图 3)可发现: 模式对夏季100 hPa高度场模拟的相关性整体在 0.7 以上,相对标准差范围在 0.64~1.82,稍低于模式 对 500 hPa高度场的模拟能力;另外,结合模式对 100 hPa 高度场模拟的差值场分析,各模式之间差 异很大,没有一致性的差值区域;多数模式具有 50~200 gpm 的负偏差,GISS-E2-R、GISS-E2-H 模 式具有最大负偏差,整层偏差均在 400 gpm 以上。 根据上述 100 hPa 高度场的泰勒图分析,可得到 30 个模式对 100 hPa 高度场模拟能力由强到弱的模式 排名(见图 4),模拟能力较好的模式是 CanESM2、 MPI-ESM-MR 和 MPI-ESM-LR,值得注意的是, MME 对东亚夏季 100 hPa 高度场的模拟能力排在 第 2 位,表现出较高的模拟技巧。

进一步对比各模式对东亚夏季各层次环流场 的模拟能力(图3),可以看到模拟能力从高到低依 次为:500 hPa高度场、100 hPa高度场、850 hPa 风场(纬向优于经向)和SLP场。为分析模式对各 层环流场模拟能力的一致性,计算基于不同层次环 流场模拟能力的模式排名间的相关系数(见表3), 可以看到基于850 hPa风场的排名曲线与基于其他 层次环流场的排名曲线具有较好的相关性,表明模 式对850 hPa风场的模拟具有较好的代表性;基于

表 3 基于泰勒图和 S_s 指标评估得到的平均环流场的模式 排名曲线之间的相关系数

Table 3 Correlation coefficients between the model ranking lines based on the evaluation results of the average summer atmospheric circulation from Taylor diagram and $S_{\rm S}$ index

00
)*

注: *表示通过 α=0.05 显著性检验。

SLP 场、500 hPa 高度场模拟能力的排名与其他层 次排名的相关系数较低,表明 SLP 场、500 hPa 高 度场模拟能力的代表性较低。另外 SLP 场与 850 hPa 风场的排名、500 hPa 与 100 hPa 的排名分别具有较 好的相关性,表明模式对低层、中高层各自的模拟 能力有较好一致性,但两者之间一致性较差。

为综合模式对上述各层次环流场的模拟能力, 计算 $M_{\rm R}$ 指标,可得到模式对东亚夏季环流气候场 综合模拟能力的排名(见图 4),发现模拟能力较好 的前 5 个模式为 CESM1-CAM5、MPI-ESM-LR、MPI-ESM-MR、ACCESS1-3 和 MPI-ESM-P。需要指出的 是多模式集合平均(MME)具有最高的 $M_{\rm R}$ 值,表 明 MME 对夏季平均环流场的综合模拟技巧较高。 3.2.2 基于空间技巧评分指标的评估

为进一步考察模式对东亚地区夏季环流场的

模拟能力,利用公式(2)计算模式模拟各环流场的 S_s指标值(见图 5)。可以看到,东亚夏季 SLP 场 S_s指标值的变化范围在 0~0.85 之间,变化幅度 较大,表明模式对东亚夏季 SLP 场的模拟具有一定 差异。根据 S_s 指标可得到各模式对东亚夏季 SLP 场模拟能力由强到弱的模拟排名(见图 6),CESM1-CAM5、EC-EARTH 和 CESM1-BGC 对东亚夏季 SLP 场的能力较好。需要说明的是 MME 具有最大的 S_s指标值,表明 MME 对东亚夏季 SLP 场具有最 好的模拟能力,这与之前泰勒图分析结果一致。

由 850 hPa 风场的 S_s 指标图(图 5)可以看到, 850 hPa 经、纬向风场的 S_s 指标值基本具有一致性 的变化趋势,基本在 0.55~0.83 之间,说明模式对 风场的模拟整体上稳定。根据 S_s 指标可得到各模式 对东亚夏季 850 hPa 风场模拟能力由强到弱的模拟

图 4 泰勒方法评估得到的模式对夏季平均大气环流场的模拟能力排名(M表示模式对平均环流场的综合模拟能力)

Fig. 4 Ranking lines of models based on evaluation results of the average summer circulation by Taylor method (M stands for the average simulation capability for the average summer circulation)

Fig. 5 The $S_{\rm S}$ index of average summer atmospheric circulation simulated by models

排名(见图 6),对夏季纬向风场模拟能力较好的模式是 CanESM2、ACCESS1-0和 FGOALS-s2,对夏季经向风场模拟能力较好的模式是 MPI-ESM-MR、MPI-ESM-P和 MPI-ESM-LR。需要指出的是 MME对夏季 850 hPa 经、纬向风场均具有较高的模拟技巧。

由 500 hPa 高度场的 Ss 指标图(图 5)可以看 到,多数模式 500 hPa 高度场的 Ss 指标均在 0.8 以 上,相对于其他要素场,模式对 500 hPa 高度场的 Ss 指标值最大,表明模式对 500 hPa 高度场具有最 好的模拟能力,这与之前泰勒图分析结果相吻合。 模式 GISSE2H 具有最小的 Ss 指标值,原因在于相 对于其他模式,该模式模拟的 500 hPa 高度场气候 态具有最大的负偏差。根据 Ss 指标得到 30 个模式 对 500 hPa 高度场的模拟能力排名(如图 6 所示), 模拟能力较好的模式是 CESM1-CAM5、MPI-ESM-MR 和 MPI-ESM-LR。

由 100 hPa 高度场的 Ss 指标图(图 5)可知, 多数模式的 Ss 指标值在 0.35~0.87 之间,其中 GISSE-2H 和 GISSE-2R 的 Ss 指标值最小,表明这 两个模式模拟能力较差,这与他们具有最大偏差有 关(同前面泰勒图分析)。根据 Ss 指标得到 30 个模 式对 100 hPa 高度场的模拟能力排名(如图 6 所示), 排名靠前的模式是 CESM1-CAM5、MPI-ESM-MR 和 MPI-ESM-LR,而 MME 具有较高的模拟技巧, 这与泰勒图分析结果类似。

进一步对比基于 *S*s 指标的各模式对东亚夏季 各层次环流场的模拟能力(图 5),可以看到模拟能 力从高到低依次为: 500 hPa 高度场、100 hPa 高度 场、850 hPa 风场(纬向优于经向)和 SLP 场。为 分析模式对各层环流场模拟能力的一致性,计算基 于不同层次环流场模拟能力的模式排名间的相关 系数(见表 3),可以看到基于 100 hPa 高度场和 850 hPa 风场的排名曲线与基于其他层次环流场的 排名曲线具有较好的相关性,而基于 SLP 场、500 hPa 高度场模拟能力的排名与其他层次排名的相关系 数较低,且 SLP 场与 850 hPa 风场的排名、500 hPa 与 100 hPa 高度场的排名分别具有较好的相关性, 整体上同 Taylor 方法的结果一致。

类似泰勒图的评估,计算基于 $S_{\rm S}$ 指标的 $M_{\rm R}$ 指标,可得到模式对东亚夏季环流气候场综合模拟能力的排名(见图 6),模拟能力较好的 5 个模式是 CESM1-CAM5、ACCESS1-3、CanESM2、ACCESS1-

0 和 MPI-ESM-MR。同泰勒图分析一致, MME 具 有最高的 *M*_R 值,表明 MME 对夏季平均环流场的 综合模拟能力最好。

3.2.3 泰勒图方法和 Ss 指标的比较

由前面分析可以看到,泰勒图方法和 Ss 指标都 是从场的相关系数、模拟偏差等综合评估模式模拟 气候场能力的,图 7 给出了各模式基于泰勒图方法 和 Ss 指标的 MR 值的散点图,可知其相关系数高达 0.93,表明尽管模式基于两种方法的具体排名略有 差异,如两种方法评估的综合模拟能力前 5 的模式 不尽相同(见图 4 和图 6),但整体上基于泰勒图方 法和 Ss 指标对模式的评估结果具有很好的一致性, 且两种方法都表明多模式集合平均(MME)具有最 高的模拟技巧。然而从计算过程看,泰勒图方法较 为直观,但计算量大; Ss 指标法计算量小,简单便于 定量化。

3.3 模式对东亚夏季大气环流气候场模拟的综合 排名

以上分析表明,模式对于不同层次环流场的模 拟能力存在一定的差异,但基于泰勒图方法和 S_s 指标的模拟能力排名具有高度一致性,为直观和综 合反映各种指标、方法得到的模式对东亚夏季大气 环流气候场的模拟能力,用色块图表示文中每一个 指标或方法对东亚夏季各层次大气环流的评估结 果。需要说明的是,考虑到部分模式模拟不出西太 平洋副高和南亚高压的特征线,影响模式排名的客 观性,所以色块图中没有考虑基于西太平洋副高和 南亚高压特征量的评估结果。图 8 为表示模式对东 亚夏季大气环流综合模拟能力的色块图,其中 Ss-SLP 表示基于 Ss 指标对 SLP 场的评估, T-SLP 表示基于泰勒图方法对 SLP 场的评估, IL-PI 表示 印度热低压强度指数的评估, ILT-PI 表示东伸槽强 度指数的评估。图 8 中红色越多表示模式综合模拟 能力好,可以看到 CESM1-CAM5、MPI-ESM-MR、 MPI-ESM-LR、MPI-ESM-P 和 CanESM2 对东亚夏 季大气环流具有较高的综合模拟能力,多模式集合 平均(MME)具有最好的模拟技巧。

3.4 不同模式集合对东亚夏季平均大气环流模拟 能力的对比

前述研究表明,虽然相对于任何单一模式, MME 有较高的模拟能力,但上述分析也发现, CESM1-CAM5、MPI-ESM-MR、MPI-ESM-LR、 MPI-ESM-P和CanESM2对东亚夏季环流有较好的

综合模拟能力,为此,我们选取该5个模式作为优 选模式,其集合平均记为 MME5,进一步对比 MME 和 MME5 的模拟能力。

图 9 给出了 MME 与 MME5 模拟能力对比的泰 勒图,可以看到,除了 SLP 场外,MME5 的其他层 次要素场都优于 MME;计算 MME5 的海平面气压 场、850 hPa 经向风场、850 hPa 纬向风场、500 hPa 和 100 hPa 高度场的 *S*s 指标值分别为:0.865、0.826、 0.91、0.975 和 0.932,对应上述要素场的 MME 的 *S*s 指标值为:0.88、0.82、0.9、0.961 和 0.92。对比 MME5 与 MME 的 *S*s 指标值发现,除了 SLP 场外 *S*s 指标均 有增加,其中 500 hPa 和 100 hPa 高度场的 *S*s 指标增 加最大,850 hPa 经、纬向风场 Ss 指标值增加较少,可见相对于 MME, MME5 对 500 hPa 和 100 hPa 高 度场的模拟技巧提高相对较大,对 850 hPa 经向、纬 向风场的模拟技巧也有一定程度的改善。

图 10 给出了 MME5 与 MME 各层次夏季大气 环流气候态与 NCEP 的差值,由图 10 可知,相对 于 MME, MME5 模拟的 SLP 场在海洋地区具有更 小的偏差,模拟的 850 hPa 风场改善程度较弱,模 拟的 500 hPa 和 100 hPa 高度场的偏差显著减小, 使 500 hPa 和 100 hPa 高度场的整层偏差分别减小 10 gpm 和 60 gpm 以上。综上表明,相对于 MME, 优选模式集合的模拟能力更高。

图 8 基于泰勒图、Ss指标和环流系统指数的模式模拟能力的排名 Fig. 8 Ranking of the models based on the Taylor diagram, Ss index, and circulation system indices

图 9 MME 和 MME5 模拟的夏季平均环流场与 NCEP 的泰勒图(图中 参考点 REF 为 NCEP。数字为平均环流场序号)

Fig. 9 Taylor diagram of the average summer circulation simulated by MME and MME5 compared to that from NCEP reanalysis (the reference point is for the NCEP data and the numbers denote the order number of average circulations)

4 结论和讨论

本文以 NCEP 再分析资料为基础,利用

CMIP5 提供的 30 个气候模式对当前气候(1961~2005 年)模拟试验的结果,选取东亚夏季 SLP 场、850 hPa 风场、500 hPa 和 100 hPa 位势高度场以及 夏季的主要环流系统特征量,通过泰勒图方法、 空间技巧评分指标 Ss 和综合评估指标 MR,评估各模式对东亚夏季平均大气环流场的模拟能力,寻求具有较好东亚夏季环流场模拟能力的气候模式。得到如下结论:

(1)全球气候模式能够模拟出东亚夏季平均大 气环流的基本特征,CMIP5 模式的总体模拟能力较 CMIP3 模式有较大程度的提高,如 CMIP5 模式对 东亚大部分地区夏季 SLP 场的模拟偏差在 6 hPa 以 内,海洋地区偏差在 3 hPa 以内;模式模拟的副高 主体区域的偏差较 CMIP3 模式减小 10 gpm 以上 等,但模式仍存在高原地区误差较大、主要环流系 统模拟偏弱、850 hPa 风场和 500 hPa 及 100 hPa 高 度场模拟偏弱等问题。

(2)模式对东亚夏季不同层次平均大气环流场 的模拟能力存在差异,整体上模式对 500 hPa 高度 场的模拟能力最强,其次为 100 hPa 高度场、850 hPa 风场,SLP场最弱,其中模式对 850 hPa 纬向风场 的模拟能力优于对 850 hPa 经向风场的模拟能力。 就环流特征量而言,模式对印度热低压及东伸槽强 度指数的模拟能力最好。

图 10 MME(左列)和 MME5(右列)模拟的夏季平均环流场与 NCEP 的差值:(a、b) SLP;(c、d) 850 hPa 风场;(e、f) 500 hPa 高度场;(g、h) 100 hPa 高度场

Fig. 10 Differences in the average summer atmospheric circulation between simulations of MME (left panel) and MME5 (right panel) and the NCEP reanalysis: (a, b) SLP; (c, d) wind at 850 hPa; (e, f) geopotential height at 500 hPa; (d, h) geopotential height at 100 hPa

(3)综合 CMIP5 模式对东亚夏季各层次平均 大气环流场以及主要环流系统的模拟能力,发现 CESM1-CAM5、MPI-ESM-MR、MPI-ESM-LR、 MPI-ESM-P、CanESM2 模式对东亚夏季平均大气 环流场的综合模拟能力最好。 模拟能力较强,但较优选的前5个模式集合平均的 模拟能力弱。

参考文献(References)

(4)相对于单一模式,多模式集合平均(MME) NCAR CAM

Chen H M, Zhou T J, Neale R B, et al. 2010. Performance of the new NCAR CAM3.5 in East Asian summer monsoon simulations: Sensitivity

to modifications of the convection scheme [J]. J. Climate, 23 (13): 3657–3675, doi: 10.1175/2010JCLI3022.1.

- 郭岩,陈海山,张宏芳,等. 2012. CMIP3 气候模式对东亚冬季大气环流 模拟能力的评估 [J]. 气象与减灾研究, 35 (1): 7–16. Guo Yan, Chen Haishan, Zhang Hongfang, et al. 2012. Assessment of CMIP3 climate models performance in simulation of winter atmospheric general circulation over East Asia [J]. Meteorology and Disaster Reduction Research (in Chinese), 35 (1): 7–16.
- Hori M E, Ueda H. 2006. Impact of global warming on the East Asian winter monsoon as revealed by nine coupled atmosphere–ocean GCMs [J]. Geophys. Res. Lett., 33: L03713, doi: 10.1029/2005GL024961.
- 姜大膀,田芝平. 2013. 21 世纪东亚季风变化: CMIP3 和 CMIP5 模式预 估结果 [J]. 科学通报, 58 (8): 707–716. Jiang Dabang, Tian Zhiping. 2013. East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models [J]. Chinese Science Bulletin, 58 (12): 1427–1435, doi: 10.1007/s11434-012-5533-0.
- Kitoh A, Endo H, Kumar K K, et al. 2013. Monsoons in a changing world: A regional perspective in a global context [J]. J. Geophys. Res., 118 (8): 3035–3065, doi: 10.1002/jgrd.50258.
- 刘敏, 江志红. 2009. 13 个 IPCC AR4 模式对中国区域近 40a 气候模拟能 力的评估 [J]. 南京气象学院学报, 32 (2): 256–268. Liu Min, Jiang Zhihong. 2009. Simulation ability evaluation of surface temperature and precipitation by thirteen IPCC AR4 coupled climate models in China during 1961–2000 [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 32 (2): 256–268.
- Pierce D W, Barnett T P, Santer B D, et al. 2009. Selecting global climate models for regional climate change studies [J]. Proceedings of the National Academy of Sciences of the United States of America, 106 (21): 8441–8446, doi: 10.1073/pnas.0900094106.
- Schuenemann K C, Cassano J J. 2009. Changes in synoptic weather patterns and Greenland precipitation in the 20th and 21st centuries: 1. Evaluation of late 20th century simulations from IPCC models [J]. J. Geophys. Res., 114: D20113, doi: 10.1029/JD011705.
- Sperber K R, Annamalai H, Kang I S, et al. 2013. The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century [J]. Climate Dyn., 41 (9): 2711–2744, doi: 10.1007/ s00382-012-1607-6.
- 孙颖. 2005. 用于 IPCC 第四次评估报告的气候模式比较研究简介 [J]. 气候变化研究进展, 1 (4): 161–163. Sun Ying. 2005. Introduction to analyses of climate model simulations for the IPCC AR4 [J]. Advances in

Climate Change Research (in Chinese), 1 (4): 161-163.

- Taylor K E. 2001. Summarizing multiple aspects of model performance in a single diagram [J]. J. Geophys. Res., 106 (D7): 7183–7192, doi: 10.1029/ 2000JD900719.
- Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design [J]. Bull. Amer. Meteor. Soc., 93 (4): 485–498, doi: 10.1175/BAMS-D-11-00094.1.
- 许崇海, 沈新勇, 徐影. 2007. IPCC AR4 模式对东亚地区气候模拟能力 的分析 [J]. 气候变化研究进展, 3 (5): 287–292. Xu Chonghai, Shen Xinyong, Xu Ying. 2007. An analysis of climate change in East Asia by using the IPCC AR4 simulations [J]. Advances in Climate Change Research (in Chinese), 3 (5): 287–292.
- 张宏芳,陈海山. 2011a. 21 个气候模式对东亚夏季环流模拟的评估 II: 年际变化 [J]. 气象科学, 31 (3): 247–257. Zhang Hongfang, Chen Haishan. 2011a. Evaluation of summer circulation simulation over East Asia by 21 climate models. Part II: Interannual variability [J]. Journal of the Meteorological Sciences (in Chinese), 31 (3): 247–257.
- 张宏芳,陈海山. 2011b. 21 个气候模式对东亚夏季环流模拟的评估: I 气 候态 [J]. 气象科学, 31 (2): 119–128. Zhang Hongfang, Chen Haishan. 2011b. Evaluation of summer circulation simulation over East Asia by 21 climate models. Part I: Climatology [J]. Journal of the Meteorological Sciences (in Chinese), 31 (2): 119–128.
- 张琼, 钱永甫. 2004. 南亚高压的年际和年代际变化 [J]. 大气科学, 24(1): 67-78. Zhang Qiong, Qian Yongfu. 2004. Interannual and interdecadal variations of the South Asia high [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 24 (1): 67-78.
- Zhou T J, Li Z X. 2002. Simulation of the East Asian summer monsoon using a variable resolution atmospheric GCM [J]. Climate Dyn., 19 (2): 167–180, doi: 10.1007/s00382-001-0214-8.
- Zhou T J, Yu R C. 2006. Twentieth-century surface air temperature over China and the globe simulated by coupled climate models [J]. J. Climate, 19 (22): 5843–5858, doi: 10.1175/JCLI3952.1.
- Zhou T J, Wu B, Scaife A A, et al. 2009a. The CLIVAR C20C project: Which components of the Asian–Australian monsoon circulation variations are forced and reproducible? [J]. Climate Dyn., 33 (7–8): 1051–1068, doi: 10.1007/s00382-008-0501-8.
- Zhou T J, Wu B, Wang B. 2009b. How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian–Australian Monsoon? [J]. J. Climate, 22: 1159–1173, doi: 10.1175/2008JCLI2245.1.